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Abstract. Isolated Sign Language Recognition (ISLR) approaches pri-
marily rely on RGB data or signer pose information. However, combin-
ing these modalities often results in the loss of crucial details, such as
hand shape and orientation, due to imprecise representations like bound-
ing boxes. Therefore, we propose the ISLR system SegSLR, which com-
bines RGB and pose information through promptable zero-shot video
segmentation. Given the rough localization of the hands and the signer’s
body from pose information, we segment the respective parts through
the video to maintain all relevant shape information. Subsequently, the
segmentations focus the processing of the RGB data on the most relevant
body parts for ISLR. This effectively combines RGB and pose informa-
tion. Our evaluation on the complex Chal.earn249 IsoGD dataset shows
that SegSLR outperforms state-of-the-art methods. Furthermore, abla-
tion studies indicate that SegSLR strongly benefits from focusing on the
signer’s body and hands, justifying our design choices.

Keywords: Sign language recognition - Action recognition - Segmenta-
tion.

1 Introduction

Sign language is a central way to communicate for the deaf or hard-of-hearing.
It transmits information through several visual parameters, most importantly
manual parameters like hand shape, orientation, position, or movement, but
also non-manual parameters like body posture, facial expressions, or head move-
ments [I]. Outside the deaf or hard-of-hearing community, few people understand
sign language, which substantially limits the social interaction of the deaf or
hard-of-hearing. To bridge this gap, Isolated Sign Language Recognition (ISLR)
systems classify a video sequence of sign language on a gloss-level.

ISLR systems rely on various techniques [25/30]. Several systems explicitly fo-
cus on the most relevant image areas like the signer’s body, hands, or face to cap-
ture the manual and non-manual parameters [7T2/4J32I3TUT3ITS|. This is done by
attending to the relevant parts of the RGB video frames (RGB-based) or adding
dedicated networks, which encode pose information (pose-based). Pose-based
models extract keypoints of the signer and subsequently generate a skeleton-like
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Fig. 1: Idea of the proposed SegSLR system: We combine RGB information (first
row) and pose information (second row) through promptable video segmentation.
The pose information is used as prompts to segment the RGB frames. This leads
to segmentations of the signer’s body (third row) and hands (fourth row) to focus
processing on the most relevant image areas for ISLR.

graph, which is then processed by complex architectures [22JT3J1833]. In con-
trast, RGB-based models mostly extract crops around the signer’s hands or the
signer itself. These crops are classified as one part of the system. Note that some
RGB-based methods use pose information to locate the relevant parts in the
image. Thus, most methods either operate solely on RGB or pose information,
or use the pose mostly to guide the extraction of crops, losing critical details
about the pose, such as hand shape, hand orientation, or body posture.

Recently, foundation models for promptable segmentation of images and
videos revolutionized segmentation in several domains and tasks [SI37I24U9135].
Promptable segmentation refers to segmenting a coherent part of the image given
a suitable prompt, like point coordinates or a bounding box. SAM [I6] for images
and SAM 2 [26] for videos, address these tasks and generate high-quality seg-
mentations in a zero-shot manner without domain-specific training data. Hence,
these models are also well-suited for ISLR.

In this paper, we combine RGB-based and pose-based ISLR through the
innovative use of promptable video segmentation in our novel ISLR system
SegSLR, visualized in Fig. SegSLR uses a multi-stream approach. Besides
Inflated 3D CNN (I3D CNN) [2] based streams for plain RGB information and
optical flow, ensuring a comprehensive understanding of both spatial and tem-
poral dynamics, SegSLR contains segmentation streams, which combine RGB
and pose information through promptable video segmentation. The innovative
idea of these streams is, first, to utilize pose information to locate the signer’s
body and hands in the form of point sets. Second, these point sets are utilized
by the promptable video segmentation method SAM 2 to generate high-quality
segmentations (masklets) of the signer’s body and hands through the video in
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a zero-shot manner to retain rich pose information (see Fig. [1] for an exam-
ple). Finally, these masklets are used to focus the processing of the RGB frames
in the subsequent classifiers based on I3D CNNs to the most important image
areas for ISLR. This results in a unified architecture exclusively relying on sim-
ple I3D CNNs for classification. Based on this innovative combination of pose
and RGB information, SegSLR outperforms state-of-the-art systems on the com-
plex ChaL.earn249 IsoGD dataset, as our evaluation shows. Ablation studies also
demonstrate the benefit of the key design decisions.
Overall, our contributions are three-fold:

— We introduce SegSLR, a novel ISLR method, leveraging both RGB and pose
information.

