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Abstract

This bachelor thesis aims to support the creation and evaluation of a hand posture
vocabulary for efficient pointing-based posture interaction. For that the aim is to create
a hand posture comfort/discomfort metric that allows for quick and objective hand
posture evaluation. Furthermore the impact of comfort and discomfort on precision
and performance in spacial interaction is to be explored.

Based on state-of-the-art comfort and discomfort models a metric is composed.
Furthermore a Unity 3D environment is created that allows to compute the metric in
real time and to automate the testing of the metric in form of a user study.

The results from two user studies show that the proposed metric is adequate for
predicting user perceived comfort and discomfort. Furthermore the results indicate
that comfort and discomfort as measured by the metric do affect precision and perfor-
mance.
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1 Introduction

1.1 Motivation

Figure 1.1: Controlling a Robot using Hand Postures

Over the last two decades human-computer interaction in desktop computer envi-
ronments has been constantly researched and iteratively improved, resulting in the
keyboard-mouse input standard. Using a WIMP interface and multiple keyboard
macros users can complete a variety of tasks efficiently and effectively. However, in
interaction contexts such as virtual reality and human-robot interaction (Figure 1.1)
which become more and more relevant, traditional interaction techniques are not a
suitable solution. Speech is an intuitive way of interacting, even though it by nature
requires the user to talk constantly which is not optimal for longer periods of time. Ad-
ditionally, speech interaction is limited when it comes to contexts such as commanding
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1 Introduction

a robot to execute different household tasks or playing a real-time strategy game in
virtual reality, where spacial expressiveness is important. In such cases, pointing with
hands is a much more efficient and intuitive solution. By using different hand postures
different commands can be issued, which enhances interaction expressiveness similarly
to key macros in a traditional environment. The main challenge for hand postures
has been fighting physical forces that cause different negative symptoms like fatigue
or discomfort. The latter are generally known to limit user experience and precision
[SC99] in the task environment.

When designers create a hand posture interaction environment, they have to take
these physical factors and hand posture comfort and discomfort into account. One goal
is to choose an optimal set of hand postures that will ensure maximum task performance
and comfort for the user while creating a minimum of discomfort. Especially for larger
sets of commands that becomes challenging as there are no straight forward metrics
that allows to compare hand postures quickly [NCD15]. So either a costly user study
has to be organized to get objective feedback, or the designers have to rely on their
own subjective impressions and assumptions.

Therefore, the main goal of this bachelor thesis is to support the creation and
evaluation of a hand posture vocabulary for efficient pointing-based posture interaction.

1.2 Study Goals

The approach taken to solve the problem stated above, is based on the hypothesis that
hand posture comfort and discomfort do affect the users performance in a specific task
and obviously the user experience. Based on this, two main goals were formulated.

1.2.1 Create a Metric for Hand Posture Comfort/Discomfort

The objective was to create a metric, that allows designers to get a quick and objective
evaluation of a hand posture regarding comfort and discomfort. The metric should be
used to compare similar hand postures and to rule out bad ones directly.

For the creation of the metric, state-of-the-art comfort and discomfort models were
taken into consideration. Looking at the human hand’s complex anatomy, multiple
influential factors for hand posture comfort and discomfort were identified. In order to
compute a concrete metric value in real time, the identified factors were implemented
in a Unity 3D environment. Finally the metrics correctness was verified in a user study.
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1 Introduction

1.2.2 Show the Metric’s Influence on User Performance

While the correlation of Comfort/Discomfort and user experience is rather trivial, the
influence of Comfort/Discomfort on user performance was only indicated for specific
different contexts. Therefore the objective was to show this correlation in the context of
hand posture comfort/discomfort as measured by the metric. This was also targeted in
a user study.
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2 Related Work

2.1 Nikolas Schneider

Figure 2.1: Nikolas Schneider: Pointing, Spiderman and Pinching Posture

Being its follow-up work, this bachelor thesis was highly influenced by the work of
Nikolas Schneider [Sch16]. In his bachelor thesis Nikolas Schneider compared three
different hand postures, namely a pointing, spiderman and a pinching posture in terms
of precision and performance in a 3D-pointing task (Figure 2.1).

For that, he conducted a user study, where the participants had to perform a target
shooting test in a Unity 3D environment using one of the mentioned postures. For that
purpose the participants wore an AR-Rift giving them augmentations of the targets
to shoot and the shooting direction, indicated by a laser beam. The beam’s origin
and direction were computed differently for each hand posture. In order to track the
participant’s hand, a metal construction featuring a Leap Motion Controller and ART
marker was strapped to the forearm. Applying a KNN algorithm on the data gained
from the Leap, the user’s hand posture was determined in order to make sure, the
participant would hold the posture throughout the test. Right after the target shooting,
users were asked to rate their experience with the hand postures regarding perceived
accuracy and comfort.

The results showed that generally the pointing posture performed best, followed by
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2 Related Work

the spiderman posture and finally the pinching posture. The questionnaire revealed
similar results for user perception, indicating a connection between user comfort and
performance.

2.2 Comfort and Discomfort

Since the main goal was to create a quantitative metric for hand posture comfort and
discomfort evaluation, it was crucial to understand state of the art concepts of comfort
and discomfort and to have a look at similar approaches taken to create comfort metrics.

