Motivation	Method	Evaluation	Conclusion

AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects

Christian Wilms, Simone Frintrop

University of Hamburg Department of Informatics

Universität Hamburg

04 December 2018 ACCV 2018, Perth

Motivation	Method	Conclusion
○ ○		

Motivation - What is Object Proposal Generation?

Object Proposal Generation

Motivation	Method	Conclusion
○ ○		

Motivation - What is Object Proposal Generation?

Object Proposal Generation

- *k* class-agnostic object proposals generated
- No classification involved
- Localization with masks or boxes
- Proposals get an objectness score for ranking purpose
- Object proposal generation is usually a first step in object detection (reducing complexity)

Motivation ●○	Method ○○	Evaluation	Conclusion

Motivation - What is Object Proposal Generation?

Object Proposal Generation

- *k* class-agnostic object proposals generated
- No classification involved
- Localization with masks or boxes
- Proposals get an objectness score for ranking purpose
- Object proposal generation is usually a first step in object detection (reducing complexity)

Obj₁, Obj₂, Obj₃,...Obj_k

Motivation	Method	Conclusion
0		

Motivation - Problems of Current Systems

Problem 1: Small Objects

Problem 2: Inefficient Use of Resources

Problem 2: Inefficient Use of Resources

Christian Wilms, Simone Frintrop

Motivation	Method	Conclusion
00		

Motivation - Problems of Current Systems

Problem 1: Small Objects

Problem 2: Inefficient Use of Resources

- Systems are either not really fast (> 2s per image, SharpMaskZoom [1]) or...
- ... have a huge memory footprint (approx. 12GB on the GPU, FastMask [2]), preventing a more detailed analysis of the image

P. Pinheiro, T. Lin, R. Collobert and P. Dollàr, Learning to Refine Object Segments, in ECCV, 2016.
H. Hu, S. Lan, Y. Jiang, Z. Cao, F. Sha, FastMask: Segment Multi-scale Object Candidates in One Shot, in CVPR, 2017.

Motivation	Method	Conclusion
00		

Motivation - Problems of Current Systems

Problem 1: Small Objects

Problem 2: Inefficient Use of Resources

Possible Solution:

Use the resources more efficiently and make use of the freed resources for better detecting small objects.

Motivation	Method ●○	Evaluation	Conclusion
AttentionMask			

Motivation	Method ●○	Evaluation	Conclusion
AttentionMask			

Motivation	Method ●○	Evaluation	Conclusion
AttentionMask			

Motivation	Method	Conclusion
	•0	

AttentionMask

Idea

Motivation	Method	Conclusion
	● ○	

AttentionMask

Idea

Motivation	Method	Conclusion
	● ○	
AttentionMedic		
ALLEITLIOHIVIASK		

Motivation	Method	Evaluation	Conclusion
	00		
AttentionMask			

Motivation	Method	Conclusion
	● ○	
AttentionMask		

- Start from an existing system (FastMask [2])
- Add attention modules at each scale and learn to focus on objects of relevant size

Motivation	Method	Conclusion
	● O	
AttentionMask		

ldea

- Start from an existing system (FastMask [2])
- Add attention modules at each scale and learn to focus on objects of relevant size
- Selectively sample windows in the feature maps given the attention

Motivation	Method ●○	Evaluation 000	Conclusion

AttentionMask

ldea

- Start from an existing system (FastMask [2])
- Add attention modules at each scale and learn to focus on objects of relevant size
- Selectively sample windows in the feature maps given the attention
- Lower memory consumption based on attention \Rightarrow new scale ($\mathcal{S}_8)$ for small objects possible

Motivation	Method ●○	Evaluation 000	Conclusion

AttentionMask

Idea

- Start from an existing system (FastMask [2])
- Add attention modules at each scale and learn to focus on objects of relevant size
- Selectively sample windows in the feature maps given the attention
- Lower memory consumption based on attention \Rightarrow new scale ($\mathcal{S}_8)$ for small objects possible
- System is trained end-to-end with multiple tasks

Motivation	Method ○●	Evaluation	Conclusion
Scale-specific	Objectness Attention	Module (SOAM)	

Motivation	Method		Conclusion
	00		
Scale-specific	Objectness Attention	Module (SOAM)	

Attention maps for different scales:

Motivation	Method ○●	Evaluation 000	Conclusion
Scale-specific Objectne	ss Attention Module	(SOAM)	

Attention maps for different scales:

