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Abstract—Sentiment analysis, the process of pre-
dicting sentiments expressed in human communica-
tion, has evolved to multimodal sentiment analysis
(MSA). Recent advances in attention-based MSA
models have demonstrated the effectiveness of cap-
turing intramodality and intermodality dynamics.
However, challenges remain in achieving optimal
performance and creating effective context repre-
sentations across modalities. To address these chal-
lenges, we propose the Multi-Head self-attention with
Context-Aware attention model, which utilizes two
attention-based mechanisms to strategically capture
intramodality dynamics within each modality before
delving into intermodality dynamics. The experimen-
tal results on 5 datasets show the superiority of our
model in comparison with the state of the arts.

I. INTRODUCTION

Sentiment analysis aims to extract and analyze
sentiments expressed in textual chats, audio speech,
visual-based interactions, or a combination of them.
Traditional sentiment analysis primarily deals with
text, but advancements in computational capabilities
and the prevalence of audio-visual communication
have led to the development of multimodal senti-
ment analysis (MSA). MSA enhances the under-
standing of human emotions and could be applica-
ble in diverse fields such as education, customer
feedback analysis, mental health monitoring, and
personalized advertising.

Recent advancements in attention-based MSA
models, such as the Multi-attention Recurrent Net-
work (MARN) [17], [19], have showcased no-

table achievements in capturing both intramodality
and intermodality dynamics. Additionally, [8] em-
ploys an LSTM-based approach to enhance context-
based knowledge. Nevertheless, challenges persist
in achieving optimal performance and creating ef-
fective context representations across modalities.

To address the above-mentioned weaknesses, we
introduce multi-head self-attention with context-
aware attention (MHCA) model, leveraging two
attention-based components. The model strategi-
cally captures intramodality dynamics within each
modality before delving into intermodality dynam-
ics, ensuring a comprehensive understanding of
sentiment expression in video clips. The main
contribution of this work is an architecture that
extracts inter-modality features before modality fu-
sion to enhance sentiment analysis. Secondly, we
conduct ablation studies to: (1) demonstrate the
effectiveness of inter-modality feature extraction
compared to inter-modality feature representation,
and (2) highlight the impact of each modality on
sentiment classification. Thirdly, we investigate the
generalizability of the proposed model across 5
datasets, providing insights into its robustness. The
experimental results show the competitiveness of
our model in comparison with recent methods.

II. RELATED WORK

From a high level perspective, MSA frameworks
involve obtaining an accurate intra-modality repre-
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sentation and finding an effective fusion method
to model the inter-modality interaction [3], [22]
. Modality fusion - the process of filtering and
combining the features from various modalities - is
at the center of MSA. [22] provides a hierarchical
taxonomy of fusion methods with 8 categories.

Utterance level fusion models operate at the level
of individual utterances and can be classified as
early fusion, late fusion, and hybrid fusion sys-
tems. Early fusion [9], [16] combines modalities
in a joint representation before classification, but
such models risk over-generalization and sacri-
ficing modality-specific nuances. Late fusion [6],
[19] classifies them separately and combines results
post-classification; such models are susceptible to
error accumulation, increased computational com-
plexity, and potential information redundancy. The
strengths of late fusion lie in individually tuned
classifiers, while early fusion saves time by training
a single model. Hybrid fusion integrates both strate-
gies using tensor fusion [17], [19]. Other methods
pay more attention to the fine-grained interactions
of modalities. Translation-level fusion, exemplified
by MCTN [7], translates between modalities, gen-
erating an intermediate representation of common
information. Word-level fusion models, like MARN
[19], capture interactions over time, accommodating
opposite indicators in longer sequences [15]. [13]
fuses modalities at the word level, using an attention
component to assess nonverbal context influence on
word meaning.

Feature space manipulation fusion employs math-
ematical expressions, attention mechanisms, or neu-
ral networks to exploit the relationships between
different modalities in the feature space [22]. In
this context, [8] introduced an attention-based net-
work that determines the importance of modal-
ities, generating attention scores for utterances,
while [5] extended this concept to Recurrent Neural
Network, incorporating scaled-dot-product attention
and Multi-Head Attention (MHA) [12]. [21] com-
putes a soft-attention matrix representing interac-
tions between modalities and uses it to weight ele-
ments in one modality. MISA [4] first projects the
features into a modality-invariant and a modality-
specific subspace. Finally, the projections are con-

catenated and a transformer-based self-attention is
used for prediction. The main challenge of these
works lies in providing an attention mechanism
to focus on the most important part of each data
modality while also understanding the relationships
between different data modalities.

