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ABSTRACT
Class-agnostic object proposal generation is an important first step in many object detection pipelines.
However, object proposals of modern systems are rather inaccurate in terms of segmentation and
only roughly adhere to object boundaries. Since typical refinement steps are usually not applicable
to thousands of proposals, we propose a superpixel-based refinement system for object proposal
generation systems. Utilizing precise superpixels and superpixel pooling on deep features, we refine
initial coarse proposals in an end-to-end learned system. Furthermore, we propose a novel DeepFH
segmentation, which enriches the classic Felzenszwalb and Huttenlocher (FH) segmentation with
deep features leading to improved segmentation results and better object proposal refinements. On
the COCO dataset with LVIS annotations, we show that our refinement based on DeepFH superpixels
outperforms state-of-the-art methods and leads to more precise object proposals.

1. Introduction
Object proposal generation serves as the basis for many

object detection or instance segmentation systems [9, 32,
11, 5, 39]. The task describes the class-agnostic generation
of possible object locations, which reduce the search space
for subsequent methods. Since the task is class-agnostic,
different to, e.g., instance segmentation, no class information
is utilized. This leads to better generalization to unseen
classes [27]. Since the emergence of deep learning, a number
of CNN-based methods for object proposal generation were
proposed [29, 30, 16, 37, 8, 21]. However, most of these
systems suffer from imprecise segmentations, especially sys-
tems that propose segmentation masks as visible in Fig. 1a.

A major reason for the imprecise segmentations is the
CNN, which leads to a low resolution in the system’s seg-
mentation stage. For instance, in [37] segmentations are
based on 10 × 10 feature maps, independent of the object’s
size. However, those low resolution feature maps are seman-
tically rich and important for the systems’ overall success.
Thus, systems suffer from coarse and imprecise segmenta-
tions, despite generating state-of-the-art overall results.

In tasks like semantic segmentation or salient object de-
tection, this problem is tackled by utilizing encoder-decoder
architectures [20, 6, 22] or CRFs [15, 23]. However, this
is computationally expensive if applied to 1000 proposals
per image. Other lines of work include dilated convolu-
tions [6, 42] or iterative refinement [43, 18]. Most of these
approaches are computationally expensive as well if applied
to all proposals or many layers of a network. Thus, a refine-
ment system which precisely captures the object contours
and shares computations between the proposals is necessary.

Superpixels, introduced by [33], capture fine details of
objects and serve as an abstraction of the pixels by reducing
the number of entities. Furthermore, superpixels can be
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(a) without our refinement (b) with our refinement
Figure 1: AttentionMask object proposal without (a) and
with (b) our superpixel-based refinement. Note the precise
segmentation of fine details after applying our refinement.

shared between the proposals of an image, since they only
rely on the image content. However, applying superpixels in
CNNs is not straightforward, since they lack a lattice struc-
ture. However, [13, 19, 28] proposed semantic segmentation
approaches with information aggregation across superpixels
in CNNs.

In this paper, we follow this aggregation approach and
propose a superpixel-based refinement for object proposals.
We start from the coarse proposals of the state-of-the-art
object proposal generation system AttentionMask [37] and
add two streams to the system as visualized in Fig. 2. The
first stream generates precise superpixel segmentations on
input image resolution, while the second stream extracts
features from the backbone network. In our proposed super-
pixel refinement module, for each proposal, we aggregate
the information from the coarse AttentionMask proposal
and the extracted features per superpixel utilizing our su-
perpixel pooling module following [13, 19, 28]. For each
proposal, this leads to a feature vector per superpixel, which
is classified as background or object part with our new
superpixel classifier. The evaluation shows superior overall
results compared to state-of-the-art systems. Furthermore,
the masks adhere better to the object boundaries (see Fig. 1),
which is outlined by our results on the COCO dataset [24]
using LVIS annotations [10].
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Figure 2: Building blocks of our proposed system. We refine
object proposals with deep features and superpixels generated
with our proposed DeepFH segmentation (cf. Sec. 4.2). The
streams are combined in our superpixel refinement module (cf.
Sec. 5) utilizing superpixel pooling and a superpixel classifier
leading to precise proposals. The images on the top show the
original proposal (left) and our refined version (right).

A typical problem when utilizing superpixels for object
proposal refinement are compact superpixels. They lead
to artificially splitting up uniform areas and increases the
number of superpixels without significant gain in segmenta-
tion accuracy. Furthermore, superpixels, which cover large
areas, have a larger support for information aggregation. Few
approaches [7, 26, 36] have been proposed for generating
non-compact superpixels, since it is difficult to control the
number of superpixels for evaluation [34].

As a second novelty, we propose the novel DeepFH
segmentation. DeepFH extends the segmentation algorithm
by Felzenszwalb and Huttenlocher (FH) [7], which relies
on RGB features for pixel similarity, with semantically
richer deep features. We generate deep features with a
lightweight encoder-decoder architecture based on a varia-
tion of ResNet [12]. In our evaluation, we show that DeepFH
outperforms the original FH and further improves the down-
stream superpixel-based object proposal refinement. Since
FH’s general structure is unchanged, FH’s properties includ-
ing non-compact superpixels stay unchanged.

Our main contributions are a new superpixel-based
refinement system for object proposals with precise pro-
posal masks outperforming state-of-the-art and a new deep
learning-based segmentation algorithm to support the re-
finement system. Overall, this paper presents an extended

version of our conference paper [38]. We extend that paper
in three major ways:

• Utilizing deep features with a tailored encode-decoder
architecture, leading to novel DeepFH segmentations
based on classic FH.

