
Explore, Approach, and Terminate: Evaluating Subtasks in Active
Visual Object Search Based on Deep Reinforcement Learning

Jan Fabian Schmid, Mikko Lauri, Simone Frintrop

Abstract— Searching for objects and distinguishing task-
relevant objects from others is a key requirement for service
robots. We propose a reinforcement learning solution to the
active visual object search problem. Our method successfully
learns to explore the environment, to approach the target object,
and to decide when to terminate the search as the target object
has been found. We demonstrate the efficiency of our solution
on a dataset of real-world images collected by a robot. Our
approach outperforms state-space planning or other baseline
search strategies, reaching a higher success rate in a shorter
time. We also study individual subtasks of active visual object
search. Although strong baselines exist for the subtasks, our
RL solution outperforms them in the overall search task.

I. INTRODUCTION

Consider a service robot executing a task such as “bring
me a red cup”. The robot must not only be able to visually
distinguish the target object, but also to decide what to do if
the cup is not in its visual field of view. As objects may move
as a result of actions of humans or other robots, the robot
cannot rely on remembering where objects are to solve this
search task. The variety of environments in which the robot
may be deployed excludes hard-coding a sequence of search
locations to visit to find the object. Instead, a search strategy
that allows the robot to find objects in any environment is
required. As shown in Fig. 1, such a strategy encodes how the
robot should explore the environment, approach a potential
target object and decide if the target object has been found.

Reinforcement learning (RL) is a suitable method for
designing autonomous agents which execute actions to reach
a goal [1]. Recent advances in image understanding through
deep convolutional neural networks allow high-dimensional
image inputs in RL methods for visual object search [2], [3],
[4]. Current state-of-the-art RL approaches to visual object
search apply simplifications of the visual search problem that
make them not directly applicable in a robotics scenario. For
example in [2], [3], the search task is considered complete
if a location close enough to the target object’s location is
reached. However, a robot executing a fetching task must not
only get close to the object, but also detect the object, and
take an action to grasp the object. In such cases, it is crucial
to consider active termination of the search task, where the
target object must be explicitly declared as found to move
to the next phase of the fetch task. Simulated environments
are commonly used to train and test RL agents for visual
search [2], [4]. For robotics applications, it is important to
verify if the methods work with real image data.

Department of Informatics, University of Hamburg,
Hamburg, Germany, SchmidJanFabian@gmail.com,
{lauri,frintrop}@informatik.uni-hamburg.de.

Fig. 1. Active visual object search has three subtasks [7]: exploration
to form a target object hypothesis, approaching the hypothesis to collect
evidence, and active termination to declare the object is found or to resume
exploration. The target object hypothesis is shown by the red bounding box.

We address the aforementioned drawbacks of current RL
methods applied to visual object search. Our method extends
the deep recurrent Q-network (DRQN) [5] to solve the visual
object search problem. Unlike prior work, we explicitly
consider the active termination of the search task. We apply
an object proposal method to create object hypotheses, learn
a strategy for approaching and evidence accumulation, and
for explicitly declaring the target object as found. We use real
images collected by a robot from the active vision dataset [6].

Our contribution is two-fold. Firstly, we propose the first
RL method that addresses all subtasks of visual object search
including active termination, and demonstrate its perfor-
mance with realistic image inputs. Our method generalizes
to new object arrangements and search environments, while
also outperforming state-space planning and heuristic base-
line policies. Secondly, we give empirical evidence on the
subtasks of exploration, approaching, and active termination.
Although strong baselines exist for the individual subtasks,
our integrated RL approach provides a superior solution.

The paper is structured as follows. Section II reviews
related work. Section III gives a problem statement and Sec-
tion IV introduces our RL method. Sections V–VII describe
our experiments. Section VIII concludes the paper.

II. RELATED WORK

We review how prior information is applied in visual
object search, and then focus on RL methods similar to ours.