In their editorial Vink et al. [VH12] give a good overview over current comfort and
discomfort definitions and different models explaining the origin of both. They state
that even though there has been much research on comfort and discomfort, the results
are generally ignored in practical design contexts due to their broad theoretical scope.
Concludingly they express the importance of further research in order to generate
applicable models and metrics for concrete body parts.

Fagarasanu et al. [FKN04] discovered that limbs in neutral postures showed a
significantly lower muscle activity, indicating higher perceived comfort. Apostolico
et al. [Apo+14] defined the term "Range of Rest Posture" (RRP), a angular range for
articular joints where the joint can be seen as statistically in rest. They further measure
the RRP for multiple human joints and express its importance for evaluation of postural
comfort. Based on this, Naddeo et al. [NCD15] used a neural network to generate
a concrete metric for postural comfort based on RRP. Therefore they compare user
comfort ratings of certain joint postures with the measured distance to the RRP. They
further described other potential influential factors to take into account when evaluating
comfort.

Short et al. [SC99] conducted a user study to investigate the so called precision
hypothesis. The results indicated that generally more comfortable postures generate a
higher precision in pointing tasks. This effect is magnified, when the targets become
smaller.
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3 Theoretical Foundation

3.1 Comfort and Discomfort Definitions

Before actually creating a metric, it is obviously crucial to have an exact definition of
the terms comfort and discomfort. In this bachelor thesis comfort and discomfort will
be referred to as defined by Vink et al. [VH12].

In their paper comfort is defined as "pleasant state or relaxed feeling of a human being in
reaction to its environment". Therefore comfort is a positive emotional state in reaction to
the environment highly dependent on emotions and expectation. Comfort is generally
related to "luxury, feeling relaxed or being refreshed".

Discomfort on the other hand is defined as "an unpleasant state of the human body in
reaction to its physical environment". Physical stress is the main cause of discomfort, a
negatively perceived state of the body. Discomfort is often felt in the form of fatigue,
stiffness and pain and can in extreme cases even lead to injury.

It is important to keep in mind, that comfort and discomfort are in fact not two
opposing sides on one scale. They rather are two independent factors influencing the
overall well being in different ways, somewhat similar to Herzberg’s motivation-hygiene
theory. The absence of discomfort does not automatically result in comfort and vice
versa.

An example for the importance of this differentiation can be found when choosing
the softness of foams for mattresses or seats. While softer materials will continuously
increase perceived comfort, having too soft foams will result in reduced postural
support, leading to higher stress on muscles and tendons and finally causing discomfort
symptoms like stiffness or back pain.

3.2 Hand Comfort and Discomfort Metric Components

Looking at the hand’s anatomy the following four components were determined to be
most influential on comfort and discomfort based on the definitions from above. In the
following section the comfort and discomfort components will be explained and a brief
idea for computation will be given.
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3 Theoretical Foundation

Figure 3.1: A relaxed Hand Posture recorded with the Leap.

3.2.1 Deviation from Range of Rest Posture

The Range of Rest Posture (RRP) component is based on the work of Apostolico et
al. [Apo+14]. They define the "Rest Posture" of a human joint as a posture, where
involved muscles are completely relaxed or strain is minimized. When in Rest Posture,
maximum comfort is perceived in that particular joint. Thus, perceived comfort should
decrease when deviating from the RRP. Due to anatomical differences between different
humans, it makes more sense to look at the so called "Range of Rest Posture", a range
of angles for an articular joint, where the joint "can be considered statistically in rest".

When looking at postures involving multiple joints, Naddeo et al. [NCD15] state that
comfort can be determined by combining the comfort values of the single joints.

In our case, we considered the human hand to have one RRP for each finger joint
in a non-resting position with the palm facing downwards, resulting in a range of
relaxed hand postures, similar to Figure 3.1, where the comfort is maximized. For a
particular hand posture denoted by "x" the RRP component RRP(x) can be computed
by determining the angular distances to the RRP for every joint and adding them up.

7



3 Theoretical Foundation

a b

Figure 3.2: Hand Anatomy (from [LaV99])

3.2.2 The Inter Finger Angles

As it can be seen in Figure 3.2 the hand has a very compact and highly connected
system of muscles, tendons and soft tissue that limits the individual movement of
fingers. The fingers, excluding the thumb, share most of their flexor and extendor
muscles. However minor individual flexion and extension of adjacent fingers is still
possible due to finger tendons originating from different areas of the muscles. In the
case of the Extensor digitorum communis (EDC in Figure 3.2), the finger tendons are even
interconnected on the back of the hand.

In addition to this, only three principal nerves serve the muscles of the hand, which
makes it even harder for the motory system to fully differentiate between the individual
fingers.

In conclusion of this, hand postures with high bending differences between the
fingers should not only cause physical stress on both tendons and muscles, but also
cognitive stress. This is due to the human trying to achieve and hold a complex posture
with limited cognitive and physical means. This can lead to severe discomfort, which is
manifested in cramping up the hand and pain. For a specific hand posture the inter
finger angle component IFA(x) can be computed, by computing the total angular flexion
(Figure 3.3) differences of adjacent fingers and adding them up.
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3 Theoretical Foundation

Figure 3.3: Hyperextension and Abduction (from [LaV99])

3.2.3 Finger Hyperextension

As highlighted by LaViola [LaV99] hyperextension (Figure 3.3), "puts more strain on the
[metacarpophalangeal, MCP in Figure 3.2] joints and tendons than the hand is accustomed
to". Consequently extending the fingers beyond their natural range of motion creates
noticeable amounts of discomfort. Even though this might seem redundant to the
deviation from RRP on first sight, hyperextension takes a special position as it causes
considerably more discomfort, compared to a full flexion of the fingers and compared
to what the deviation from RRP would suggest. The hyperextension component HE(x)
can be computed by simply finding all hyperextended fingers and adding up the
hyperextension angle of the MCP.