• An advanced superpixel-based refinement approach
for object proposal generation systems combining
DeepFH and superpixel pooling for improved results
and better boundary adherence.

• A more detailed evaluation of our overall refinement
system w.r.t. the superpixel segmentations.

2. Related Work
This section reviews related approaches for object pro-

posal generation and superpixel segmentation.
2.1. Object Proposal Generation

Class-agnostic object proposal generation systems pro-
duce bounding boxes [8, 21] or pixel-precise segmentation
masks [29, 30, 16, 37] alongside an objectness score per
proposal. [14] give an overview of approaches not utilizing
CNNs. Since we propose a system with pixel-precise masks,
we focus on these approaches here.

Pre CNN systems usually grouped superpixels based on
low-level or mid-level image cues. For instance, [31] pro-
pose a hierarchical image segmentation with subsequent
merging and boundary classification.

Utilizing CNNs, [29] propose DeepMask, a model with
individual heads for inferring objectness and the segmen-
tation mask on top of a backbone network. For generating
multiple proposals per image, DeepMask runs on many
crops from an image pyramid (multi-shot approach). Due to
subsampling in the backbone, the masks are generated on
a coarse resolution, leading to imprecise proposals. Sharp-
Mask [30] tackles this problem by adding a decoder path to
refine the segmentation masks. Still, SharpMask utilizes the
multi-shot approach.

Feeding overlapping image crops through the backbone
is redundant. To increase efficiency, [16] propose FastMask
with a feature pyramid inside the CNN (one-shot approach).
[16] generate the feature pyramid based on the backbone’s fi-
nal layer utilizing pooling. All possible fixed sized windows
are extracted from the pyramid to capture objects of different
size. For segmentation and objectness scoring, [16] propose
individual heads. Due to the pyramid on top of the backbone,
the feature maps for segmentation are coarse, resulting in
imprecise masks.

Extending FastMask, [37] propose AttentionMask. At-
tentionMask improves the efficiency with attention at each
pyramid level. As a result, only relevant windows are ex-
tracted, omitting background areas. Utilizing the freed re-
sources, [37] add a new level to the pyramid for capturing
small objects. The segmentation masks are still generated on
40×40maps, independent of the object’s size. Thus, despite
improved results and efficiency, the masks are still coarse.
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Complementing those approaches, we propose a super-
pixel-based refinement to enhance the quality of coarse
segmentation masks.
2.2. Superpixel Segmentation

Since the seminal work of [33], many superpixel seg-
mentation approaches were proposed [1, 4, 41, 25, 7, 35,
17, 40]. [34] give an overview of approaches not utilizing
CNNs. Many superpixel algorithms start from an initial
segmentation, which is refined to fit the image content,
leading to compact superpixels of uniform size. [1] start
from a uniform grid and apply a local k-means clustering to
the pixels. [4] also start from an initial grid and move pixels
or pixel blocks between superpixels. Similarly, [41] propose
an MRF approach with a topology preserving energy term.

In contrast, [25] and [7] merge individual pixels to gen-
erate a segmentation. [25] merge pixels based on the entropy
of random walks to generate superpixels of roughly uniform
size. The FH algorithm [7] merges pixels based on color
or intensity differences. The termination depends on inter-
nal and external dissimilarities of pixel clusters. Thus, the
superpixel size is not regularized, leading to non-compact
superpixels of varying size. [36] propose an approach to get
a similar effect with other segmentation algorithms.

Few approaches generate superpixels utilizing CNNs.
[35] compute pixel affinities and apply [25] on those affini-
ties. [17] propose a differentiable approach of [1] with CNN
features. [40] learn associations between each pixel and
superpixels of a uniform grid to infer superpixels.

Different to those approaches, we utilize deep features
to enhance the FH segmentation. Thus, the segmentation
allows non-compact superpixels and utilizes deep features,
which improves our downstream application.

3. System Overview
Our overall system consists of four building blocks as

visualized in Fig. 2. The first part is the state-of-the-art
object proposal system AttentionMask [37] (red area in
Fig. 2), which we use to generate coarse object proposals.
Second, we propose a novel DeepFH superpixel segmen-
tation, described in Sec. 4, based on deep features and
the classic FH algorithm (yellow area Fig. 2). Third, we
extract features (see Sec. 5) from AttentionMask’s backbone
(green area Fig. 2). Finally, we combine these streams in
our novel superpixel-based refinement module described in
Sec. 5 (top area in Fig. 2). The refinement module takes
AttentionMask’s coarse proposals and refines them using
the deep features and the new DeepFH superpixels utilizing
superpixel pooling and our novel superpixel classifier. The
output of the overall system are refined object proposals,
which better adhere to object boundaries.

4. DeepFH Segmentation
This section introduces our novel DeepFH segmentation

as a variation of the segmentation algorithm by Felzen-
szwalb and Huttenlocher (FH) [7] based on CNN-features.

Figure 3: Feature extractor for our DeepFH segmentation. The
encoder consists of ResNet-18 blocks (2 convolution layers
with skip connection). After applying a 1 × 1 convolution per
stage, the features of different stages (different colors) are
concatenated and the final features are extracted. Per pixel,
these features are used for pixel affinity calculation based on
cosine distance.