A. Prior information in visual object search

Spatial dependency priors are widely applied in visual
object search. Garvey [8] introduced the indirect search ap-
proach that exploits spatial relations describing the likelihood
of finding a target object close to some other objects, or in



a certain type of room. An indirect search agent looking for
a cup might exploit a spatial prior that says cups are often
found on tables, and search for a table before looking for a
cup on the table. In [9], known landmark objects are used
to score possible next camera poses. The score is increased
if the corresponding view contains landmark objects that
the target object likely co-occurs with. Aydemir et al. [10]
assume knowledge of the type of room that the target object
is likely to occur in. Rooms are categorized by the search
agent using a pre-defined probability distribution.

Bayesian methods maintain a probability mass function of
each region to contain the target object. Ye and Tsotsos [11]
proposed the first complete Bayesian object search frame-
work. Others [12], [13] extended the framework by adding an
attention mechanism to further guide the exploration phase.

Some approaches assume complete knowledge of the
search environment. In [14] an agent learns to avoid obstacles
in a known office environment. The agent moves randomly
until the target object is detected and then approaches the
detection area. In [15] a map is required to plan a series of
views to exhaustively explorate the environment. The target
object is assumed to be visible from the initial pose in [7].

B. Reinforcement learning for visual object search

Oh et al. [2] evaluate memory extensions to the DRQN [5],
using search environments within the Minecraft video game.
The goal of the agent is to reach a target area indicated
through task specific visual cues. Zhu et al. [4] employ end-
to-end learning for target-driven visual navigation and extend
the framework to visual object search in simulated environ-
ments [3]. The search agent exhaustively visits all containers
which might include the target object. This strategy requires
static environments with a fixed set of potential target object
positions and is therefore not applicable to our test cases
where arrangements of targets and furniture are changed
between training and testing. In both approaches above, the
target object is considered found if the agent is close to it,
i.e., no active termination is required. Some methods target
only single subtasks of visual object search. For example,
[6], [16] learn RL policies for the approaching task.

We propose the first RL method that addresses all subtasks
of visual object search including active termination. We avoid
any spatial dependency priors, as argued by [7], such priors
have limited usefulness in room-scale search spaces.

III. PROBLEM STATEMENT

Consider a robot searching for a target object o. The
robot’s pose at time step t is denoted by xt. To remember
information about its past actions and experiences, the robot
maintains an internal state vector st. The robot can move left,
right, forward, or backward; or rotate clockwise or counter-
clockwise. Additionally, the action decl declares the target
object found and terminates the task. After an action at,
the robot’s new pose is xt+1 = f(xt, at), where f is a
deterministic state transition function.

When the robot enters a new pose xt, it observes a camera
image. A feature vector yt = g(xt, o) is extracted, where g

represents the imaging and feature extraction process. The
internal state is updated via st = h(st−1, yt). We define g
and h in our implementation in the next section.

The objective is to maximize the sum of rewards R(xt, at)
over T time steps. All movement actions have a reward of
−2. Invalid movement actions, e.g., a movement that would
crash the robot into a wall, have a reward of −5. A reward of
50 or −50 is set for declaring the target object correctly or
wrongly, respectively. A reward of 10 or −10 is set when the
robot enters or leaves, respectively, a pose from which the
target object is visible. We address the following problem.

Problem 1 (Active visual object search). Given the initial
pose x0, internal state vector s0, target object o, and a budget
of T ≥ 1 actions, find a sequence of policies µ0:T−1, where
for 0 ≤ t ≤ T − 1, µt : st 7→ at, that maximizes

max
µ0:T−1

E

[
T−1∑
t=0

R(xt, at)

]
s.t. at = µt(st), t = 0, . . . , T − 1

xt = f(xt−1, at−1), t = 1, . . . , T − 1

yt = g(xt, o), t = 0, . . . , T − 1

st = h(st−1, yt), t = 1, . . . , T.

IV. METHOD

We apply reinforcement learning to find a stationary
policy that approximates Problem 1. We describe our image
preprocessing process in Subsection IV-A. In Subsection IV-
B we present our extension of DRQN [5] to object search.