3.2.4 Finger Abduction

Finger abduction (Figure 3.3) is the act of fanning out the fingers using the interosseus
muscles located within the hand. High abduction also causes stress on the MCP joints
(Figure 3.2), the muscles and tendons involved as well as the soft tissue in between the
fingers.

Abduction was taken into consideration as a discomfort factor, analogue to the
hyperextension, because full abduction creates substantially more discomfort than full
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3 Theoretical Foundation

adduction (Figure 3.3). By adding up all absolute abduction angles of the fingers, the
finger abduction component FA(x) can be computed.

3.3 Naive Metrics

Now that the different components most influential to comfort and discomfort are
known and assumed to be computable (concrete implementation given in section 4.4), it
is important to think about how to combine the different factors into one metric value.

A naive approach would be to simply sum up the single comfort and discomfort
components for the whole hand. In order to compensate potential differences in
intensity scales of the components, it makes sense to balance the component values
with weighting coefficients (cRRP, cIFA, ...). The concrete weighting coefficients can
be estimated and verified with experimental testing. When assigning the different
components to either comfort or discomfort, following functions for a hand posture
denoted by "x" can be derived.

Com f ort(x) = cRRP · RRP(x)

Discom f ort(x) = cIFA · IFA(x) + cHE · HE(x) + cFA · FA(x)

The resulting metric for comfort has a minimum value of 0, where user perceived
comfort is expected to be minimized. Higher metric values are due to larger distances
to the RRP and therefore correspond to lower comfort values.

The discomfort metric, due to the nature of its components, also has a minimum value
of 0, where user perceived discomfort is minimized. Higher amounts of discomfort are
to be expected, when either high inter finger angles, hyperextension or high abduction
are performed, resulting in higher discomfort metric values.

3.4 Improved Metrics

Even though the naive metrics contain the basic causes of comfort and discomfort, they
still lack deeper consideration for the anatomical differences between the fingers. The
severity of this problem can be experienced when for example comparing the perceived
discomfort of the standard pointing posture using the index finger to pointing with the
ring finger. The concept of improvement is straight forward: instead of applying the
metrics to the whole hand, we consider the contributions from individual fingers and
weight them with importance coefficients.

10



3 Theoretical Foundation

Com f ort(x) = cRRPindex · RRP(index) + cRRPmiddle · RRP(middle) + ...

Discom f ort(x) = cIFAindex · IFA(index) + cIFAmiddle ·+... + cHEindex · HE(index) + ...

In this context there are five comfort values and a total of twelve discomfort values,
as the discomfort metric components neglect the thumb.

However, finding the exact weighting coefficients turns out to be rather tricky, as
they are generally unknown and due to their number hard to estimate. In order to
solve this problem, data from a user study will be processed by a machine learning
algorithm in order to compute the best fitting coefficients. In our case, the problem
can be reduced to a curve fitting problem that can be solved with, for example, the
least-squares algorithm.
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4 Implementation

This chapter will give some details about the implementation, the implementation
process, the problems that occurred and how they were solved.

4.1 Basic Setup

4.1.1 Unity

For the implementation of the hand tracking, the metric computation and the user
study, Unity 3D 5.3 was chosen as a programming environment. Technically, Unity
3D is a powerful game engine that can be used for 3d or 2d applications and games.
It allows users to easily create scenes with different objects whose behavior can be
specified with C# scripts and are rendered automatically. Due to its complex input
manager, it allows the user to receive input from a multitude of input devices and
supports most unconventional interaction devices like HMDs and also the Leap Motion
Controller. In addition a built-in UI-Manager allows for quick prototyping of user
interfaces.

4.1.2 Leap Motion Controller

Similar to Nikolas Schneider’s setup, a Leap Motion Controller was used for the actual
hand tracking. The Leap Motion Controller, or simply Leap, is an optical hand tracker
using three IR-LEDs and two IR-Cameras to record the users hand. By providing an
SDK and a Unity package, integration into Unity 3D works seamlessly. With the new
Leap Orion SDK, the Leap allows for accurate and robust finger tracking in different
lighting conditions and usage contexts. The Leap was chosen due to its easy integration
combined with the solid tracking performance, that is unrivaled for optical hands-free
hand trackers. Instead of attaching it to the user’s arm with a metal construction,
potentially causing discomfort to the user, it was simply placed on a desk.

4.1.3 Further Project Configuration

As using the AR-Rift did not seam to benefit the project substantially, it allowed to set
up a clean 3D Unity project. The only imported assets were the Leap Motion Unity core
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4 Implementation

assets which provide useful tools for interacting with the recorded hands. All work
was based on the Leap sample scene with two basic hand objects.

4.2 Hand Model

In order to make different computations with hands, considerations have to be made
about how to represent a hand posture in a virtual environment. In the field of free
hand computer interaction, two different hand models are commonly used: angle-based
and point-based hand models (Figure 4.1).