For generating a DeepFH segmentation, we run an image
through a lightweight encoder-decoder (cf. Fig. 3). This
results in semantically rich per-pixel features at the decoder’s
output layer (cyan box in Fig. 3) with input image resolution.
We use these features to enrich the color distance between
pixels in the classic FH algorithm with the cosine distance
in the deep feature space for a combined distance. The rest
of the FH algorithm (see Sec. 4.2) is unchanged to keep the
algorithm’s properties like non-compact superpixels.
4.1. Feature Extraction

For extracting semantically rich CNN-based features, we
follow the works on pixel affinity by [3, 2] for semantic
segmentation as well as the approaches of [35, 17, 40] on
CNN-based superpixel segmentation. We propose a simple
encoder-decoder with a 4-stage ResNet-18-based backbone
for feature extraction as visible on the left in Fig. 3. In
contrast to ResNet-18, we use only one residual block per
stage in the encoder. This is in line with [35, 17, 40], which
propose shallow networks for feature extraction. Further-
more, this architecture generates better results compared to
networks with more layers like ResNet-18 or ResNet-34 (see
top part of Tab. 1).

The decoder part (right part in Fig. 3) consists of a per-
stage feature extraction with a bilinear upsampling, a con-
catenation across all stages and the final feature extraction
layer leading to a 128 dimensional feature vector per pixel.
This is similar to the decoder architectures in pixel affinity
[3, 2, 35] and is more powerful than the step-wise integration
of feature maps in [40] (see bottom part of Tab. 1).
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Table 1
Architectures for our feature extraction network’s encoder
(top) and decoder (bottom), evaluated w.r.t. the downstream
object proposal refinement task. AR@n denotes the average
recall for the first n proposals.

Architecture AR@10↑ AR@100↑ AR@1000↑
Ours 0.104 0.223 0.330
ResNet-18 0.102 0.222 0.324
ResNet-34 0.102 0.223 0.325
Step-wise [40] 0.102 0.221 0.323

Table 2
Cosine distance and Euclidean distance as deep feature dis-
tance in DeepFH evaluated w.r.t. the downstream object
proposal refinement task. AR@n denotes the average recall for
the first n proposals.

Distance AR@10↑ AR@100↑ AR@1000↑
Cosine 0.104 0.223 0.330
Euclidean 0.102 0.218 0.320

On top of the final layer, the cosine distance between fea-
ture vectors of adjacent pairs of pixels (fi, fj) is calculated:

�cos(fi, fj) =
1
�
arccos

( fi ⋅ fj
‖fi‖‖fj‖

)

. (1)

The result of the cosine distance is the classification result
for the pair of adjacent pixels. If the distance is low, the
pixels belong to the same segment and vice versa. Applying
the cosine distance is different to [3, 2], which use Eu-
clidean distance. However, since the feature vectors are high-
dimensional, cosine distance is favorable (cf. Tab. 2).
4.2. Extension of FH Algorithm

The original FH algorithm [7] is a graph-based segmen-
tation method, in which adjacent pixels or pixel clusters are
greedily merged. As criterion for merging, simple color or
intensity difference is used. For RGB images, the difference
between the pixels pi and pj representing the RGB values as
vector is calculated as

�FH = ‖pi − pj‖2. (2)
During merging, the largest dissimilarity within a cluster of
pixels and the smallest dissimilarity between two adjacent
clusters of pixels are compared. If a certain threshold-based
criterion is met, the clusters are merged. The algorithm
terminates once no pair of clusters meets the criterion. Since
all steps are based on the initial pixel distance, by only
enhancing this distance calculation, the outcome of the FH
algorithm can be improved.

Enhancing the distance calculation for our DeepFH, we
utilize the CNN-features fi, and fj for adjacent pixels pi and
pj extracted from the encoder-decoder (see Sec. 4.1). The
features are extracted from the final feature map (cyan box

in Fig. 3). Since the features were learned based on cosine
distance, we add the cosine distance between pixels’ features
as a second term to the original distance �FH:

�DeepFH = (1 − �)‖pi − pj‖2 + ��cos(fi, fj). (3)
This is convenient, since both distances are in the interval

[0, 1]. Thus, the parameter � only controls the influence
of the distances. We set � = 0.2 for best results on the
downstream object proposal refinement task. The rest of the
FH algorithm stays unchanged. Thus, the runtime is still
(n log n) and the properties regarding the segmentation
quality proven in [7] are kept.
4.3. Training

For training the feature extractor, we use binary crossen-
tropy loss to assess the feature vectors’ cosine distance
between adjacent pixels. For optimization, we use Adam
with an initial learning rate of 0.01, �1 = 0.9, and �2 =
0.999. Similar to [35, 17, 40], our network is trained from
scratch without pre-trained weights, since pre-training did
not improve the results.

The overall goal of our system is to generate better
object proposals. Therefore, we did not train on typical
segmentation datasets, but generated a segmentation dataset
from the COCO dataset [24] training images with LVIS
annotations [10]. The LVIS annotations are significantly
more precise, which is important in our pixel affinity-like
setup, and contain one binary segmentation per annotated
object. As ground truth, we combine all binary segmen-
tations per image, generating an oversegmentation of the
image retaining all object boundaries. We train the network
on this dataset for 8 epochs. The integration of DeepFH seg-
mentations into the superpixel-based proposal refinement is
described in Sec. 5.3.