A. Image feature extraction

From the camera view at pose xt, we extract a feature
vector yt = g(xt, o). The process is illustrated in Fig. 2 (red
part), and its motivation is to extract relevant information
about objects and the environment by pre-trained networks.
The feature vector yt =

[
y1t y2t y3t

]
is obtained as follows.

The top branch produces y1t by first applying the region
proposal network (RPN) from [17] to extract 300 bounding
boxes of object proposals from the input image. The bound-
ing boxes are then fed into the instance classifier of [6]
which calculates for each proposal a confidence score for
each of the 33 possible classes. Non-maximum suppression
is applied to keep only one highest-confidence proposal for
each class. We remark that one proposal may be the highest-
confidence proposal for multiple classes. A vector of length
5 is provided for each of the 33 object classes: one value
representing whether this object class is currently searched
for, 3 values representing the position and size of the object
proposal it is currently most likely corresponding to, and one
element for the confidence value. Finally, the stacked vectors
are used as the input for the network and are processed by a
fully connected (FC) layer with output size 512 to form y1t .

To obtain y2t , we extract the highest confidence bounding
box detected for the current target object o. The input
image is cropped to the contents of this bounding box. The
cropped segment is processed by Inception-v3 [18] trained on
ILSVRC [19], the output of which is fed into a FC layer with



Input
image

Region
proposal net

Instance
classifier

Non-maximum
suppression

FC (512)

Crop target
object

Inception v3 FC (512)

Inception v3 FC (512)

F
C

(1
5
36

)

Feature extraction g(xt, o)

L
S
T

M
(1

53
6
)

L
S
T

M
(1

53
6)

L
S
T

M
(1

53
6)

st

F
C

(2
0
4
8)

Internal state update h(st−1, yt)

FC (1)

FC (7)

Action selection at

Policy µ(st)

300
proposals

proposals
& confidence

y1t

y2t

y3t

yt

State value

Action advantages

Fig. 2. Overview of the architecture of our RL agent. In red: processing of the current camera view at pose xt to extract the feature vector yt = g(xt, o).
In blue: DRQN model with update of internal state st = h(st−1, yt) and the policy module at = µ(st). Rectangular nodes represent the network layers
of the core network that are affected by learning. Nodes with rounded corners are fixed to pre-trained weights, or do not have any trainable parameters.

Fig. 3. Snapshot of a search scenario. Object proposals are highlighted
with red bounding boxes. In the upper right corner, reachable camera poses
are shown with the current pose indicated in red. Possible target objects are
shown at the bottom, with the current target object highlighted in green.

512 outputs to form y2t . The part y3t is obtained by processing
the entire input image by Inception-v3, and processing it by
a FC layer with 512 outputs. The outputs of the three initial
processing layers are merged and processed by a FC layer
to form yt with size 1536.

B. Extending DRQN to active visual object search

The deep recurrent Q-network (DRQN) [5] is an RL
method that extends the deep Q-network [20] with a long-
short term memory (LSTM). Through its recurrent struc-
ture the DRQN is equipped to deal with spatio-temporal
contexts [2], which is an important ability in a partially
observable environment such as ours. We apply DRQN to
active visual object search as shown in Fig. 2 (blue part).

Given yt and the old internal state st−1, a three-layer
LSTM module with 1536 cells per layer computes a new
internal state st. The new internal state is processed by a FC
layer with output size 2048. For the policy module µ(st), we
employ the dueling DQN approach [21], predicting the state
values and action advantages. Finally, the action at with the
highest predicted value is selected.

V. EXPERIMENTAL SETUP

We test the generalization capability of our RL agent in
apartments with up to 3 rooms, considering two scenarios:

1) Known apartment, new object arrangement. The apart-
ment has been used in training, but the arrangement of
objects is different at test time.

2) New apartment. Apartment was not used in training.
In both scenarios, the agent can move on a known graph of
discretized locations in the apartment, see Fig. 3 (top right).

