

- using samples from both ExpW and RAF-DB
- FER ensemble classifier ESR-9³

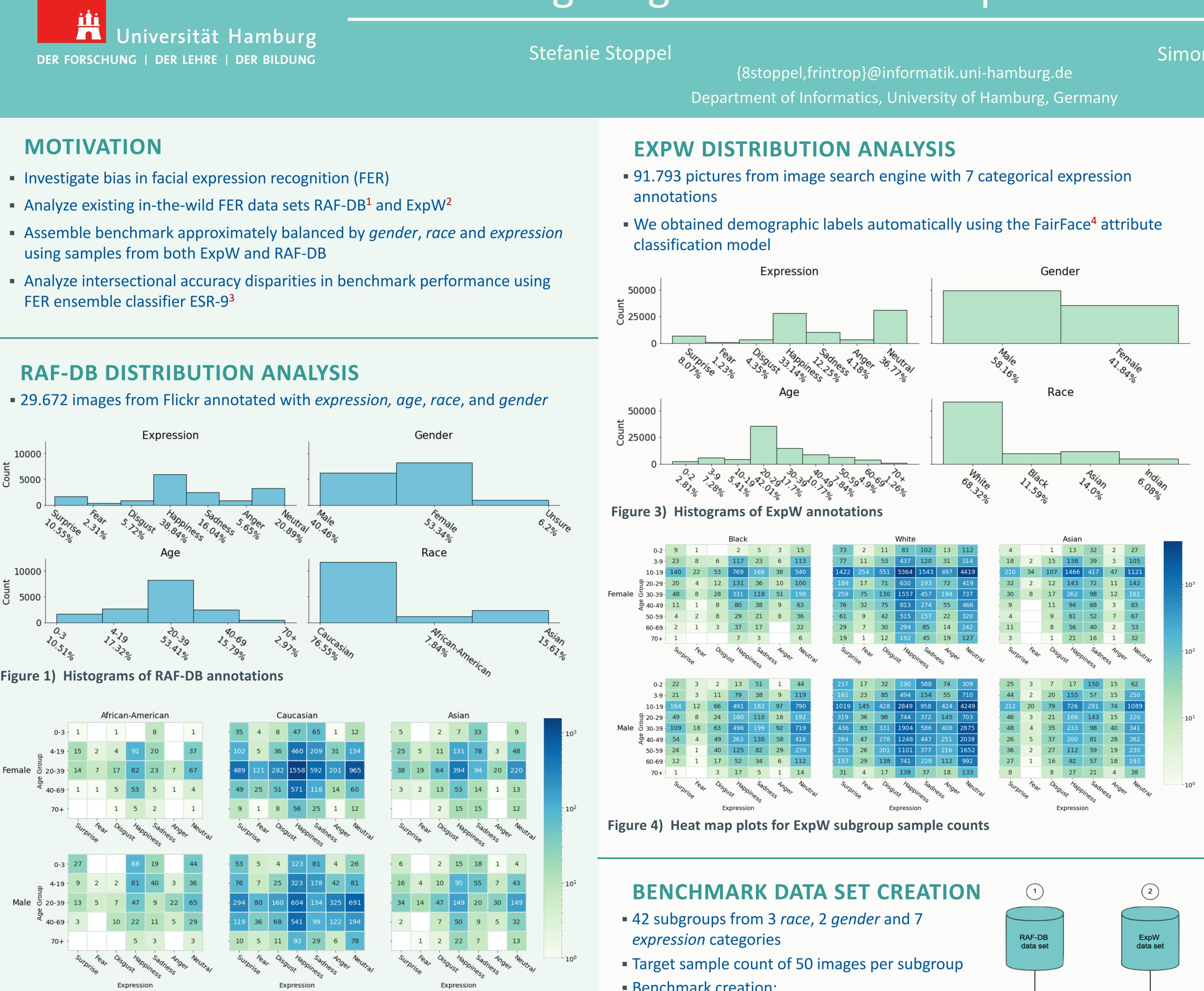
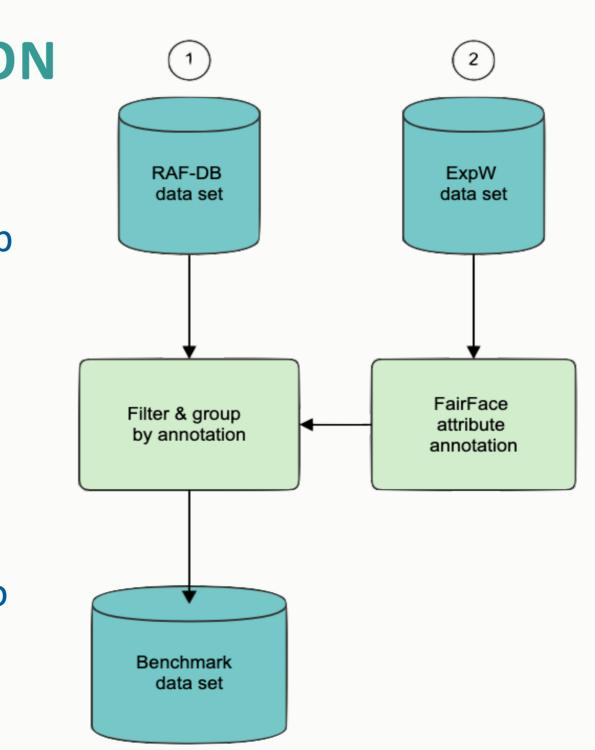



Figure 2) Heat map plots for RAF-DB subgroup sample counts

- RAF-DB highly skewed in the race, age and expression categories (see Fig. 1)
- Intersectional analysis in Fig. 2 reveals...
 - Some subgroups contain no images
 - *Race* category Caucasian and middle *age* group are overrepresented