5. Superpixel-based Object Proposals
This section introduces our superpixel-based refinement

for object proposal generation. The refinement connects
the object proposal generation system AttentionMask [37]
(see Sec. 2.1) and the DeepFH segmentation described in
Sec. 4.2. It starts from the coarse proposals of Attention-
Mask, which are 40 × 40 windows per proposal. Atten-
tionMask is visualized in the red part of Fig. 4, which
depicts our overall refinement system. The 40×40 windows
contain per-pixel probabilities for being part of an object and
represent only a certain area of the input image. In parallel,
we generate precise DeepFH superpixel segmentations for
each level of AttentionMask’s feature pyramid with different
resolutions, capturing fine details of the input image (yellow
part in Fig. 4). In a third stream, displayed in the green
part of Fig. 4, features are extracted from AttentionMask’s
backbone for each level of the feature pyramid to support the
refinement.

We apply the refinement, visualized based on an ex-
ample in Fig. 5, to each proposal. The refinement starts
by combining the upsampled AttentionMask proposal and
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Figure 4: Overview of our proposed superpixel-based refine-
ment system. The general structure follows AttentionMask
(red area) and is extended by our DeepFH superpixel seg-
mentations (yellow area), our feature extraction (green area)
as well as our superpixel refinement module. The system’s
three streams share the same pyramid/stack structure and
are connected by AttentionMask’s attention module. The
module selects interesting areas in the pyramids/stacks, which
are cropped from all streams (colored windows). However,
indicated by the different sizes, the windows cropped from
the segmentation and feature extraction streams have a higher
resolution, leading to more detailed results. Finally, the cropped
windows from the three streams are utilized in our superpixel
refinement module (see Fig. 5).

the respective superpixel segmentation window. For each
superpixel, the average probability, called mask prior, is
computed using our superpixel pooling. This process is
visualized in the upper left part of Fig 5. Utilizing the
extracted features and the segmentations, a per superpixel
feature vector is extracted applying our superpixel pooling
again as visualized in the bottom part of Fig. 5 (see Sec. 5.1).
Subsequently, mask prior and respective superpixel fea-
tures are concatenated for each superpixel overlaying with
the AttentionMask proposal window (upper central part of
Fig. 5). Finally, these superpixels are classified with our
new superpixel classifier (see Sec. 5.2) as background or
object superpixels. The object superpixels constitutes the
refined object proposal. This process is visualized in the top
right of Fig. 5. The final proposals combine the advantages
of detailed superpixels, deep features and semantically rich
but coarse AttentionMask object proposals. See Sec. 5.3 for
details of the refinement’s integration with AttentionMask
and DeepFH.

5.1. Superpixel Pooling
Following [13, 19, 28], we propose a superpixel pooling

module, to combine CNNs and superpixels. Directly inte-
grating superpixels and CNNs is non-trivial, as outlined in
the introduction. Superpixel pooling is similar to standard
pooling, however, the final value is pooled from an arbitrarily
shaped neighborhood (superpixel). Thus, the result has no
lattice structure anymore. It is one feature or feature vector
per superpixel, which has to be processed individually. Back-
propagation is possible, similar to standard pooling.

We utilize our superpixel poolingmodule twice in our re-
finement, as visualized in Fig. 5. First, we use the superpixel
pooling to create the mask prior, a superpixelized version of
the coarse AttentionMask proposal, shown in the upper left
of Fig.5. The AttentionMask proposals are 40×40 windows
representing parts of the image with different sizes in the
original image. The proposals contain per-pixel probabilities
for being part of an object. These windows are traced back
to a level and spatial position of AttentionMask’s feature
pyramid by the attention system in AttentionMask. Given
that level and thewindow’s spatial position, we extract a crop
from a suitable high-resolution superpixel segmentation,
covering the same area in the input image as shown by the
colored windows in Fig. 4.

The superpixel segmentation’s resolution depends on
the level in AttentionMask’s feature pyramid the proposal
originates from. For proposals covering small objects, fine
segmentations are used and vice versa. The segmentation
crop’s size is not fixed, but represents the input image area in
high resolution. Thus, the segmentation can cover all details
of the object. Given this segmentation crop and one proposal,
we use superpixel pooling to create an average value of the
proposal per superpixel. The value represents the probability
of the superpixel belonging to the object. This is called mask
prior and is applied individually per proposal.

Furthermore, we utilize our new superpixel pooling to
compose a feature vector from the extracted features (green
part in Fig. 4) for each superpixel of each level. Differ-
ent from the mask prior computation described above, this
computation is shared between all proposals from the same
feature pyramid level, leading to an efficient execution. Per
proposal, the mask prior and the feature vector for each
superpixel overlayingwith the proposal window are concate-
nated (see central part in Fig. 5). This constitutes a batch of
superpixel representations per proposal for classification.
5.2. Superpixel Classification

After applying superpixel pooling twice, each coarse
AttentionMask proposal is a batch of superpixel feature
vectors. These vectors represent precise superpixels with a
resolution suitable for the proposal size. To determine the fi-
nal refined proposal, each of the superpixel feature vectors is
classified as background or object part (upper right in Fig. 5).
For this classification, we propose a lightweight superpixel
classifier visualized in Fig. 6 with only four fully-connected
layers. The light-weight architecture is beneficial in terms
of results compared to other structures as Tab. 3 indicates.
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Figure 5: Detailed view of our proposed superpixel refinement module showing the workflow for an individual proposal. The
coarse AttentionMask proposal (red area) is upsampled and superpixel pooling is applied using the respective window from the
segmentation stack (yellow area). This leads to a precise superpixelized version of the proposal called mask prior. Similarly,
superpixel pooling is applied to the respective window of the feature stack (green area), yielding a feature vector per superpixel.
Finally, mask prior and feature vector per superpixel are concatenated and classified as background or object part, leading to a
precise proposal.