A. Search environments

We use the active vision dataset (AVD) [6] with scans of
14 real apartments recorded using a robot equipped with a
camera, allowing virtual movement through the apartments.
We classify each apartment in the AVD as simple, medium,
or hard for the visual search task. Simple apartments consist
of a single small room. Medium difficulty apartments consist
of a large room and sometimes an additional small room, e.g.,
a bathroom. Hard apartments have multiple large rooms. We
use two simple, five medium and five hard apartments for
training. Evaluation of Scenario 1 is done with one unseen
object arrangement for one apartment of each difficulty.
Scenario 2 is tested with one simple and one hard apartment.

B. Target objects and object proposals

Each search environment contains a subset of the 33
BigBIRD objects [22] that we use as target objects. Object
instances in each of the categories “hand soap bottle”, “snack
bar box”, and “cereal box” are visually similar. Therefore,
we group all instances in these categories, and accept finding
any instance as a correct solution to a search task.

The instance classifier is trained with images of target
objects which are visually different from how the objects
appear in the actual search environment. An example of the
training images is shown at the bottom of Fig. 3. The decl
action proposes the object proposal bounding box with the
largest instance classifier certainty as the target object.

To evaluate the effect of object detection, we also replace
the RPN object proposals with the ground truth proposals.

C. Comparison methods

As we consider a search task that must be actively ter-
minated, methods such as [2], [4], [3] are not applicable
for direct comparison. Instead, our main comparison method
is based on state-space planning where a path planning
algorithm is guided by the instance classifier. This method
modifies the Bayesian reasoning framework [11] following



an approach similar to [10]. The environment is partitioned
into a voxel grid. At each voxel, the probability that the target
object is located there is maintained. Voxel probabilities
are updated after each observation according to the object
proposals and their likelihood of corresponding to the target
object according to the instance classifier. The target object
is declared found if at least 40% of the probability mass
has been accumulated in the voxels corresponding to the
location of a single object proposal. If the target object is not
declared, a movement action is taken. Voxels visible from the
adjacent poses are estimated using raytracing and the current
reconstruction of the environment. The next pose is the one
maximizing the probability of the target object being visible.

We apply two additional baseline methods. The random
baseline selects a movement or declaration action uniformly
at random. The random + threshold baseline selects move-
ment actions uniformly at random, but declares the target
object found when an object proposal occurs with instance
classifier certainty above a threshold of 0.3.

D. Training and implementation details

Our learning procedure is similar to DRQN [5] with a
modified replay memory implementation. As the last step
of a search episode is the most informative, we sample tail
ends of sequences for training. The sequences vary in length,
allowing to learn both how to find the target object when it is
already close and when the search requires a long sequences
of actions. Training batches have a balanced number of
successful and unsuccessful episodes. We set a budget of
T = 125 time steps. During training we add Gaussian noise
to the feature vector yt, and use dropout of entire input
sources (yit) for regularization. We use the Adam optimizer
with learning rate 10−5. We train three networks each for 72
hours and choose the one with greatest training success rate
for evaluation. Our implementation is available online1.

VI. RESULTS

Table I shows our main result, the search success rate and
the average length of successful search episodes. Results are
shown for both of the two generalization scenarios described
in Section V, either using RPN object proposals or ground
truth (GT) object proposals. Results are averaged over 1500
search tasks for the new object arrangement scenario and
400 search tasks for the new apartment scenario. For the
random baselines, each search task is repeated 10 times.

For the more realistic scenario using RPN proposals, our
RL agent outperforms all baseline approaches. Compared to
using GT proposals, using the more noisy RPN proposals
only reduces the performance of our method from 0.696 to
0.609. The success rate of the Bayesian method decreases
from 0.475 to 0.172 when using RPN proposals. The dif-
ference is even greater for the random + threshold baseline.
Recall that this baseline declares the target object found when
an object proposal with instance classifier certainty above
a threshold of 0.3 is encountered. With more false object

1https://github.com/JanFabianSchmid/RL_for_AVOS

proposals in the RPN case, the performance degrades from
0.620 to 0.223 compared to using GT proposals. All base-
line methods strongly depend on reliable object proposals,
whereas our RL solution learns to cope with noisy proposals.

