

FACULTY OF MATHEMATICS, INFORMATICS AND NATURAL SCIENCES

DEPARTMENT OF INFORMATICS

COMPUTER VISION GROUP

Edge Adaptive Seeding for Superpixel Segmentation

Christian Wilms and Simone Frintrop

{wilms,frintrop}@informatik.uni-hamburg.de

Motivation

- Superpixels are used to reduce complexity of an image
- However, image content has very different scales
- Thus, one superpixel resolution is not suitable (undersegmentation vs. more complexity)

• Our solution: adapt the seeding of superpixels segmentations based on edge density

Ground truth 50 SLIC superpixels 1200 SLIC superpixels 250 superpixels with (too much complexity) our adaptive approach (undersegmentation) segmentation

• *K* different seeding resolutions in *K* different clusters System Overview • Seeding resolutions determined based on cluster edge density • As segmentation algorithm any method can be used *K* Segmentations K Clusters Smoothing Superpixel Edge Prior k=1Segmentation Input Method Post-Processing Superpixel Final Edge Map k = KSegmentation Segmentation Method SE and k-means Binarization

- Edge detected with Structured Edges [2]
- Binarization makes result independent of edge strengths
- Clusters pixels with similar
- edge density small/many objects vs.
- large/few objects

Overlay segmentations to generate final segmentation

Image window and clustering result

Clipped vs. overlayed segmentations with cluster edges

Results (for more results scan the QR code)

Image with ground truth

Evaluation based on [3]

- Five datasets used: BSD, SBD, NYUV2, SUNRGBD, Fashionista
- Comparison to [4] and uniform seeding
- Methods chosen for segmentation: SLIC, SEEDS and SMURFS

SBD Boundary Recall with SE edges + SLIC proposed with GT edges + SLIC [4] adapted to images + SLIC uniform SLIC 125 375 500 750 No. of Superpixels

Result of clustering (*K*=3)

Edge adaptive segmentation based on SLIC

BSD Boundary Recall

Paper + Code

References

[1] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11), 2274–2282 (2012)

[2] Dollar, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE TPAMI 37(8), 1558–1570 (2015)

[3] Stutz, D., Hermans, A., Leibe, B.: Superpixels: An evaluation of the state-ofthe-art. CVIU (2017), in press

[4] Gao, G., Lauri, M., Zhang, J., Frintrop, S.: Saliency-guided adaptive seeding for supervoxel segmentation. In: IROS (2017)