— We use foundation models for promptable video segmentation in ISLR to
combine pose and RGB information, which retains rich pose information
through high-quality segmentations.

— SegSLR outperforms the existing state-of-the-art by up to 4.17%, while ab-
lation studies validate the design choices.

2 Related Work

Methods for ISLR evolved from models based on hand-crafted features to learned
CNN-, LSTM-, or transformer-based architectures [25/30]. Here, we will discuss
learned methods since they substantially outperform traditional ones. Learned
models for ISLR can be divided into three groups: methods that mainly rely on
RGB information, on pose information, or hybrid methods.

Methods relying only on RGB input either encode the entire frame or, ad-
ditionally, crops of relevant areas. [28] encode entire RGB frames of a video
in an I3D CNN architecture [2] and add a second stream with optical flow to
better capture the temporal dynamics. Subsequently, the streams are fused on
score-level. Similarly, [20] apply I3D CNN to the RGB input and add weakly
supervised data to improve the feature extraction. [4I] combine 3D CNNs for
short-term temporal dependencies with a Conv LSTM for long-term ones.

Several RGB-based methods additionally focus on the signer’s body parts
as important parameters for sign language recognition. [2I] apply simple hand
detectors based on Haar-like features to extract bounding boxes around the
hands and track them through the video, yielding a hand energy image for
classification. [32I29I3T] all extend the two-stream model of [28] by focusing on
different aspects. While [32] extract masks of the hands in an individual stream
to mask the RGB input, [29] focus the RGB input on the moving areas in an
end-to-end learned manner, resulting in attending hands and arms. Finally, [31]
utilize pseudo depth as an additional stream, effectively segmenting the signer
without combining this information with the RGB stream.

Using only pose information, [22] apply a graph convolutional network (GCN)
to the skeleton graph generated by a pose estimation system, while also applying
advanced data augmentations, which mix signs. Also utilizing GCNs as their
backbone, [36] add text embeddings in a contrastive learning framework, while
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[33] use GCNs at the frame-level and model the temporal dependency using
BERT [5]. [13/40] use BERT for self-supervised pre-training. In [I3], masked
hand poses are reconstructed for pre-training. In contrast to previous methods,
[18] apply transformer-based modules instead of GCNs.

Hybrid methods combine RGB and pose information. [I4] propose a multi-
stream architecture with 3D CNNs for RGB and optical flow input as well as a
GCN for the skeleton graph, combining them through score fusion. Several sys-
tems [7UT2I84] crop parts of the RGB frames or latent representations around
the hands, face, or the entire signer for focused processing based on pose infor-
mation. Yet, only bounding boxes [7JT24] or rough segmentations [§] are used.
Finally, [42] encode the position of specific joints of the signer into heatmaps
that can be processed by 3D CNNs, which also capture RGB information [14].

Closest to our proposed SegSLR are the hybrid methods, which use pose in-
formation to focus processing of the RGB data on relevant areas like the signer’s
body or hands. However, [7J12/4] only use bounding boxes, losing information
about the hand shape, hand orientation, or the signer’s body posture, which
are all highly relevant for sign language recognition. [8] generate pixel-precise
segmentations, yet they are derived from the pose information through dilation.
This results in low-quality segmentation masks. In contrast, SegSLR employs
high-quality segmentations of the signer’s body and hands using a foundation
model, retaining important details about body posture and manual parameters.

3 Revisit Segment Anything Model 2

Original SAM [I6] for images is a segmentation system trained on a large-scale
dataset, which is applied to various tasks in a zero-shot manner. To guide SAM,
prompts (points, boxes, or masks) are used, which indicate what to segment
within an image. SAM 2 [26] extends this idea to videos and leverages the tem-
poral information to segment consistent masklets. SAM 2 consists of three ma-
jor components: encoders, a decoder, and a memory mechanism. The image and
prompt encoders consist of a masked autoencoder [I0] for images as well as
positional and learned embeddings for the prompts. Given these embeddings,
the mask decoder predicts a segmentation mask and an IoU score. To ensure
temporal consistency across the video, a memory attention mechanism is added.
For training SAM 2, [26] proposed a new dataset SA-V, with manually or semi-
automatically annotated videos.