The point-based hand model describes a hand posture as a set of 6 6DOF (position
and orientation) points. 5 of these represent the finger tips, one represents the palm. In
the angle-based hand model, a hand posture is described by the hand’s joint angles.
Depending on the literature, the joints in the hand have a total of 22 [SF94] or 23
DOFs [LaV99], differentiating in the DOFs of the trapeziometacarpal joint (TMC, Figure
3.2). Even though the two models are almost interchangeable, the angle-based model
was chosen, as it makes most computations of metric components trivial. A common
simplification for angle-based hand models is to neglect the 2 DOFs, given by the
metacarpocarpal (MCC, Figure 3.2) of the forth and fifth digit. This is done for example
by the Leap, because the MCCs hardly move and are therefore are not noticeable for
most applications. In conclusion, the implementation was based on a 21DOF angle
based hand model, as it can be seen in Figure 4.2.

The goal for the Unity implementation was to create a universally usable and flexible
class structure for hand postures, thus the AngleBasedHandModel class was created.
The class has a reference to a thumb object of class AngleBasedThumbModel and four
enumerated fingers of class AngleBasedFingerModel. In addition the hands position
and rotation are stored for debugging. The class also provides a function to calculate
the mathematical Euclidean distance to another hand posture, a function to interpolate
between two hand postures, a toString function and multiple functions for loading
and storing hand postures as .CSV file.

The AngleBasedFingerModel (and AngleBasedThumbModel) stores their 4 (and 5)
DOFs as float angles. To ease computation the rotation of the MCP (and TMC) is
redundantly stored as quaternion. Both classes also implement the same functions as
AngleBasedHandModel. AngleBasedFingerModel additionally provides a function for
computing the total flexion of a finger (Figure 3.3). The three classes are fully serializ-
able to facilitate simple saving and loading of hand postures. In order to obtain the
hand posture data from the the Leap in realtime, a HandObserver script was attached
to each Leap hand objects. The HandObserver extracted the hand posture data from the
Leap and updated an AngleBasedHandModel object while taking the handedness into
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Figure 4.1: Point-based and Angle-based Hand Models (from [SF94]).

14



4 Implementation

Figure 4.2: Used Hand Model showing Joints with DOFs

account.

4.3 Hand Posture Classification

In order to make sure that the participant would hold the hand posture during the user
study, some kind of hand posture classification system had to be implemented. While
there are multiple different methods, that can be used for hand posture classification,
the k-nearest neighbors (k-NN) algorithm has proven to be both suitable for hand
posture classification and comparatively easy to implement [Gar+14].

The k-NN algorithm is a simple machine learning algorithm that can be applied to
a multitude of problems with an n-dimensional feature vector. The basic idea is to
test the membership of an object using training data. The membership of the vector is
determined by the majority of its k nearest neighbors.

In the case of hand posture classification, we have a 21-dimensional feature vector
according to our hand model. The implementation here was based on Nikolas Schnei-
der’s implementation, but was refactored to be more versatile in use. Basically the
k-NN implementation has two main objectives:

1. Data Collection

15



4 Implementation

2. Actual Posture Classification

For data collection, a set of training data consisting of feature vectors with their
classification has to be obtained. This was implemented by the PostureDataHandler
class. The PostureDataHandler takes care of the training data, implemented as a list
of TrainingUnit objects and provides functions to add and delete TrainingUnits. A
TrainingUnit consists of a AngleBasedHandModel object that is classified with a Posture
enumerator. To achieve data persistence, the PostureDataHandler saves the data to the
hard drive after every modification and automatically loads it when instantiated.

A TrainingManager scene (Figure 4.3) was created that allows the user to manipulate
the training data using a GUI. The user can inspect TrainingUnits, that are visualized
with a OutputHand built from Unity primitives. The TrainingUnits are grouped by
Posture and can be deleted individually or as group. In order to add TrainingUnits
the user has to choose the desired Posture, form the hand posture over the Leap and
press a button.

Figure 4.3: Inspecting a pointing TrainingUnit in the TrainingManager.

The actual posture classification classifies a hand posture based on the k nearest
neighbors. For that, the distances of the hand posture to all training units has to be
computed and the k closest have to be selected. In this case, k is set as the square root
of the total training data size.

In the implementation this is handled by the ThreadedKNN class. As the name suggest,
the classification is done in parallel to the main program using threads. Each frame
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the ThreadedKNN starts a new thread which receives the AngleBasedHandModel that
needs to be classified. The thread receives a list of PoseCompareObjects from the
PostureDataHandler containing the Euclidian distance of every TrainingUnit to the
AngleBasedHandModel and its classifying Posture. The thread then sorts the list by
distance and counts the occurrences of the different Postures among the k nearest
PoseCompareObjects. The AngleBasedHandModel is then classified as the most frequent
Posture and the result is written back to the ThreadedKNN object.

In the context it was used, the k-NN implementation could differentiate between 10
postures with 50 recorded training samples each. The hand posture classification was
performed on two hands robustly in real time without noticeable performance impact
or lag.

4.4 Hand Posture Metrics

Now that we have a representation for hand postures, the metric can be implemented.
For that a Comfort and a Discomfort class were created. Both contain functions for
computing the total metric value, the metric components for the whole hand and for
the single fingers as well as functions for outputting the finger values to a .CSV file.