Investigating Bias in Facial Expression Recognition

- Benchmark creation:
- 1. RAF-DB: Filter & assign samples to demographic subgroups
- 2. ExpW: Annotate images with demographic labels using the FairFace model
- 3. Annotated ExpW: Filter & assign samples to demographic subgroups

Figure 5) Benchmark creation

- RESULTS Classification results obtained with ESR-9 (8 *expression* labels)
- Confusion matrix (Fig. 6) shows Disgust and *Fear* were often misclassified
- Heat map plot (Fig. 7) displays subgroup accuracies:
- Overall bad performance for *Fear* and Disgust
- *Happiness* and *Sadness* have highest discrepancy between subgroups (see also Table 1)

Female									100%	
:	¥	37.0%	13.6%	2.4%	62.0%	46.0%	87.2%	74.0%		100 /8
Race	AS	28.0%	18.4%	4.0%	66.0%	64.0%	76.7%	66.0%		-80%
	CA CA	34.0%	18.0%	6.0%	56.0%	50.0%	92.0%	62.0%		
Male										-60%
:	¥.	48.0%	26.1%	0.0%	42.0%	54.0%	87.8%	56.0%		
Race	AS	48.0%	6.5%	6.0%	60.0%	74.0%	94.0%	60.0%		- 40%
	A C	34.0%	6.0%	12.0%	62.0%	60.0%	86.0%	66.0%		
	Mean									-20%
	-	38.2%	14.8%	5.1%	58.0%	58.0%	87.3%	64.0%		
	l	Surprise	Fear	Disgust	Happiness	Sadness	Anger	Neutral		-0%
Expression Figure 7) Subgroup accuracy heat map plots for ESR-9										

				Female				_	100%		
¥	37.0%	13.6%	2.4%	62.0%	46.0%	87.2%	74.0%		100 /0		
£.	28.0%	18.4%	4.0%	66.0%	64.0%	76.7%	66.0%		-80%		
CA	34.0%	18.0%	6.0%	56.0%	50.0%	92.0%	62.0%				
				Male					-60%		
Ă	48.0%	26.1%	0.0%	42.0%	54.0%	87.8%	56.0%				
£.	48.0%	6.5%	6.0%	60.0%	74.0%	94.0%	60.0%		- 40%		
CA	34.0%	6.0%	12.0%	62.0%	60.0%	86.0%	66.0%				
				Mean					-20%		
-	38.2%	14.8%	5.1%	58.0%	58.0%	87.3%	64.0%				
I	Surprise	Fear	Disgust	Happiness	Sadness	Anger	Neutral		-0%		
re	Expression re 7) Subgroup accuracy heat map plots for ESR-9										

Surprise	Fear	Disgust	Happiness	Sadness	Anger	Neutral
20.0%	20.1%	12.0%	24.0%	28.0%	17.3%	18.0%

Table 1) Largest accuracy differences between subgroups in one *expression* category

CONCLUSION

- subgroups within the same *expression* category
- We encourage more rigorous investigations into bias in FER

- Prediction. International Journal of Computer Vision, 126(5):550–569, 2018.
- 1558, 2021.

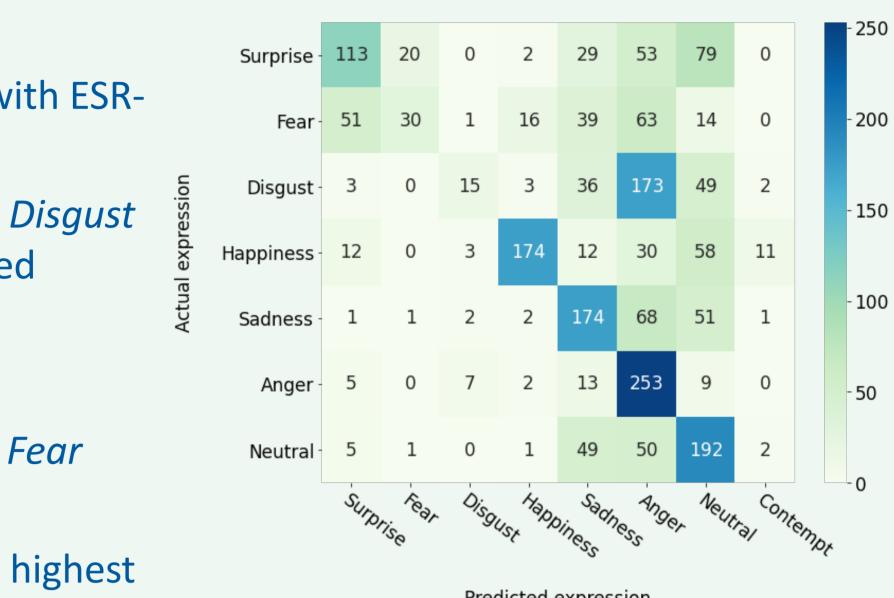


Figure 6) ESR-9 confusion matrix

• We analyzed two existing FER data sets and used them as a basis for our benchmark approximately balanced by gender, race and expression

• Our findings suggest in-the-wild FER data set distributions are highly skewed

ESR-9's benchmark performance showed large discrepancies between

• ¹ Shan Li, Weihong Deng, and JunPing Du. Reliable Crowd- sourcing and Deep Locality-Preserving Learning for Expression Recognition in the Wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. • ² Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. From Facial Expression Recognition to Interpersonal Relation

• ³ Henrique Siqueira, Sven Magg, and Stefan Wermter. Efficient Facial Feature Learning with Wide Ensemble-Based Convolutional Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):5800–5809, 2020.

• ⁴ Kimmo Kärkkäinen and Jungseock Joo. FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for Bias

Measurement and Mitigation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1548–