Despite advances, identifying effective fusion
techniques and comprehending the impact of di-
verse modalities on predictions remains a challenge
that is addressed in this work.

III. PROPOSED METHOD

Figure 1 shows the proposed Multi-head self-
attention with Context-aware Attention model
(MHCA). The primary objective is to predict sen-
timents by leveraging the unique and complemen-
tary information provided by each modality (text,
audio, and video frames). This problem becomes
particularly prominent when a singular modality
fails to provide an accurate sentiment determina-
tion. The MHCA model effectively captures both
intramodal and intermodal dynamics by employ-
ing two synergistic components: the Multi-Head
Attention (MHA) module and the Context-aware
Attention (CAM) module. The MHA module ini-
tially leverages self-attention mechanisms to model
interactions within each modality’s embeddings.
The outputs of the MHA modules are then fed
into Linear layers with dropout regularization to
enhance the interaction within the modalities and
to project the feature vectors to the same size.
Then, the CAM module seamlessly integrates in-
formation across modalities, capturing the intricate
intermodal connections. Finally, the outputs of three
CAM modules are concatenated and passed through
Linear and Average Pooling layers to predict the
sentiment score values. In the remainder of this
section, we detail each module of the proposed
framework.

Multi-Head Attention (MHA) Module:
The MHA module is applied to each modality
separately to capture the intramodal dynamics,
i.e. the important features and characteristics
within a modality. It relies on self-attention
(middle section of Fig.1), which allows the
model to assign weights to different features
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Fig. 1. Overview of the proposed model. The left side shows the overview of the model, while the middle and right sections
highlight the multi-head self-attention and context-aware attention modules. mmsdk refers to CMU-Multimodal SDK, a toolkit for
loading multimodal datasets and feature extraction. h stands for heads. Mul stands for Multiplication.

based on their contextual significance within the
sequence. By using multiple self-attention heads
the model has a higher capacity to capture diverse
feature representations. Each head attends to
specific representations within the data, allowing
different important aspects within the modality
to be observed. The multi-headed self-attention
can be expressed as in [12]: MultiHead(X) =
Concat(Att(Q1,K1, V1), . . . ,Att(Qh,Kh, Vh))Wo,
where Att(Qi,Ki, Vi) = ζ

(
QiK

T
i√

d

)
Vi, and

Qi = XWqi, Ki = XWki, and Vi = XWvi,
are respectively the query, key, and values
representation of the input tokenized data X , and
ζ is the softmax activation function.

Context-aware Attention (CAM) Module:
CAM module learns the intermodality dynamics,
i.e., the relationships between different modalities.
The CAM module (right side of Fig. 1) uses both
attention and multiplicative gating to weigh the
contribution of different modalities according to
their importance and context [1]: CAM(M1,M2) =
(ζ(M1M2)M2)�M1 , where M1 and M2 represent
the embeddings of two different modalities, ζ is the
softmax activation function, and � is the multiplica-
tive gating introduced in [2].

Modality fusion and sentiment prediction: The
outputs of the CAM modules are concatenated and
fed into a Linear layer to increase interaction be-
tween modalities. Finally, temporal average pooling
is used to aggregate the information across the

entire sequence, and the result is passed through a
Linear layer with softmax activation for sentiment
score value prediction.

Implementation and training: We use the mul-
timodal features extracted with Multimodal Soft-
ware Development Kit (CMU-multimodal SDK)
as inputs to our proposed architecture. the CMU-
multimodal SDK is a well-known tool in the senti-
ment analysis domain that makes feature extraction
more easily accessible and allows for fair and
standardized comparisons between methods. The
number of heads in the MHA module is a hyperpa-
rameter that accommodate dataset-specific features:
we employed 5, 2, and 7 heads for analyzing
text, audio, and visual modalities, respectively for
the MMMO, Youtube, and MOUD datasets. For
the MOSI dataset 5 heads were used to analyze
all the modalities. Different numbers of heads are
used for each dataset because the shapes of the
features vary across datasets, and we should ensure
that the features are divisible by the number of
heads. For the final output, categorical cross-entropy
guides the learning process, minimizing the discrep-
ancy between predicted and actual sentiments. The
number of neurons in the Linear layers, dropout
rate, and activation function are optimized through
grid search, ensuring adaptability to unique dataset
characteristics 1.