Figure 6: Architecture of our superpixel classifier with fully-connected layers denoted as FC-layer. The input to the classifier is a
batch of superpixels representing a proposal. For each superpixel, it consists of one mask prior value (gray) from the AttentionMask
result and 512 learned features (bluish). The classifier determines if a superpixel is part of an object (white) or background (black).

Table 3
Architectures for the proposed superpixel classifier. The first
column indicates the amount of neurons per fully-connected
layer. AR@n denotes the average recall for the first n proposals.

Architecture AR@10↑ AR@100↑ AR@1000↑
512 − 512 − 512 0.104 0.223 0.330
1024 − 1024 − 1024 0.104 0.221 0.325
256 − 256 − 256 0.102 0.220 0.327
512 − 512 − 512 − 512 0.099 0.223 0.328
512 − 512 0.101 0.224 0.328

Altogether, the classifier takes a batch of superpixel features
and returns the label object or background per superpixel.
Superpixels that do not overlap with the proposal window
are set as background to reduce computation.
5.3. Combination with AttentionMask and

DeepFH
Combining the proposed superpixel-based refinement

with AttentionMask into one end-to-end system leads to a
change in the backbone. The original AttentionMask back-
bone, a 4-stage ResNet-50 is replaced by a 4-stage ResNet-
34, to fit the memory restrictions on GPUs. To extract

Table 4
Results of the proposed refinement approach using features
from different ResNet stages for feature extraction. AR@n
denotes the average recall for the first n proposals.

ResNet-block AR@10↑ AR@100↑ AR@1000↑
res1 0.101 0.223 0.326
res2 0.104 0.223 0.330
res3 0.103 0.224 0.323
res4 0.098 0.221 0.324

features from the backbone for per-superpixel features, we
evaluated different backbone stages (see Tab. 4) and chose
the res2 stage. The feature extractor itself is a 1 × 1 con-
volution. Altogether, AttentionMask, the feature extractor
and the superpixel classifier are trained end-to-end in one
system.

Outside this network, we generate DeepFH segmenta-
tions (see Sec. 4). As described in Sec. 4.3, we train DeepFH
on the COCO dataset with LVIS annotations. Subsequently,
DeepFH is used to generate one segmentation for each
level of AttentionMask’s feature pyramid. We optimize the
parameter t in FH as well as the parameter � from Eq. 3
to generate on average 500 superpixels on the level of the
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largest objects and 8000 superpixels on the level of the
smallest objects, with regular intermediate steps for the
intermediate levels. Directly setting a desired number of
superpixels is impossible for DeepFH. We present a com-
parison to other segmentation algorithms and numbers of
superpixels in Sec. 6.2.1.

Finally, after generating the refined proposals based
on the DeepFH superpixels, we apply a three-step post-
processing to each proposal. First, we use bilinear filtering
on superpixel level, using the superpixels’ mean colors.
Second, to remove segmentation artifacts, we applymorpho-
logical opening and closing to the proposals. This removes
or fills tiny antenna-like artifacts in the proposal masks.
Finally, we apply non-maximum suppression (NMS) with
a high IoU of 0.95 to remove almost identical proposals.
Since all proposals are represented by few superpixels,
identical proposals are more common than with pixel-based
proposals. The post-processing is evaluated in Sec. 6.2.4.
5.4. Training

We train our superpixel-based refinement with Atten-
tionMask end-to-end using SGD with a learning rate of
0.0001 for 13 epochs. The ResNet-34 backbone is initialized
with ImageNet weights, while the rest of the network is
learned from scratch. Apart from AttentionMask, the feature
extractor and the superpixel classifier are trained. The su-
perpixel classifier is trained with a binary crossentropy loss
(spx), while the feature extractor is automatically trained
by the overall system. Thus, it does not require distinct
supervision. Combined with the AttentionMask [37] losses
objn,aℎ,seg , and attn , the overall loss is defined as

 =wobjnobjn +waℎaℎ +wsegseg+

watt
∑

n
attn +wspxspx

(4)

with weights controlling the losses’ influence. wspx = 1
throughout our experiments, while the other weights stay
unchanged compared to [37].

As training data we use the training images of the COCO
dataset [24]with the COCOannotation for a fair comparison.
The ground truth contains polygon annotations for objects of
80 classes. However, generating ground truth for the super-
pixel classifier is non-trivial, since the annotation boundaries
do not necessarily match the superpixel boundaries. Thus,
for each annotated object, we generate an optimal set of
superpixels yielding a maximum IoU between the set and
the ground truth annotation. This process starts from all
superpixels completely contained in the annotated object
and greedily adds superpixels that increase the IoU. These
superpixels are positive samples, while all other superpixels
form a pool of negative samples.

6. Evaluation
For evaluating our new superpixel-based refinement ap-

proach combined with our novel DeepFH segmentations on

top of AttentionMask, we mostly follow standard object pro-
posal evaluation pipelines. We assess the quality of the re-
sults based on average recall (AR), which combines recall as
well as the proposals’ segmentation quality and is frequently
used in object proposal literature [14, 29, 30, 16, 37]. AR is
calculated for different numbers of proposals, e.g., AR@100
for the first 100 proposals, and for different sizes of objects.
To only assess the segmentation quality of the proposals, we
use standard segmentation measures boundary recall (BR)
undersegmentation error (UE), and oversegmentation error
(OE).

