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Motivation: While several studies have investigated de-
mographic bias in fields such as facial recognition, little
work on this topic has been done in the area of facial ex-
pression recognition (FER). This work aims at taking a first
step in this direction by analyzing the annotation distribu-
tions of RAF-DB [4], an in-the-wild FER data set. We fur-
ther assemble a benchmark data set approximately balanced
by expression, gender and race labels by combining sam-
ples from two existing data sets. The result is then used to
benchmark a state of the art FER classifier, thereby focusing
specifically on intersectional accuracy disparities between
subgroups. To conclude, we suggest directions for future
research based on our findings.

Method: We create a benchmark from samples of both
the RAF-DB [4] and ExpW [7] data sets, whereby the for-
mer contains demographic labels for age, race and gender
in addition to categorical expression annotations. A distri-
bution analysis of RAF-DB showed that some expression
× gender × race × age subgroups contain no or very few
samples. Consequently, the benchmark was set to contain
42 subgroups combined from 3 race, 2 gender and 7 ex-
pression categories. The target sample count per subgroup
was set to 50. Next, images in RAF-DB were assigned into
their respective subgroups. Due to the low resulting sub-
group sample counts, ExpW images were annotated with
demogaphic labels using the FairFace [3] model for facial
attribute annotation. The annotated images were then manu-
ally filtered and assigned to their respective subgroup. In the
final benchmark, 7 out of 42 subgroups (e.g. ”Fear, Asian”
and ”Disgust, African-American” for both genders) contain
less than 50 samples. We use ESR-9 [5], an ensemble model
for FER, as base model for our evaluation of the benchmark.

Experimental results: ESR-9 achieved a mean classifi-
cation accuracy of 46.5% on our benchmark. The accu-
racies of 47.1% for ”Male” and 45.9% for ”Female” gen-
der categories, as well as the ones for race categories with
45.5% for ”African-American”, 48.0% for ”Asian”, and
46.0% for ”Caucasian”, were close to the overall mean.
Conversely, we observed large differences across expres-
sion categories (see bottom row of Fig. 1), with the high-

Figure 1. Subgroup accuracies of ESR-9 on the benchmark data
set. AA = African-American; AS = Asian; CA = Caucasian;

est mean accuracy for ”Anger” (87.3%), and the lowest for
”Disgust” (5.1%). These divergences hint at inter data set
bias, possibly resulting from differences in expression an-
notation practices.
Moreover, Fig. 1 highlights the intersectional accuracy dis-
parities between subgroups within the same expression cat-
egory, with the largest accuracy difference of 28% between
the ”Sadness, Asian, Male” (74.0%) and ”Sadness, African-
American, Female” (46.0%) subgroups.

Discussion and conclusion: We assembled an approxi-
mately balanced benchmark from samples of two existing
FER data sets. Recent analyses [6] and our examination
of RAF-DB found that the data set is highly skewed to-
wards race label ”Caucasian”, as well as expression cate-
gories ”Happiness” and ”Neutral”, with very few samples
in ”Disgust” and ”Fear”. While these facts plus the sparse
data for some age groups prevented us from assembling a
completely balanced benchmark, this work can be seen as
starting point disclosing the need for more rigorous investi-
gations. Finally, we argue that further research in adjacent
fields is needed, e.g. regarding the reliability of mapping
facial expressions to categorical emotions [1], as well as
current questionable data set collection and curation prac-
tices [2].
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