4 Method

This section introduces our novel SegSLR system for ISLR, as depicted in Fig. 2]
SegSLR follows the general approach of [28], comprising a multi-stream archi-
tecture based on Inflated 3D CNNs (I3D CNNs) [2] with streams for processing
plain RGB frames and derived optical flow information, as visible in the center
and top of Fig. 2| In addition, SegSLR has four segmentation streams (see bot-
tom part in Fig. [2) to effectively combine RGB and pose information. To this
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Fig.2: Overview of our proposed SegSLR system. Based on RGB frames of a
video, the first stream (Optical Flow Stream) calculates the optical flow and,
subsequently, classifies these optical flow frames using an I3D CNN. The second
stream, RGB Stream, directly applies an I3D CNN to the plain RGB frames. As
the key novelty of SegSLR, we propose the segmentation streams, which combine
RGB and pose information using promptable video segmentation modules (see
Fig. [4) to generate four outputs: RGB frames focused on the signer’s body and
hands as well as the respective segmentation logits. These outputs are processed
by I3D CNNs. Finally, score-level fusion is applied to aggregate the results.

end, a promptable video segmentation module as visualized in Fig. [4] first esti-
mates the signer’s pose and generates keypoints for the signer’s body and hands.
A selection of these keypoints is used to prompt SAM 2, yielding high-quality
segmentation masks of the signer’s body and hands. Subsequently, two streams
in SegSLR directly take the logits of the segmentation masks for the body and
both hands, respectively. The other two segmentation streams mask the RGB
frames, to focus processing on the relevant parts of the RGB input while main-
taining rich pose information (hand shape, hand orientation, and body posture)
through the high-quality segmentations. Finally, the data of each stream is pro-
cessed by an I3D CNN per stream, and the results of all I3D CNNs are combined
using score-level fusion (see right part in Fig. . In the following sections, we
discuss each step in more detail.

4.1 Pose Estimation and Prompt Generation

As a first step in all segmentation streams of SegSLR, we derive point prompts
based on pose information for prompting SAM 2 in our promptable video seg-
mentation module (see Fig. . As outlined in Sec. |1} pose estimation results are
used in ISLR to capture the body posture or locate the hands [7JI2/8/4]. There-
fore, we take the state-of-the-art human pose estimation system RTMW [15]
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(a) Selected keypoints for the body (b) Selected keypoints for the hands

Fig. 3: Overview of RTMW [15] keypoints for prompting SAM 2 to segment the
signer’s body @ and hands (]ED Green keypoints are positive point prompts,
red keypoints are negative point prompts, and blue keypoints are ignored.

and initially extract 116 keypoints, as visualized in Fig. [3] covering the entire
signer’s body. Given these keypoints, we create two subsets. The first subset (see
Fig. captures the entire signer’s body, therefore, we use all keypoints except
for detailed hand and face keypoints, since this level of detail is not necessary.
The second subset focuses on the hands and includes the keypoints around the
first joint per finger, as visualized in Fig. [Bb] We ignore the other hand keypoints
since they are frequently outside the hands due to imprecise localization. We also
select negative keypoints to discern the hands from the remaining body in SAM-
2. As negative keypoints, we select all major body keypoints and important face
keypoints. All keypoints in both subsets are the point prompts to guide SAM 2.
Note that undetected keypoints are ignored for prompt generation.

4.2 Best Frame Selection

Before applying SAM 2, we select the best frame to start the segmentation
through the video in our promptable video segmentation module. Frame selection
is important since the first frame might not cover the hands, as the signer’s
hands are usually at hip level. For instance, this is apparent from the initial
frame in Fig. [I| To select the best frame, we assess the quality of the detected
keypoints per frame by calculating the average keypoint confidence, the size of
the bounding box around all keypoints, and the overlap between hands and face
keypoints. The keypoint confidence is a per-keypoint output from RTMW and
a surrogate for RTMW’s confidence about the keypoint. To calculate a single
score, we take the average across all detected keypoints. The remaining two
measures are used to select a frame, which shows no or only a minimal overlap
between the hands and the face. Hands in front of the face frequently occur
in sign language. However, due to their similarity in color, it is challenging to
discern these regions for a segmentation system when they overlap. Therefore,
we first calculate the area of the bounding box covering all keypoints. This helps
to measure how sprawled the arms are. To prevent cases where only the upper
arms are stretched out and the hands are still close to the face, we determine
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Fig. 4: Detailed view of our promptable video segmentation module for hands
segmentation. For segmenting the signer’s body, the same pipeline is applied
with different point prompts. From the input RGB frames, the signer’s pose is
estimated, and the best frame to initiate the video segmentation is determined. In
this frame, several keypoints are converted to positive or negative point prompts.
Using these prompts, SAM 2 is applied to the RGB frames. The results are the
RGB frames masked by the SAM 2 segmentations and the segmentations’ logits.
Note that the estimated poses and the point prompts are overlayed with the
RGB frames for visualisation only.