Finally, we introduce the Achievable Intersection over
Union (AIoU) as a new measure to assess the quality of a
segmentation for superpixel-based object proposal genera-
tion. Since the ground truth for our system was superpix-
elized for training (see Sec. 5.4), we measure given a super-
pixel segmentation the average IoU between the optimal set
of superpixels per annotated object and the annotated object
itself. If the superpixel segmentation perfectly captures the
annotated object, the AIoU is 1. Otherwise, the AIoU de-
creases to a value between 0 and 1. Thus, the AIoU is an
upper bound for the quality of a superpixel-based proposal
algorithm in terms of average IoU (AVGIoU) per ground
truth object. Comparing AIoU and AVGIoU allows us to
assess how much of the segmentation quality is utilized.

The dataset for our evaluation is the COCO [24] dataset
with more detailed LVIS [10] annotations. This is different
to other works [29, 30, 16, 37]. However, it is important for
our evaluation, since we focus on precise object proposals.
Thus, we use the LVIS data for validation and testing, while
all approaches were trained on COCO data. An evaluation
of our baseline AttentionMask compared to other methods
on COCO is presented in [37]. We compare our method to
the CNN-based methods DeepMask [29], SharpMask [30],
FastMask [16], andAttentionMask [37] described in Sec. 2.1
as well as the method MCG [31], which does not utilize
CNNs and does not suffer from CNN-based downsampling.
6.1. Results on LVIS

First, we present the results of our proposed system
on the object proposal generation task using the COCO
dataset with LVIS annotations. From the quantitative results
in Tab. 5 it is visible that our proposed superpixel-based
refinement with FH or DeepFH outperforms all other meth-
ods. In terms of AR@100, we surpass the other methods by
0.024 to 0.082. Thus, the refinement improves the results
despite using a smaller backbone. For instance, the results
of AttentionMask using a ResNet-34 backbone are slightly
worse compared to original AttentionMask. Our refinement
improves the results significantly even surpassing original
AttentionMask as well as FastMask, SharpMask, DeepMask
and MCG.

Comparing the numbers for objects of different sizes,
we can show an improvement across all object sizes. In-
terestingly, for large objects (ARL@100) SharpMask and
the not DL-basedMCG outperform original AttentionMask.
This could not be shown using the COCO annotations [37].
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Table 5
Results on the COCO dataset with LVIS annotations using average recall (AR). ARS , ARM and ARL denote results on small,
medium and large objects. Best and second-best results marked with bold font and italic font respectively.

Method Backbone AR@10↑ AR@100↑ AR@1000↑ ARS@100↑ ARM@100↑ ARL@100↑
MCG [31] - 0.048 0.131 0.237 0.031 0.204 0.462
DeepMask [29] ResNet-50 0.069 0.147 0.214 0.014 0.314 0.430
SharpMask [30] ResNet-50 0.073 0.154 0.229 0.014 0.327 0.460
FastMask [16] ResNet-50 0.069 0.161 0.256 0.055 0.296 0.386
AttentionMask [37] ResNet-50 0.073 0.189 0.284 0.081 0.312 0.446
AttentionMask [37] ResNet-34 0.076 0.185 0.271 0.083 0.305 0.423
Ours with FH [7] ResNet-34 0.092 0.206 0.290 0.092 0.340 0.473
Ours with DeepFH ResNet-34 0.094 0.213 0.304 0.098 0.349 0.480

FastMask AttentionMask Ours with FH Ours with DeepFH Ground Truth

Figure 7: Qualitative results of FastMask [16], AttentionMask [37] and our approach with FH [7] and our new DeepFH superpixels
on the COCO dataset with LVIS annotations. The filled colored contours denote found objects, while not filled red contours denote
missed objects. The green arrows highlight locations showing the strength of our proposals adhering well to object boundaries,
while the red arrows denote the same locations in the results of selected other systems.

However, it is not surprising, since FastMask and Atten-
tionMask heavily utilize subsampling. Yet, our proposed re-
finement improves AttentionMask’s results for large objects,
outperforming SharpMask and MCG. Finally, comparing
the bottom rows, it is visible that our DeepFH segmentations
improve the results compared to classic FH segmentations.
We discuss this difference in more detail in our ablation
studies.

Investigating the proposal’s boundary adherence, we
generate a segmentation per found object for each of the sys-
tems using the best proposal per found object. We compare

these segmentations to the segmentations generated from
the ground truth objects. The results of this experiment (see
Tab. 6) allow to analyze the proposal masks using typical
segmentation measures like BR and UE. The numbers show
that both of our proposed systems outperform all other DL-
based systems by a large margin (e.g., +0.153 in BR com-
pared to AttentionMask). Thus, our proposals fit the ground
truth objects better in terms of BR and UE. Only the not
DL-based methodMCG generates similar results in terms of
BR, however, missing a larger amount of objects (see Tab. 5).
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Table 6
Comparison of the best proposals per image as segmentations
using segmentation measures boundary recall (BR) and under-
segmentation error (UE) on the LVIS dataset. Best and second-
best results marked with bold font and italic font respectively.