4.4.1 Comfort

The only component that is computed in Comfort, is the distance to the RRP. The-
oretically every DOF in the hand has an own RRP that can be determined through
experiments as done by Apostolico et al. [Apo+14]. However this turns out to be a
costly and lengthy process which had exceeded the focus of this thesis. Therefore some
simplifications had to be made:

1. The RRP will not be determined for every RRP separately but the whole hand
simultaneously.

2. The RRP will not be defined as a continuous range but as a discrete set of samples.

In conclusion of this, the RRP would be defined as a set of relaxed hand postures
(Figure 3.1). To implement this, the 50 samples of the "idle" Posture stored in the
PostureDataHandler are used to define the hand’s RRP. A correct implementation of
the distance to the RRP would have been to compute the 21-dimensional bounding
volume of the RRP, test a hand posture for collision with the volume and calculate
the minimum distance to the volume. Again as a simplification, only the minimum
Euclidean distance to any sample of the RRP set are computed. Strictly seen, a hand
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posture within the RRP could have a RRP value 6= 0, but early tests showed the error
to be negligibly small. The result was two functions, one that calculated the minimum
distance to the RRP for the whole hand, one that calculated it for every single finger
individually.

4.4.2 Discomfort

In Discomfort, the three discomfort components were computed: inter finger angles,
hyperextension and abduction.

For the whole-hand computation of inter finger angles, initially only the absolute
flexing differences between the fingers were added up. However, it showed early that
the anatomical differences between the individual fingers influence the inter finger
angle discomfort so severely, that they already have to be compensated in the naive
metric. Most of all, the ring finger showed to be incapable of having large flexion
differences to its adjacent neighbors. However this only stands out when the ring finger
has to stick out between its neighbors, not when it is between them. Therefore a ring
finger bonus was added, that was computed as follows:

Mathf.Abs((fingers[middle].getTotalFlexion() -
fingers[ring].getTotalFlexion() ) -

(fingers[ring].getTotalFlexion() - fingers[pinky].getTotalFlexion()));

This way, the ring bonus only occurs, when the ring finger sticks out between its
neighbors. The ring bonus is multiplied with a weighting coefficient, which was
estimated to be 1.3.

For computing the single-finger values, index and pinky receive the angle differences
to their only neighbors while the middle and ring finger values are computed similarly
to the ring bonus.

The computation of the hyperextension is more straight forward. Hyper-extended
fingers due to the nature of our hand model have negative extension angles in the MCP.
Consequently, the single finger hyper extension values are the absolute extension angle
of the MCP if the finger is hyper-extended otherwise 0.

Due to the angle-based hand model, computing the single finger abduction compo-
nent comes down to calculating the absolute of the fingers MCP abduction angle.

For both hyperextension and finger abduction the whole hand metric value is simply
the sum of the single finger values.

To get the total naive discomfort value, the 3 whole hand values are weighted with
their importance coefficients and afterwards added up.
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4.5 Random Hand Generator

One potential weak spot, when comparing and examining hand postures, is the process
of choosing the hand postures to compare. In the context of this thesis, as many diverse
hand postures as possible had to be compared in order to get a universally valid picture.
To solve this, one possible approach is to randomly generate hand postures. For this,
a RandomHandGenerator was created. The class provides a function that returns a ran-
dom AngleBasedHandModel. Internally the function again chooses from 4 different ran-
dom hand generators randomly. The different functions are: createRandomRandom(),
createRandomFromSaved(), createRandomFromSavedMorph(), createRandomProcedural().

The createRandomRandom() function was the first method to be created. It uses
maximum and minimum joint angle values, defining the Range of Motion (ROM)
[Apo+14]. For each individual finger an individual flexion and abduction within the
predefined ROM is computed.

In the createRandomFromSaved() a hand posture is composed by randomly picking
finger postures from the training data. For every finger a random TrainingUnit is
picked from the PostureDataHandler and that specific finger is taken over by the new
random hand. This way, many interesting hand posture combinations can be created
out of the 10 different training data postures.
createRandomFromSavedMorph() also works using the training data. For the creation

of a random hand, two random TrainingUnits are again picked. The resulting hand is
created, by interpolating the two hand postures with the weight varying between the
fingers.

Finally the createRandomProcedural() contains a set of predefined finger states,
similar as described in the paper of Su et al. [SF94]. For the thumb the states Under,
Downward, Aligned and Sideways are defined, the remaining fingers have the possible
states HyperExtended, Flat, Fist and ForwardFist. Each of the hand’s fingers is
randomly assigned one state and a random global abduction value is generated,
defining the total fanning of the fingers, before assembling the actual hand posture
from predefined finger configurations corresponding to the finger states.

To guarantee a homogenous distribution of comfort and discomfort among the ran-
domly generated hand postures, a random range of possible naive comfort/discomfort
metric values for the hand posture is defined beforehand. The random hand generation
process is repeated until the calculated naive metric value of the hand posture lies
within the specified range.

19



4 Implementation

Figure 4.4: The Hand Posture Comfort Evaluation Scene.