the maximum overlap between one hand’s bounding box and the bounding box
around the face. Note that all bounding boxes are created based on the detected
RTMW keypoints. To combine the three scores, we first normalize the scores by
their respective per-video maximum, subtract the maximum overlap from 1, and
multiply them. Hence, the best frame will receive the maximum score. Given
this frame, we use the respective sets of point prompts for prompting SAM 2.

4.3 Mask Generation

Given the two sets of point prompts for the signer’s body and hands on the
best frame of a video sequence, we bidirectionally prompt SAM 2 starting from
the best frame in our promptable video segmentation module. Hence, we apply
SAM 2 from the best frame forward through the video and backward. This
process is conducted for each set. The resulting masklet per set is applied to the
RGB frames to focus on either the signer’s body or hands. Besides the binary
segmentation masks, we also extract the per-frame logits of the segmentations
to capture the global scene context through SAM 2’s per-pixel confidence.

4.4 ISLR Classification

Our new segmentation streams are integrated into the framework of [28] for
ISLR classification. This results in SegSLR, as visible in Fig. 2| SegSLR consists
of three main streams, one for the plain RGB data, one for optical flow data
extracted from the RGB data using [38], and the aforementioned segmentation
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(a) Body segmenta- (b) Body logits (¢) Hands segmen-  (d) Hands logits
tion tation

Fig. 5: Examples of the body segmentation, body logits, hands segmentation, and
hands logits as intermediate outputs of the segmentation streams in SegSLR.

streams. As visible from Fig.[2] there exist four segmentation streams working on
the outputs of the two promptable video segmentation modules for segmenting
the signer’s body and hands. The first stream uses masked RGB frames, effec-
tively masking the background and focusing the processing on the signer based
on the pose information. In contrast, the second stream processes the logits of the
body segmentation. Similarly, for the two hands, the third and fourth streams
do the same, processing masked RGB frames and the logits for both hands si-
multaneously. This focuses processing on the dominant parameter for ISLR, the
hands. In case of the logits, the captured global context includes information
about the location of the signer, making the relative location of the hands visi-
ble (see Fig. . In contrast to most ISLR works focusing on hands, the precise
and temporally consistent segmentations by SAM 2 capture the hand shapes,
hand orientation, and even details about the fingers as visible in the examples
in Fig. ol We evaluate the design choices regarding the streams in Sec.

Finally, each segmentation stream in SegSLR uses an I3D CNN as commonly
applied in ISLR literature [20028/12] to capture spatial and temporal dependen-
cies. The per-stream results are combined using score-level fusion.

4.5 Implementation Details

SegSLR consists of three trainable components: (1) SAM 2, (2) RTMW, and (3)
six I3D CNNs. For SAM 2, we apply a model pre-trained on SA-1B [16] and
SA-V [26] as proposed by [26] and do not add fine-tuning, since segmentation
annotations are unavailable in ISLR datasets. Similarly, we directly apply the
pose estimation system RTMW, which is pre-trained on 14 datasets as suggested
by [I5]. For the I3D CNNs in SegSLR, we follow [28] and pre-train the I3D CNNs
on ImageNet [27] and the Kinetics dataset [2]. Subsequently, each 13D CNN is
fine-tuned individually with Adam optimizer, a batch size of 4, and early stopping
with a patience of 3. We apply standard categorical cross-entropy loss per stream.
When training or testing on videos, we uniformly sample 40 frames and extract
a central 224 x 224 crop from each frame. This ensures a constant size and length
of the videos for the I3D CNNs. We additionally utilize data augmentation for
training the I3D CNNs and shift the extracted crop horizontally or vertically
and adjust the brightness [2§].
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5 Evaluation