Input

 S_8 S_{16} S_{32} S_{64} Attention maps focus on objects of different scale! S_{128}

Motivation	Method 00	Evaluation ●○○	Conclusion
Evaluation			

- MS COCO dataset for training, validation and testing (80000/5000/5000)
- Average recall (AR) is used as evaluation measure
- AR measures how many GT objects are found and how well they are found
- AR correlates with the results of object detection using these proposals

Motivation	Method	Evaluation	Conclusion
		000	
Evaluation			

- MS COCO dataset for training, validation and testing (80000/5000/5000)
- Average recall (AR) is used as evaluation measure
- AR measures how many GT objects are found and how well they are found
- AR correlates with the results of object detection using these proposals

Method	AR@10	AR@100	AR@1k	AR ^{<i>s</i>} @100	AR ^M @100	AR ^L @100	Time
MCG [3]	0.077	0.186	0.299	-	-	-	45 <i>s</i>
SharpMaskZoom [1]	0.156	0.304	0.401	0.099	0.412	0.495	2.02 <i>s</i>
FastMask [2]	0.169	0.313	0.406	0.106	0.406	0.517	0.33 <i>s</i>
AttentionMask	0.180	0.349	0.444	0.162	0.421	0.560	0.22s

[3]: J. Pont-Tuset, P. Arbelaez, J. Barron, F. Marques and J. Malik, Multiscale combinatorial grouping for image segmentation and object proposal generation, in TPAMI, 2017.

Motivation	Method	Evaluation	Conclusion
Evoluation			

- MS COCO dataset for training, validation and testing (80000/5000/5000)
- Average recall (AR) is used as evaluation measure
- AR measures how many GT objects are found and how well they are found
- AR correlates with the results of object detection using these proposals

Method	AR@10	AR@100	AR@1k	AR ^{<i>s</i>} @100	AR ^M @100	AR ^L @100	Time
MCG [3]	0.077	0.186	0.299	-	-	-	45 <i>s</i>
SharpMaskZoom [1]	0.156	0.304	0.401	0.099	0.412	0.495	2.02 <i>s</i>
FastMask [2]	0.169	0.313	0.406	0.106	0.406	0.517	0.33 <i>s</i>
AttentionMask	0.180	0.349	0.444	0.162	0.421	0.560	0.22s

AttentionMask beats all state-of-the-art methods across all categories including runtime.

[3]: J. Pont-Tuset, P. Arbelaez, J. Barron, F. Marques and J. Malik, Multiscale combinatorial grouping for image segmentation and object proposal generation, in TPAMI, 2017.

Motivation	Method 00	Evaluation ○●○	Conclusion
Qualitative Results - I			

SharpMaskZoom [1]

FastMask [2]

AttentionMask

Red non-filled shapes denote missed objects. Colored filled shapes denote found objects.

Motivation	Method 00	Evaluation	Conclusion
Qualitative Results - II			

SharpMaskZoom [1] FastMask [2]

AttentionMask

Red non-filled shapes denote missed objects. Colored filled shapes denote found objects.

Motivation	Method oo	Evaluation	Conclusion ●○
Conclusion			

- Small object are not well detected by state-of-the-art systems
- Idea: More efficient use of resources to put more effort in detecting small objects
- Introduction of SOAMs (attention) to focus processing
- Resources are now free for better detecting small objects
- Results prove efficiency and effectiveness of the approach

Motivation	Method oo	Evaluation	Conclusion ●○
Conclusion			

- Small object are not well detected by state-of-the-art systems
- Idea: More efficient use of resources to put more effort in detecting small objects
- Introduction of SOAMs (attention) to focus processing
- Resources are now free for better detecting small objects
- Results prove efficiency and effectiveness of the approach

Attention is a useful tool to focus processing in deep networks on important parts and make systems more efficient (and effective)!

Motivation	Method	Conclusion
		00

Thank you for your attention!

AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects

For more information check out our webpage: https://www.inf.uni-hamburg.de/en/inst/ab/ cv/people/wilms/attentionMask.html

Motivation	Method 00	Evaluation	Conclusion
References I			

- Pinheiro, P.O., Lin, T.Y., Collobert, R., Dollár, P.: Learning to refine object segments.
 In: ECCV. (2016)
- Hu, H., Lan, S., Jiang, Y., Cao, Z., Sha, F.: FastMask: Segment multi-scale object candidates in one shot. In: CVPR. (2017)
- Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. TPAMI **39** (2017)