Method Backbone BR↑ UE↓
MCG [31] - 0.685 0.073
DeepMask [29] ResNet-50 0.488 0.087
SharpMask [30] ResNet-50 0.561 0.080
FastMask [16] ResNet-50 0.510 0.084
AttentionMask [37] ResNet-50 0.568 0.070
AttentionMask [37] ResNet-34 0.547 0.075
Ours with FH [7] ResNet-34 0.681 0.068
Ours with DeepFH ResNet-34 0.700 0.066

Comparing our refinement using FH and DeepFH segmenta-
tions shows that the DeepFH segmentations further improve
BR (+3%) and UE (−3%). Thus, our refined proposals based
on DeepFH adhere better to object boundaries compared to
all other methods.

The qualitative results in Fig. 7 support these findings.
It is clearly visible that our proposed refinement improves
the boundary adherence compared to other systems. In the
first row, e.g., the tennis player’s limbs are only precisely
captured using our refinement with DeepFH. Similarly, in
the second row the giraffes’ heads and limbs are captured
in more detail using our refinement with DeepFH compared
to the imprecise segmentations of FastMask and Atten-
tionMask. Even the small ears and most of the ossicones
are precisely captured. Compared to the refinement with
FH, less superpixels were misclassified. Similar effects are
visible along the contour of the bus in the third row, which
is not segmented as a blob like in the AttentionMask and
FastMask results. Focusing on smaller objects, the final two
rows show the precise segmentation of a jumping dog even
capturing its thin tail and the detailed segmentations of tiny
airplanes using our refinement. Therefore, as the results in
Tab. 5 and Tab. 6 indicated, our proposed refinement with
DeepFH captures objects of all scales in more detail than
other approaches.
6.2. Ablation Studies

After discussing the main results, we present ablation
studies regarding the segmentation and the post-processing
of our system. Other studies regarding design choices were
already presented in Sec. 4 and Sec. 5. All studies, except for
the analysis of the post-processing, were carried out on our
COCO validation set using LVIS annotations.
6.2.1. Segmentation Algorithms for Refinement

In this study, we evaluate the use of different segmenta-
tion algorithms and numbers of superpixels for the object
proposal refinement based on AR. First, we compare our
DeepFH-based refinement system with different numbers of
superpixels. The results for 8000 to 500 superpixels and
4000 to 250 superpixels are presented in the first part of

Table 7
Results of different segmentation methods and numbers of
superpixels used in our refinement approach. Best result
without and with ground truth are marked with bold font and
italic font respectively

Segmentation #Superpixels AR@100↑ AR@1000↑
DeepFH 8000 − 500 0.223 0.330
DeepFH 4000 − 250 0.219 0.322
DeepFH with GT 8000 − 500 0.244 0.361
DeepFH with GT 4000 − 250 0.272 0.405
SpxFCN [40] 8000 − 500 0.207 0.302
SSN [17] 8000 − 500 0.220 0.319
SEAL [35] 8000 − 500 0.215 0.310
FH [7] 8000 − 500 0.217 0.318
ETPS [41] 8000 − 500 0.214 0.311
ERS [25] 8000 − 500 0.205 0.302
SEEDS [4] 8000 − 500 0.200 0.284
SLIC [1] 8000 − 500 0.196 0.292

Tab. 7. It is visible that more superpixels have a positive
influence on the results. However, more than 8000 superpix-
els are impossible due to memory limitations. In a second
experiment, we add all ground truth edges to both variations.
The second part of Tab. 7 shows the results. Interestingly, a
smaller number of superpixels generates significantly better
results. Thus, a strong oversegmentation is not desirable for
our proposed refinement system.

As a third step, we evaluate other segmentation meth-
ods presented in Sec. 2.2 with our refinement system. The
results are shown in the third and fourth part of Tab. 7.
The segmentation methods in the fourth part do not utilize
deep features. The results show that the methods ETPS,
ERS, SLIC and SEEDS generating rather compact super-
pixels of uniform size perform worse than original FH.
Our DeepFH outperforms all those methods by utilizing
deep features. Comparing DeepFH to other DL-based su-
perpixel approaches like SSN, SEAL and SuperFCN, the
results also show a better performance of DeepFH in object
proposal refinement. This is in line with the non DL-based
results, since SSN, SEAL and SuperFCN generate rather
compact superpixels of uniform size. Thus, for the proposed
refinement system a FH-based segmentation and specifically
DeepFH are better suited than other segmentation methods.
6.2.2. Segmentation Quality

After showing the superiority of DeepFH segmentations
in object proposal refinement, we evaluate the different seg-
mentations in terms of segmentation measures BR, UE and
OE on the LVIS annotations. Ground truth segmentations
represent the joint segmentations of the annotated objects.
The results are presented in Fig. 8. SSN and SEAL perform
best in terms of BR (see Fig. 8a) and UE (see Fig. 8b). This is
in line with the results of [17, 35] on segmentation datasets.
Thus, those segmentations adhere generally better to the
object boundaries. Both, FH and DeepFH do not perform
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Figure 8: Results of different segmentation algorithms on the LVIS annotations for varying numbers of superpixels in terms of
BR, UE, OE and AIoU.