We evaluate SegSLR on the commonly used ChaLearn249 IsoGD dataset [34]
comprising 249 gestures across 47,933 videos in complex environments and under
challenging lighting conditions. For details about the covered gestures, we refer
to [34]. We use the training dataset to train SegSLR and report results on the
validation and test sets. Note that we train SegSLR five times on the training set
and report the result with the median validation accuracy for a fair comparison.
This model is also used to generate the test results. We additionally report the
mean and standard deviation across the five trainings. We compare SegSLR
against several recent ISLR methods utilizing RGB and/or pose information.
This includes the baseline system of SegSLR [28], methods that focus on the
signer’s body [3I/I9] or hands [32/19], and a method combining RGB and pose
information [I9]. Note that we do not compare to methods utilizing depth, since
this would be unfair, given the strong semantic cues of depth data for ISLR. A
comparison to other methods like [7T28] is impossible due to missing publicly
available implementations. For assessing the quality, we use standard accuracy.

5.1 Results on ChaLearn249 IsoGD Dataset

Table [I] presents the results on the validation and test sets of ChaLearn249
IsoGD. The results clearly show that SegSLR outperforms all other methods
on both sets by a substantial margin. This includes outperforming methods,
which focus on the signer’s hands through bounding boxes [32/19] or the signer’s
body [3I/I9]. The earlier explicitly shows the advantage of utilizing hand seg-
mentations preserving hand shape details over simple boxes. Moreover, [19] also
combine RGB and pose information by focusing their system on boxes around
the hands, elbows, and shoulders of the signer. Comparing SegSLR to its base-
line system, I3D-SLR, which only comprises the RGB stream and the optical
flow stream, SegSLR shows an improvement of 9.21% and 8.32% in accuracy on
validation and test sets. This is the result of adding the segmentation stream,
combining RGB and pose information. Compared to the other variations of I3D-
SLR, adding pseudo depth [31], focusing on moving areas [29], and focusing on
the signer’s hands [32], SegSLR shows large improvements of up to 8.80% and
6.56% on the validation and test sets, respectively. Overall, this shows the strong
performance of SegSLR based on combining pose and RGB information through
promptable video segmentation.

The qualitative segmentation results in Fig. [f] on ChaLearn249 IsoGD sup-
port the aforementioned quantitative results of SegSLR. Across all videos in
Fig. [6] the segmentations of the signer’s body and hands are accurate and suit-
able to focus the processing of SegSLR on these highly relevant areas. Even
despite substantial hand movement or highly-textured backgrounds, the seg-
mentations consistently capture the signer’s body and hands. Specifically, in the
videos in the first two rows, a waving hand is visible that challenges SAM 2
due to the high velocity of the movement. Yet, the segmentations are consistent.
In the second and third rows, the videos show glosses where a hand is moved
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Table 1: Comparison of the proposed SegSLR to state-of-the-art ISLR methods
on the Chal.earn249 IsoGD dataset. For SegSLR, we report the median accu-
racy on the validation set over five trainings, along with the respective mean
and standard deviation in parentheses. *: Numbers were not reported by the
respective paper.

Method Accuracy (%)

Validation Test
C3D-LSTM 1] 1388 =
SYSU ISEE [19] 50.02 *
XDETVP [39] 51.31 -
8-MFFs-3flc (5 crop) [17] 57.40 -
I3D-SLR [28] 62.00 64.44
I3D-pseudoDepth [31] 62.50 66.20
2SCVN-RGB-Fusion [6] 62.72 -
Hybrid Attn-I3D-SLR [29] 65.02 68.89
TD-SLR [32] 67.13 70.91
71.30 72.76

SegSLR (ours) (1 =171.39, o = 0.41)

Table 2: Results of SegSLR on the ChalLearn249 IsoGD dataset with three ver-
sions for the segmentation streams. Bodyrgp denotes the segmentation stream
utilizing masked RGB frames. Body 1o4its is the segmentation stream processing
the raw logits of the body segmentation. Handsprgp and Handsrogis are the
respective streams segmenting the hands.