4.6 User Study Tests

For investigating the main questions of the thesis, a test environment had to be created.
In order to verify and to improve the metric, the idea was to let participants rate
different hand postures and compare the ratings with the computed metric values.
Additionally, the objective was to show the impact of comfort and discomfort on
precision and performance in different tasks, for that a target shooting test and a line
tracing test were implemented. The user study was designed for a seated participant
in front of a desk, with the elbow of the dominant hand resting on the edge. For
interaction a controller and a monitor were placed on the desk. Additionally, a Leap
Motion controller was attached to the desk.

4.6.1 Hand Posture Evaluation

For the hand posture evaluation, a UserStudyComfortEvaluation scene was created
(Figure 4.4). To begin the test, a random hand posture is generated and visualized using
the OutputHand known from the TrainingManager scene. Afterwards the participant
has to imitate the hand posture and rate the hand posture on an intuitive comfort/dis-
comfort scale ranging from 0 (extremely uncomfortable) to 10 (extremely comfortable).
If the participant is unable to mimic the hand posture due to its complexity, the posture
was supposed to be rated with a 0. After confirming his or her choice, the results
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are logged to a .CSV file. For that, the naive and improved metric components are
computed and logged together with the participants rating and name. In addition the
whole randomly generated hand is logged, in order to be able to do further calculations
later on if necessary.

Before the first hand posture evaluation, the participant is shown two different
randomly generated hand postures, to get a reference on what to expect in terms of
comfort and discomfort. The first hand posture is supposed to be a relaxed one that
could be rated with a 10, therefore with a metric value close to 0. The second hand
posture should represent an extremely uncomfortable hand posture resulting in a 0
rating, therefore the metric value should be as high as possible.

4.6.2 Precision and Performance Tests

Before the target shooting and the line tracing test, the participant is again shown a
randomly generated hand posture, that is meant to be tested. Again the user has to
mimic the hand posture with the dominant hand and again the user has to rate the
hand. After rating, the subject has to hold his hand over the Leap while holding the
posture. In order to track the hand posture during the tests, the hand posture has to be
learned by the k-NN. For that the Leap records 50 samples of the hand and the hand
posture data is saved as TrainingUnits by the PostureDataHandler.

After that the actual tests starts. If the participants brake the hand posture they are
kindly asked to correct it. During both tests the participants are shown a visualization
of the given hand posture in the bottom right corner as a reminder. They have to
perform different tasks using their dominant hand while maintaining the hand posture.
For that, the subjects are shown a minimalistic representation of their hand position
that was recorded with the Leap. In favor of comparability, the pointing direction is
universally set independent of the hand posture as the forward direction of the hand
base and is visualized with a laser beam (Figure 4.5 and 4.6).

4.6.3 Target Shooting Test

The target shooting test was chosen to test the performance impact in context of
quick punctual pointing. This specific test was chosen due to its similarity to real
world tasks, such as giving a robot quick spatial commands or commanding units
to perform some action somewhere in space in a RTS game. To implement this, the
UserStudyTargetShooting scene was created (Figure 4.5).

The scene features a total of 18 targets which appear individually in a random order.
The participant then has to aim down the individual targets with their hand and shoot
them with the press of a button. Once a target is hit, the distance of the hit to the

21



4 Implementation

Figure 4.5: The Target Shooting Test.

target’s center is computed as a metric for accuracy. The accuracy value, the time to hit
as well as the different metric components and the whole hand are then logged in a
.CSV file.

When the participants brake the hand posture, shooting is locked, until the hand
posture is corrected.

4.6.4 Line Tracing Test

The line tracing test was chosen due to its similarity to real world tasks such as
drawing a route to be traversed by a robot or patrolled by units in a RTS. For this, the
UserStudyLineTracing scene was created (Figure 4.6).

In the test, the participant is shown a blue curve on a drawing plane, that has to be
traced. For that the user has to use the ray to draw his own line on the drawing plane
as close to the given curve as possible by holding a controller button. If the participant
brakes the hand posture, drawing is interrupted; if the user releases the drawing button,
the test is ended after a certain timeout. After the test is completed, the total accuracy
is calculated and is logged together with the total task completion time, hand posture
metric values and the whole hand in a .CSV file.

The curves were implemented as discrete sets of LinePoints that are connected to
their neighbors with line segments. In order to get a smooth curve, 12 random points
are generated on the drawing plane and a bezier curve is fitted through them. The
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Figure 4.6: The Line Tracing Test.

bezier curve is then discretized in 75 LinePoints. For drawing the line, a LinePoint is
set at the starting point and a second is moved with the ray on the drawing plane. As
soon as the second LinePoint moves too far away from the previous LinePoint, it is
fixed to its position and a new LinePoint is added in and moved further instead.

The accuracy can be determined by calculating the average minimum distance of
every drawn LinePoint to the given curve defined by its LinePoints. The same is done
the other way around and added up to the total line accuracy value.

4.6.5 The User Study Management

In order to automate the user study process, a UserStudyDevScreen scene was added
in (Figure 4.7). The scene shows a GUI, that can be used to configure a whole user
study for one participant. The experimenter can set the name of the participant,
his handedness and choose a Pose to be overwritten by the users hand recordings.
Furthermore, it can be selected which of the three user study test have to be performed
and how often these will be repeated for different hand postures.

After confirming the setting, the user study will start with the desired number of
hand posture evaluations and automatically switch to the precision and performance
tests. After finishing the complete user study, the participant is shown an ending screen,
thanking him for participating in the study and giving him the opportunity to play
around with the standard Leap hand visualization.
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Figure 4.7: The User Study DevScreen.