1More details at: https://drive.google.com/file/d/
1Eq6mSQDWphU3AOde f4xfOrs7Xie49Ik/view?usp=sharing
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TABLE I
PERFORMANCE COMPARISON ON THE MMMO, YOUTUBE, CMU-MOSI WITH 2 AND 7 CLASS LABELS, AND MOUD

DATASETS. *VALUES ARE TAKEN FROM [11].

Model MMMO Youtube CMU-MOSI (2) CMU-MOSI (7) MOUD

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

MV-LSTM [10]* 72.50 72.30 45.80 43.30 73.90 74.00 33.20 - 57.60 48.20
BC-LSTM [8]* 70.00 70.10 45.00 45.10 73.90 73.90 28.70 - 72.90 72.90
TFN [17]* 72.50 72.60 45.00 41.00 74.60 74.50 28.70 - 63.20 61.70
MARN [19]* 71.30 70.20 48.30 44.90 77.10 77.00 34.70 - 81.10 81.20
MFN [18]* 73.80 73.10 51.70 51.60 77.40 77.30 34.10 - 81.10 80.40
MFM [11]* 81.30 79.20 53.30 52.40 78.10 78.10 36.20 - 82.10 81.70
CIA [1] 82.75 81.47 55.93 55.13 79.88 79.54 38.92 - 82.41 82.07
R-CIA [1] 82.50 - 52.54 - 76.68 - 37.46 - 75.47 -
MHCA (ours) 85.00 85.20 59.32 54.68 79.74 79.93 39.94 37.73 78.30 78.26

IV. EXPERIMENTS

The evaluation of our proposed sentiment anal-
ysis models is conducted on four benchmarks:
Youtube opinion [14], MMMO [19], MOUD [9],
and CMU-MOSI [20] datasets. The YouTube
dataset consists of 47 English-language videos con-
taining 269 utterances about product reviews and
opinions, categorized into positive, neutral, and
negative sentiments. The MMMO dataset extends
the Youtube dataset with 340 videos of online social
reviews, labeled as positive and negative. MOUD
is a collection of 79 Spanish-language videos with
389 utterances about product reviews, categorized
as positive or negative. Finally, the CMU-MOSI
dataset comprises 2199 opinion utterances in En-
glish sourced from YouTube, and provides both
seven and two-class sentiment categories.

A. Comparative Analysis

TableI shows the comparative results between
our method and MV-LSTM [10], BC-LSTM [8],
TFN [17], MARN [19], MFN [18], MFM [11],
CIA [1], R-CIA [1] across four benchmarks for
multimodal sentiment analysis: MMMO, Youtube,
CMU-MOSI (with 2 class labels), CMU-MOSI
(with 7 class labels), and MOUD. The evaluation
relies on maximum accuracy and F1-score metrics.
The proposed model (MHCA) outperforms all other
models on three datasets, affirming its competitive-
ness with existing state-of-the-art models. Specifi-
cally, on the MMMO dataset, MHCA demonstrated

superior accuracy, surpassing other models by mar-
gins ranging from 2.25% to 15.00%. In terms of
F1-score, MHCA outperformed all models at least
by 3.73%. Similarly, on the YouTube dataset, with
an accuracy of 59.32%, our method surpasses the
next best method CIA [1] by 3.39%. Regarding F1-
score, MHCA ranked second, outperforming several
models but trailing behind CIA [1] by 0.45%.

On CMU-MOSI with 2 class labels, MHCA
achieved an accuracy of 79.74%, placing behind
the best-performing model by 0.14%. However, in
terms of F1-score, MHCA outperformed all models
by 0.39%, achieving an F1-score of 79.93%. For the
CMU-MOSI(7) dataset, MHCA demonstrated the
highest accuracy, outperforming other models by
1.02% to 11.24%. However, F1-score comparisons
were not available for other models.

On the MOUD dataset, MHCA positioned itself
with accuracy of 78.30% in the middle of the com-
pared models but showcased strong performance
compared to MV-LSTM [10], BC-LSTM [8], TFN
[17], and R-CIA [1]. In terms of F1-score, MHCA
achieves a score of 78.26, while the best model
obtains an F1-score of 82.07.

In summary, the MHCA model demonstrated ex-
ceptional performance, particularly on the MMMO,
Youtube, and CMU-MOSI(7) datasets, surpassing
all state-of-the-art models in the comparison. Its
strong F1-score performance on the MMMO and
CMU-MOSI(2) datasets further highlights its effi-
cacy in MSA.
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TABLE II
RESULT COMPARISON BETWEEN UNI-MODAL, BI-MODAL, AND TRI-MODAL EXPERIMENTS USING T (TEXT), V (VISUAL), AND

A (AUDIO) MODALITIES ON THE PROPOSED MHCA MODEL.