The results for the two scenarios of new object ar-
rangement and new apartment indicate that our RL agent
can generalize both to new object configurations in known
environments, as well as to searching for objects in novel
environments. Even in novel environments, our RL method
consistently outperforms the baselines when using RPN pro-
posals. When using GT object proposals, random + threshold
has similar success rate as our RL agent. However, the RL
agent requires significantly less actions on average to find
the target object. This suggests that the random + threshold
baseline takes many unnecessary steps before encountering
a reliable GT proposal that matches the target object. The
random method takes about 5 steps on average to find the
target, indicating that it is only successful when the target
object is close to the robot’s starting location.

Table II shows the average success rate and length of
successful episodes for the new object arrangement scenario,
split according to the difficulty of the search environment.
With both types of object proposals, and in all difficulties of
search environments, our method outperforms the baseline
approaches. Generally, the length of successful episodes
tends to increase for more difficult environments. When
using GT proposals, the success rate of all methods decreases
as the environment difficulty increases. However, for RPN
proposals the success rates are particularly low for the simple
environment. This indicates problems of the RPN specific
to this environment. While on average for about 15% of
GT proposals corresponding RPN proposals are generated
(having an IoU greater than 0.5), this is only for about 10%
of GT proposals the case on the simple environment used to
evaluate the new object arrangement scenario.

VII. WHY DO OBJECT SEARCH METHODS FAIL?

To analyze why active visual object search methods fail,
we study the subtasks of exploration, approaching, and active
termination. We describe the experimental setup and results,
and discuss which subtasks are critical for object search.

A. Experimental setup

Experiments are run in the new object arrangement sce-
nario. For exploration and approaching, we use the GT object
proposals to exclude the effect of imperfect object proposals.

a) Exploration: The agent starts at a random pose.
The exploration subtask is successfully completed when the
agent reaches a pose from which the target object is visible.
We evaluate this subtask on the same 1500 search tasks
from the general search task for the new object arrangement
scenario. The random baseline randomly selects a movement
action that leads to a pose that is still unvisited. The rotating
baseline performs a 360 degree rotation at the starting pose.

b) Approaching: The agent starts at a pose where the
target object is visible. Over ten actions, we record if the
agent finds the target object or not, and how the instance



TABLE I
OBJECT SEARCH SUCCESS RATE AND LENGTH OF SUCCESSFUL EPISODES. BEST SUCCESS IN BOLD.

Scenario Method RPN object proposals Ground truth object proposals
Success rate Length of successful episodes Success rate Length of successful episodes

New object arrangement

Ours .609 19.2 .696 16.4
Bayesian .172 46.2 .475 40.3
Random .078 5.2 .133 5.3

Random + threshold .223 15.5 .620 26.3

New apartment

Ours .555 36.5 .448 16.9
Bayesian .122 51.2 .358 43.3
Random .081 4.4 .134 5.0

Random + threshold .189 7.9 .471 27.4

TABLE II
SEARCH SUCCESS RATE (SR) AND LENGTH OF SUCCESSFUL EPISODES (NEW OBJECT ARRANGEMENT SCENARIO). BEST SUCCESS RATES IN BOLD.