4.7 Stumbling Blocks

During implementation, a variety of unexpected problems occurred and different
concepts turned out mot to work in this context as expected. The following section
describes different stumbling blocks that can commonly be found in similar contexts or
were severe threats to the project.

4.7.1 Serialization and Normalization of Vector3 and Quaternions

Since a BinaryFormatter is used for saving and loading the training data in the
PostureDataHandler, all saved objects have to be serializable. For this TrainingUnit
has to be serializable, consequently a AngleBasedHandModel and a AngleBasedFinger-
and -ThumbModel have to be serializable too. As floats and Enums are both serializable,
the only problems were Vector3 and Quaternion, the standard Unity classes, that for
some reason are not serializable. The only solution for this was to create a custom
struct for vectors and quaternions.

Thus, the sVector3 and sQuaternions were created. Both structs basically imple-
ment their unserializable counterparts. In both cases operators were defined to enable
implicit typecasting to the unserializable form and back. For logging, both structs
also received additional functions for printing and parsing into .CSV files.

When extracting the MCP and TMC angles (Figure 3.2) of the fingers, it is necessary
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to compute the relative rotations of the finger joints compared to their parents. The first
idea was to use the different functions of the Unity Transform class, but it turned out
that this class is unable to be instantiated without being a component of a game object.
Therefore direct quaternion multiplication was used, as defined in the standard Unity
class. After a while it became clear that the standard quaternion multiplication would
not automatically normalize the result, which caused several bugs when trying to do
further computations with the Quaternions. Obviously the standard unity functions
do not check if a Quaternion is normalized before doing further computations.

The bug was even harder to track, as it could not be visualized due to the Transform
class automatically normalizing a Quaternion when applied to it as rotation.

As a consequence of this, the sQuaternion also received a function for normalization
and length computation, as the standard Quaternion class implements neither.

Finally, creating a ambidextrous hand posture classification environment required
to be able to transform a left handed hand posture to a right handed one and vice
versa. Thus, functions for mirroring sQuaternions around different axes had to be
implemented as Quaternion did not provide any.

4.7.2 Leap Tracking

The Leap Motion Orion SDK was a big step forward for the tracking of the Leap. It
enables tracking of awkward postures such as pinching, that were not possible to track
before, it improves the finger pose estimation for occluded fingers and overall massively
improves the range and robustness at different lighting conditions. However, due to
its intended field of use, the Leap tracking is focused on quick and fluent hand and
finger tracking, that provides the precision needed to create a reasonable visual parity.
However, for contexts that require high precision, the Leap struggles to deliver usable
data.

While this characteristic of the Leap was no problem for the hand posture classifica-
tion, it lead to unacceptable impact for pointing, especially for unconventional hand
postures. Using the ray to aim down targets or to trace a line magnified the inaccuracies
of the hand tracking, resulting in accuracy loss in the user studies. Because the tracking
inaccuracies exceeded the expected accuracy loss by hand postures, an alternative hand
tracking solution had to be found.

For precise hand tracking an optical outside-in solution was used, the ART system.
Using four cameras, the system can detect a marker attached to the back of the user’s
hand (as seen in Figure 5.1). By attaching a marker to the user study desk, the ART
hand position could be calibrated to the same coordinate system as used by the Leap.
The tracking data of the ART was implemented to only be used for hand rotation and
position in the target shooting and line tracing task. When ART tracking fails for some
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reason, the system automatically switches back to the legacy Leap hand tracking.
The result was a much higher tracking precision that allows meaningful user accuracy

observation.
However the need for the user to wear a hand tracker yielded yet another problem.

The tracker’s black rubber strap, wrapped around the user’s hand was visible for the
Leap. In some cases this inferred with the hand detection, causing the Leap to detect a
small closed fist in the lower half of the hand. However, this problem could be solved
by occluding the strap with something with a similar IR signature as skin. For the user
study this was realized by wrapping a paper towel around the strap.

4.7.3 Hand Posture Detection

The hand posture detection as implemented by the k-NN algorithm was supposed
to differentiate between a relatively small set of predefined hand postures. Through
the addition of the random hand generator, samples of random hand postures were
added with a "custom" Posture to the training data set. Problems occurred, when the
randomly generated posture was similar or identical to a predefined hand posture by
coincidence. This caused problems in the user studies, when the predefined posture
was detected instead of the custom one and the user was notified to correct his hand
posture even though he had the right hand posture.

As a consequence, the misuse of the k-NN was ended. Instead only the minimum Eu-
clidean distance to the "custom" TrainingUnits is computed, similar as it is computed
for the RRP component. If the minimum distance is smaller than a certain threshold,
the hand is considered to hold the hand posture.
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5 User Studies

A total of two user studies were conducted. The user studies were held in the GamesLab
on TUM Campus Garching. The participants were compensated with beverages and/or
sweets. Beforehand the participants were informed about the aim of the study as well
as their specific objectives.

Figure 5.1: A Participant performing the Target Shooting Test.

5.1 Pilot User Study

The first user study had 12 participants, aged between 19 and 40 consisting of 2 women
and 10 men. None of the subjects were closely familiar with the research topic. The
participants were scheduled individually for 30 minute slots, the average user study
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took 20 minutes. The study was performed in line with similar previous studies
[Kat+13; Kat+15; Ohn+12; Kat+12]. The participants had to carry out 5 hand posture
comfort evaluations and 4 rounds of target shooting and line tracing as described above.

