

FACULTY OF MATHEMATICS, INFORMATICS AND NATURAL SCIENCES

Christian Wilms and Simone Frintrop

{wilms,frintrop}@informatik.uni-hamburg.de

DEPARTMENT OF INFORMATICS

COMPUTER VISION GROUP

AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects

Motivation

Task: Object Proposal Generation **Goal**: Generating class-agnostic object candidates **Problem 1:** State-of-the-art systems often miss small objects **Problem 2:** Simply adding a module to detect small objects is impossible due to inefficient use of resources **Our idea:** Starting from [1], we focus processing on relevant parts of the image to save resources use those resources to better detect small objects

Original

The problem with small objects...

SharpMaskZoom [2]

AttentionMask (ours)

Red non-filled shapes denote missed objects. Colored filled shapes denote found objects.

use of resources due to attention

• Downscaled by factor 8 to 196

due to low attention resources saved

Scale-specific Objectness Attention

Each scale has its own attention, thus focusing on objects of different sizes

Results (for more results scan the QR code)

SharpMaskZoom [2]

Evaluation on MS COCO

- Evaluation against several state-of-the-art systems
- Average recall (AR@# of proposals) is used as evaluation measure

Small / Medium / Large Objects Across all scales AR^M@100 AR^S@100 AR^{*L*}@100 AR@10 AR@100 AR@1k Time Method MCG [4] 0.1860.29945s0.077DeenMaskZoom [2] 0.3891.35s0.1510.2860.3710.0930.466

Red non-filled shapes denote missed objects. Colored filled shapes denote found objects.

AttentionMask	0.180	0.349	0.444	0.162	0.421	0.560	0.22s
FastMask [1]	0.169	0.313	0.406	0.106	0.406	0.517	0.33s
InstanceFCN [3]	0.166	0.317	0.392	-	-	-	1.50s
SharpMaskZoom [2]	0.156	0.304	0.401	0.099	0.412	0.495	2.02s
SharpMask [2]	0.154	0.278	0.360	0.035	0.399	0.513	1.03s
	0.101	0.200	0.371	0.093	0.389	0.400	1.008

AttentionMask beats all state-of-the-art methods across all categories including runtime!

References

[1] Hu, H., Lan, S., Jiang, Y. Cao, Z. Sha, F. : FastMask: Segment Multi-scale Object Candidates in One Shot. In: CVPR (2017) [2] Pinheiro, P., Lin, T., Collobert, R., Dollár, P.:: Learning to refine object segments. In ECCV (2016) [3] Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully

convolutional networks. In: ECCV (2016) [4] Pont-Tuset, J., Arbelaez, P., Barron, J., Marques, F, Malik, J..: Multiscale combinatorial grouping for image segmentation and object proposal generation. TPAMI 39(1), 128-140 (2017)