RPN object proposals Ground truth object proposals

Simple Medium Hard Simple Medium Hard

SR Length SR Length SR Length SR Length SR Length SR Length

Ours .540 12.9 .722 20.6 .564 23.5 .774 12.2 .726 16.2 .588 22.1
Bayesian .104 35.2 .212 50.8 .200 46.9 .616 39.5 .484 46.1 .326 33.4
Random .074 5.6 .091 4.8 .070 5.1 .165 5.5 .136 5.5 .098 4.9

Random + threshold .195 14.6 .281 17.7 .194 13.3 .682 24.7 .650 26.3 .528 28.4

classifier certainty changes. Our hypothesis is that the higher
the classifier certainty, the better the agent can approach the
target object. We average over 750 task configurations.We
apply a random baseline, and a forward baseline that ap-
proaches the visible object by only executing the action fwd.
The active instance classifier (AIC) baseline [6] is an RL
agent trained to approach an area visible in the current image.
The area to approach is the object proposal that is currently
the most likely one corresponding to the target object.

c) Active termination: The agent starts at a random
pose where an object is visible. In 50% of cases the visible
object is the target object. In the other 50% of cases the
visible object is a non-target object. We execute movement
actions that approach the object. While approaching, if the
agent’s policy module outputs a declaration action, the task
terminates. If the agent uses the declaration action when
approaching a target object, or if it does not use the declara-
tion action when approaching a non-target object, the task is
considered successful. In case of false positive declaration or
not declaring the target object, the task is considered unsuc-
cessful. We employ the certainty threshold baseline which
declares the target object found when an object proposal
occurs with instance classifier certainty above a threshold
of 0.3. This subtask is evaluated on 750 task configurations.

B. Results

Average success rate in exploration as a function of the
number of available steps is shown in Fig. 4. In the first 5
steps our RL agent has similar performance as the rotating
policy. We verified by examining the movement patterns that
our method starts exploration by looking around. Random
navigation reaches a higher success rate than our method,
but only after 75 steps of exploration. This partly explains

Fig. 4. Exploration success rate as function of the number of actions.

TABLE III
EXPLORATION SUCCESS RATE W.R.T. DIFFICULTY.

Method Simple Medium Hard

Ours .938 .952 .702
Bayesian .668 .618 .394
Random nav. .990 .988 .799
Rotating .924 .886 .564

why the random + threshold baseline performs well in the
overall task when using GT proposals.

Table III shows the exploration success rate after 125 steps
grouped by search environment difficulty. In environments
with simple and medium difficulty, exploration is not the
main challenge of the overall search task. In these cases,
about 90% of the target objects are observable by rotating
at the initial pose. In hard scenes, success rate in the overall
search task is limited by the difficulty of exploration, i.e.,
getting the target object into the field of view.



Fig. 5. Instance classifier certainty as function of the number of actions.

TABLE IV
SUCCESS RATE IN ACTIVE TERMINATION.

Object proposals Ours Bayesian Certainty threshold Random

RPN 0.741 0.499 0.585 0.500
Ground truth 0.819 0.708 0.837 0.500

Next, we evaluate the approaching subtask. Fig. 5 shows
the average instance classifier certainty as a function of
number of steps in cases where the initial certainty was below
0.52. We analyze separately the cases where our method
successfully declared the correct object hypothesis during
the approaching task (Successful ours, 38% of cases), or
did not (Unsuccessful ours, 62% of cases). In successful
cases, the performance of our method is similar to AIC. In
unsuccessful cases, the certainty decreases, and the agent
incorrectly decides that the visible object is not the target
object and searches elsewhere. Overall, the AIC [6], which
is specifically trained for this subtask and does not consider
exploring, rather than approaching, performs the best.

Table IV shows the average active termination success
rates. Due to our experimental setup, a random policy has
expected success rate 0.5 in this subtask. With GT proposals,
our method performs similarly as the certainty threshold
baseline. This shows that the instance classifier certainty is
a suitable indicator for active termination. Our method is
robust to noisy RPN object proposals, maintaining a success
rate of 0.741 compared to 0.585 for the certainty threshold,
and 0.499 for the Bayesian method.

C. Discussion

Our analysis of the subtasks indicates that in hard scenes,
exploration is difficult and the most limiting factor for
the success rate in object search. We found the instance
classifier certainty an appropriate measure for success in the
approaching subtask. Active termination of the search task
is important in robotics applications. Noisy object proposals
strongly decrease the performance of the baseline policies in
active termination. Our RL method has learned to cope with
noisy proposals and succeeds significantly more often.