Accuracy (%)

Input Streams Validation Test

Base 62.09 64.42
+ Bodyraa 65.51 67.33
+ BOdyRGB + BOdyLogzts 67.10 69.78

+ Bodyrgp + Bodyrogits + Handsrer + Handspogits  71.30 72.76

in front of the face. Despite visual similarity between the hands and the face,
SAM 2, prompted with our point prompts derived from pose information, dis-
tinguishes between hands and face. This is due to the negative prompts covering
the face when generating the hand segmentation. Finally, the last row also shows
an example of a sign with a complex finger posture. Still, the hand segmentation
in SegSLR captures all fingers in detail, given the pose-based point prompts.

5.2 Ablation Studies

Input Streams To assess the impact of SegSLR’s focus on the signer’s body
and hands, and the importance of utilizing both the binary segmentation mask
and the logits, we present in Tab. [2] the step-by-step results, from the baseline
system [28] to SegSLR. In each step, we add segmentation streams to combine
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Fig.6: Qualitative body (green masks) and hands (blue masks) segmentation
results generated within our SegSLR on videos of the Chalearn249 IsoGD test
dataset. For each video, one sequence of frames is overlayed with the body seg-
mentation and the hands segmentations, respectively. Note that we only show 8
of the 40 frames per video for brevity.

pose and RGB information. Given the baseline, we first add SegSLR’s body
segmentation by masking the respective RGB frame (Bodygrgp in Tab. . The
improvements of 3.42% and 2.91% clearly indicate the advantage of an additional
focus on the signer’s body. Adding the logits of the body segmentation in another
stream (Body 1ogits in Tab. [2)) further improves the results by 1.59%/2.45% and
shows the additional value of the logits. Finally, adding the same segmentation
streams for the hands (Handspgp and Handsegs in Tab. , further improves
the results by 4.22% and 2.98%, highlighting the importance of hands for ISLR.
Overall, the results in Tab. [2] clearly show the value of all segmentation streams
combining RGB and pose information.

Segmentation Method We present the results of SegSLR with three differ-
ent segmentation methods: well-known Mask R-CNN [11] trained on the COCO
dataset [23] to segment only humans, denoted as Mask R-CNNpeyson, SAM [16],
and SAM 2 [26] as in the proposed SegSLR. Note that we utilize only the segmen-
tation stream for the signer’s body in SegSLR to match Mask R-CNN'’s training
on COCO. For SAM and SAM 2, we apply the same keypoints as described in
Sec. [41] The results in Tab. [3| show that SegSLR outperforms the baseline with
any segmentation stream. Yet, SAM and SAM 2 surpass Mask R-CNN by up
to 3.20%, which underlines the strong zero-shot segmentation ability of these
foundation models. Comparing SAM and SAM 2 shows that SAM 2 leads to
an improvement of 1.37% and 0.87%. A major reason for this is the temporal
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Table 3: Results of SegSLR with different segmentation methods on the
ChalLearn249 IsoGD dataset. Note that SegSLR only includes the body seg-
mentation stream (Bodygag) here.

Accuracy (%)
Validation Test
Base 62.09 64.42
Base + Mask R-CNNperson 62.31 65.44
Base + SAM (Bodyrcp only) 64.14 66.46
Base + SAM 2 (Bodyrcs only) 6551  67.33

Input Streams

Fig. 7. Comparison of segmentations of the signer’s body with SAM (upper
row) and SAM 2 (lower row) in SegSLR on four frames of a video from the
ChalLearn249 IsoGD test dataset.

consistency of the segmentations between the frames. This is also visible in the
qualitative results in Fig. Iﬂ where the SAM segmentations (upper row) flicker
substantially between the frames, while the SAM 2 segmentations (lower row)
consistently cover the entire body.

6 Conclusion

Effectively utilizing both RGB and pose information is key for high-quality ISLR.
To address this combination of RGB and pose information without losing de-
tails important to understand sign language, we proposed the novel ISLR system
SegSLR. It innovatively combines RGB and pose information through prompt-
able video segmentation using pose keypoints to prompt SAM 2 and detect
the signer’s body and hands for a focused processing of the RGB data. The
strength of this novel design for ISLR is supported by our experiments on the
ChalLearn249 IsoGD dataset, where SegSLR outperforms all competing meth-
ods. Our ablation studies also validated the focus of SegSLR on the signer’s body
and hands as well as the use of SAM 2 based on prompts from pose estimation
data. Overall, SegSLR presents another step to bridge the communication gap
between people inside and outside the deaf or hard-of-hearing community.
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