Model MMMO Youtube MOSI (2) MOSI (7) MOUD

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

T 68.75 70.39 45.18 52.15 72.59 73.02 32.80 25.77 71.70 72.00
A 76.25 77.86 42.37 0.00 52.92 59.15 16.47 0.00 60.37 74.56
V 65.00 72.00 45.76 0.00 50.87 55.70 20.85 0.00 60.37 75.30
T+V 71.25 75.33 50.85 53.41 77.11 77.23 36.15 32.83 73.58 73.70
T+A 81.25 81.98 52.54 51.19 77.11 77.30 34.55 34.21 75.47 75.23
A+V 70.00 70.00 49.15 22.38 58.89 59.29 23.18 16.04 61.32 63.72
T+A+V (MHCA) 85.00 85.20 59.32 54.68 79.74 79.93 39.94 37.73 78.30 78.26

B. Ablation Studies

We conducted an ablation study to assess the ef-
fect of each module in our MHCA model. When the
CAM module is removed, the model’s performance
experiences a notable decline. Across all datasets,
the maximum accuracy values decreased by an
average of 5.57%, while the mean accuracy values
dropped by an average of 3.75%. This decrease
indicates the role of the CAM in capturing inter-
modal dynamics. The most impact was observed
on the MMMO dataset, where the maximum accu-
racy plummeted by 8.75%, reaching 76.25%. The
mean accuracy also decreased by 6.50% to 72.38%,
highlighting the module’s pivotal role in learning
intermodal dynamics. Similar trends were noted on
the Youtube dataset, with an 8.47% accuracy drop
to 50.85%, emphasizing the module’s importance
on smaller datasets.

We also examined the impact of removing the
MHA module, investigating its effectiveness in
capturing intramodal dynamics. When the MHA
module was omitted, the model’s performance was
significantly compromised across all datasets. On
average, the maximum accuracy values decreased
by 12.25%, and the mean accuracy values dropped
by an average of 7.77%.

The combined results the ablation studies high-
light that excluding either the CAM or MHA mod-
ule significantly hampers the model’s performance.
To achieve the best results, it is imperative to
include both modules. This is especially crucial for
achieving optimal performance on smaller datasets.

In another ablation study, we evaluated various

input combinations: uni-modal (text only, audio
only, video only), bi-modal (text + video, text +
audio, audio + video), and tri-modal (text + audio
+ video) scenarios (Table II). When examining
individual modalities for predicting input data sen-
timent, inconsistencies emerge across datasets. In
certain instances, text outperforms the other two
modalities, while there are situations where audio
proves to be the most effective. Visual data also
demonstrates superior results in some cases. Over-
all, text analysis tends to be more effective than
audio and visual analysis, with audio and visual
data showing comparable performance. In the eval-
uation of pairs of modalities, results surpass those
of unimodal scenarios, with the combination of
text consistently yielding superior results compared
to the combination of audio and visual data. As
anticipated, the comprehensive analysis and fusion
of all three modalities lead to enhanced results
compared to both bimodal and unimodal scenarios.
For example, as shown in Table II, in the MMMO
dataset, uni-modal analysis highlights audio’s supe-
rior performance with 76.25% accuracy and 77.86%
F1-score, surpassing text (68.75%, 70.39%) and
video (65.00%, 72.00%). Combining text and audio
in a bi-modal setup achieves the highest accu-
racy (81.25%, 81.98%). Tri-modal fusion excels,
reaching 85.00% accuracy and 85.20% F1-score,
outperforming the best bi-modal combination by
3.75% accuracy and 3.22% F1-score.

V. CONCLUSION

In this paper, we introduced a Multi-head self-
attention with Context-aware Attention (MHCA)

EmotionAware 2024: Eighth International Workshop on Emotion Awareness for Pervasive Computing Beyond 
Traditional Approaches

277
Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on June 18,2024 at 13:41:50 UTC from IEEE Xplore.  Restrictions apply. 



model for MSA and demonstrated its effectiveness
in capturing both intra- and intermodality dynamics
across text, audio, and video data. The multi-headed
self-attention effectively captures the relationship
within each modality, while the proposed CAM
models the inter-modality dynamics without us-
ing any learnable parameters. The experiments on
five publicly available sentiment analysis datasets
demonstrated the superiority of our method in com-
parison with the existing methods. Further anal-
ysis of the model showed that utilizing all three
modalities compared to uni-modal and bi-modal
data obtains higher performance.
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