2With high initial instance classifier certainty, approaching is not neces-
sary, and the task can immediately be terminated. If initial certainty is above
0.5, our RL agent terminates the task immediately (66.1% of the episodes).

VIII. CONCLUSION

Our RL method for active visual object search solves
all subtasks of object search: exploration, approach, and
active termination. This makes our method well suited for
robotics applications where the target object must be ex-
plicitly declared found to execute subsequent tasks such as
grasping. We showed that our method generalizes both to
new arrangements of objects in known search environments,
as well as to novel search environments. Our method’s ability
to dynamically switch between behaviors relevant for the
subtasks of search helps it to outperform baselines.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] J. Oh, V. Chockalingam, S. Singh, and H. Lee, “Control of Memory,
Active Perception, and Action in Minecraft,” in ICML, 2016.

[3] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mot-
taghi, and A. Farhadi, “Visual Semantic Planning Using Deep Succes-
sor Representations,” in ICCV, 2017.

[4] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven Visual Navigation in Indoor Scenes using
Deep Reinforcement Learning,” in ICRA, 2017.

[5] M. Hausknecht and P. Stone, “Deep Recurrent Q-Learning for Partially
Observable MDPs,” in AAAI Fall Symposium on Sequential Decision
Making for Intelligent Agents, 2015.

[6] P. Ammirato, P. Poirson, E. Park, J. Koeck, and A. C. Berg, “A dataset
for developing and benchmarking active vision,” in ICRA, 2017.

[7] S. Mittal, M. S. Karthik, S. Kumar, and K. M. Krishna, “Small Object
Discovery and Recognition Using Actively Guided Robot,” in ICPR,
2014.

[8] T. D. Garvey, “Perceptual Strategies for Purposive Vision,” Ph.D.
dissertation, Stanford, CA, USA, 1976.

[9] L. Kunze, K. K. Doreswamy, and N. Hawes, “Using Qualitative Spatial
Relations for indirect object search,” in ICRA, 2014.

[10] A. Aydemir, A. Pronobis, M. Gbelbecker, and P. Jensfelt, “Active
Visual Object Search in Unknown Environments Using Uncertain
Semantics,” IEEE T-RO, vol. 29, no. 4, pp. 986–1002, 2013.

[11] Y. Ye and J. K. Tsotsos, “Sensor Planning for 3D Object Search,”
CVIU, vol. 73, no. 2, pp. 145 – 168, 1999.

[12] K. Shubina and J. K. Tsotsos, “Visual search for an object in a 3D
environment using a mobile robot,” CVIU, vol. 114, no. 5, pp. 535 –
547, 2010.

[13] A. Rasouli and J. K. Tsotsos, “Visual Saliency Improves Autonomous
Visual Search,” in Canadian Conf. on Comp. and Robot Vision, 2014.

[14] V. A. Shim, M. Yuan, and B. H. Tan, “Automatic object searching by
a mobile robot with single RGB-D camera,” in APSIPA ASC, 2017.

[15] D. G. Lopez, K. Sjo, C. Paul, and P. Jensfelt, “Hybrid laser and vision
based object search and localization,” in ICRA, 2008.

[16] X. Han, H. Liu, F. Sun, and X. Zhang, “Active Object Detection
with Multi-Step Action Prediction Using Deep Q-Network,” IEEE
Transactions on Industrial Informatics, 2019.

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” in NIPS,
2015.

[18] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the Inception Architecture for Computer Vision,” in CVPR,
2016.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” in NIPS, 2012.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari With Deep Reinforce-
ment Learning,” in NIPS Deep Learning Workshop, 2013.

[21] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling Network Architectures for Deep Reinforcement Learning,”
in ICML, 2016.

[22] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “BigBIRD:
A large-scale 3D database of object instances,” in ICRA, 2014.