Image FH DeepFH Ground Truth

Figure 9: Qualitative results of FH [7] and our proposed DeepFH segmentation on COCO images with LVIS annotations. Red
circles denote segmentation errors in FH, while green circles denote the same location in the DeepFH results.

very well in terms of BR and UE. However, evaluating the
strength of oversegmentation in terms of OE (see. Fig. 8c),
FH and DeepFH outperform all other methods. Thus, due
to the design of FH and DeepFH, both segmentations do not
artificially oversegment uniform areas as strongly. This leads
to amuch smaller OE and to better results on the downstream
task, since many superpixels covering larger parts of back-
ground reach the object boundary. Therefore, our superpixel
refinement prefers segmentations with a smaller OE, despite
a slightly worse segmentation accuracy in terms of BR and
UE.

Evaluating a segmentation’s suitability for superpixel-
based refinement of object proposals, we proposed AIoU
as an upper limit for the average IoU between proposals
and annotations. The results in terms of AIoU are presented
in Fig. 8d. Again, SSN performs very well, while FH and
DeepFH generate mediocre results. This is also supported
by the results in Tab. 8, which show the average AIoU across
the scales for selected segmentations. Tab. 8 also shows the
AVGIoU, the average IoU between an annotation and the
best fitting proposal. In contrast to the AIoU, these numbers
favor DeepFH and FH segmentations. Thus, those segmen-
tations realize a larger portion of their potential (AIoU),
leading to a larger efficiency in terms of AVGIoU∕AIoU.
Still, it is clearly visible that all segmentations realize only
slightly above 50% of their AIoU.

Table 8
Results of selected segmentations with the proposed refine-
ment approach on top of AttentionMask. Evaluation in terms
of average IoU (AVGIoU) between a ground truth object
and the best fitting proposal, the achievable IoU for a given
segmentation (AIoU) as well as the efficiency AVGIoU∕AIoU.
Best and second-best results marked with bold font and italic
font respectively.

Segmentation AVGIoU↑ AIoU↑ Efficiency↑
DeepFH 0.448 0.790 0.568
SSN [17] 0.443 0.809 0.547
SEAL [35] 0.438 0.777 0.563
FH [7] 0.441 0.766 0.577
ETPS [41] 0.424 0.799 0.530
ERS [25] 0.436 0.811 0.538

6.2.3. FH vs. DeepFH Segmentations
We already quantitatively evaluated the difference be-

tween our proposed DeepFH and the original FH in terms
of BR, UE, OE and AIoU on the LVIS annotations. Most
of these measures showed an improved performance for
DeepFH compared to FH. Highlighting this improvement,
Fig.9 shows qualitative segmentation results on the COCO
dataset with LVIS annotations. In both images, it is visible
that the FH segmentation results in segmentation errors
along the object’s contour. For instance, in the first image
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Table 9
Results of the proposed refinement approach using different
post-processing steps on the test dataset. Best result marked
with bold font.

Post-processing AR@10↑ AR@100↑ AR@1000↑
none 0.076 0.189 0.288
bilateral filtering 0.079 0.196 0.304
+ opening 0.080 0.197 0.306
+ closing 0.080 0.199 0.307
+ NMS 0.094 0.213 0.304

along the back of the elephant, multiple superpixels cover
both object and background. This can be attributed to the
low contrast between object and background. Similarly, the
bottom of the elephant’s lifted foot is not segmented prop-
erly. Those effects are fixed in the DeepFH segmentation.
The image in the second row shows a highly textured envi-
ronment, where object and background share similar colors.
The FH segmentation reflects this with several segmentation
errors along the giraffes’ neck and head. DeepFH properly
distinguishes between object and background by utilizing
semantics in deep features.
6.2.4. Post-Processing

In Sec. 5.3, multiple post-processing steps on top of
the refinement system were introduced. Tab. 9 presents the
detailed results of each post-processing step on the final
result. First, the bilateral filtering on superpixel-level im-
proves the results significantly, as the numbers indicate.
This step mainly adjusts the results for adjacent superpixels
with similar color. The next two steps apply opening and
closing to the proposals eliminating segmentation artifacts.
This has a rather large effect in qualitative results, however,
the quantitative results also show an improvement. The final
NMS for near duplicate removal reduces the AR@1000
slightly as expected, however, the more relevant AR@10
andAR@100 significantly improve. Therefore, Tab. 9 shows
improvements for all individual post-processing steps.

7. Conclusion
In this paper, we tackle the problem of class-agnostic

object proposal generation as a typical first step in object
detection pipelines. We introduced the problem of imprecise
object proposals due to subsampling in CNN-based sys-
tems and showed that typical solutions are not feasible with
thousands of proposals. Therefore, we propose a superpixel-
based refinement approach on top of the AttentionMask
system. The refinement utilizes our novel DeepFH segmen-
tation and superpixel pooling on deep features. Thereby,
we combine coarse initial proposals and precise superpixel
segmentations to generate precise object proposals.

The results on the COCO dataset with LVIS annotations
showed the improvements of our overall system compared to
state-of-the-art object proposal systems. We further showed
the increased segmentation quality of the proposals with

typical segmentation measures. Finally, we evaluated the
influence of the chosen segmentation method in detail. For
best performance, a segmentation with less artificial over-
segmentation of uniform areas is necessary, like FH and
our proposed DeepFH. In addition, we showed an improved
performance of our DeepFH segmentation compared to FH
for the object proposal refinement task and the general
superpixel segmentation task. However, the results also in-
dicated that just above 50% of the segmentation’s potential
is utilized for the object proposal refinement. Thus, a more
sophisticated superpixel classification is needed to reach the
superpixels’ potential on this task.
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