For target shooting and line tracing the participants were told to maintain a balance
between speed and accuracy. The idea behind this was to measure performance and
precision in the form of total task time and average target accuracy.

5.2 Early Analysis and its Consequences

Early analysis of the resulting data revealed, that computed naive metric values did
actually seem to correlate with the user ratings for the hand posture evaluation task.
However, when comparing the computed metric values or the user ratings to precision
or time taken in the target shooting and line tracing task, only noise was visible. For this
we suspected to have following reason: Already during the user study it was noticeable
that different people had different understandings of "a balance between accuracy and
speed". Thus, some people were taking their time to aim at the exact center of the
target while others just did everything as quickly as possible. In addition to that, the
amount of data collected was nowhere near to be able to create the improved metric.

Hence, some modifications to the test environment had to be made. In order to work
off more participants, the time slots were reduced to 20 minutes. The target shooting
test was modified, the number of targets was reduced from 18 to 12. In order to solve
the "accuracy-time" problem, the targets were made smaller so that they are harder
to hit and the participants were told to only focus on speed. The idea behind this is
that the smaller target size will affect the accuracy needed to hit them as described
by Short et al. [SC99]. Hence, if a hand posture influences the accuracy in a pointing
task, the participant will take longer to aim at the target. This way, both performance
and precision are represented by the total task time. For the line tracing task, no such
optimization was possible. Since participants had struggled with this task to begin
with, it was simply discarded. In order to collect enough data for the improvement of
the metric, the number of hand posture evaluations was increased from 5 to 15.

5.3 Second User Study

15 people participated in the second user study, thereof 5 women and 10 men aged
between 19 and 25. Again, none of the subjects were closely familiar with the research
topic. Due to the ART hand tracker breaking down during the 9th user study, only 35
samples of the target shooting test could be collected. To fill the resulting time gap, the
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remaining participants were asked to do 20 hand posture comfort evaluations instead.
In total 250 data sets for hand posture evaluation were collected.
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6 Results and Discussion

When testing the naive metric against the test data, obtained from the hand posture
evaluation of the pilot study, it can be seen that the computed metric values do correlate
with the user rating. Figure 6.1 shows an R plot of the data. The dots represent
the individual hand posture ratings and the line shows the smoothed conditional
mean, calculated by the geom_smooth function. The computed Pearson correlation of
-0.6651999 confirms this and the p-value of 6.73e-9 shows that the correlation is highly
significant (taking 0.01 as a threshold for p-value significance).
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Figure 6.1: Naive Metric and User Rating in Test Data.

For improving the metric, finding the best fitting 17 weighting coefficients can be
reduced to a curve fitting problem with 17 unknowns. Therefore, we used the least
squares algorithm on the first 250 data sets from the second user study to fit the
comfort/discomfort metric values to the user ratings. This was done with the lsfit
function in R. Afterwards, we tested our results against the remaining 60 data sets
from the pilot study to validate them. For this, we decided to combine comfort and
discomfort, as we suspected both comfort and discomfort to affect performance.

30



6 Results and Discussion

Table 6.1: Weighting Coefficients of different Metric Components
Thumb Index Middle Ring Pinky

RRP 0.631 -1.837 1.176 -3.021 1.288
IFA - 0.547 0.216 1.670 -0.864
HE - -1.637 -2.685 10.401 -1.837
FA - -0.864 -3.857 0.0388 2.517

The computed coefficients can be taken from Table 6.1. When looking at the values,
following points can be observed:

1. The values are very noisy, this probably is due to the small number of participants
and data samples.

2. The inter finger angle component seems to be the most important one, as the IFA
coefficients are the least noisy.

3. For most hand postures, abduction and hyperextension are widely ignored by
users. Therefore their coefficients are highly noisy.
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Figure 6.2: Improved Metric and User Rating in Training Data.

Unsurprisingly, there was a correlation in the training data between the user rating
and our improved metric, generated using this very data (Figure 6.2). Despite its high

31



6 Results and Discussion

significance due to a p-value of < 2.2e-16, the correlation found was still not perfect,
having a value of -0.6453242. For this, we suspect multiple reasons:

• The participants most likely had differences in anatomy and mindset, which
caused them to subjectively rate comparable postures differently.

• There was little time for subjects to give their rating. Therefore, long time
discomfort symptoms, like pain or cramping, might not have been experienced.

• The subjects could only rate the hands of continuous comfort/discomfort on a
scale with 11 discrete steps, which potentially introduced some additional error.
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Figure 6.3: Improved Metric and User Rating in Test Data.

Even though the improved metric was created using a limited set of training data,
it yielded an even better significant correlation of -0.748993 when applied to the test
data (Figure 6.3, p-value: 5.89e-12). This indicates that the improved metric is a good
extrapolation of the training data. Compared to the naive metric (Figure 6.1), there
is only minor difference on first sight. However, the improved metric reduced the
variance in the data, resulting in a better correlation and p-value.

The results from the target shooting task (Figure 6.4) show a significant correlation
of -0.66519 (p-value: 6.73e-9) that indicates that comfort and discomfort, as measured
by our metric, do affect the performance and precision in context of hand postures.
This strengthens the conclusion of Short et al. [SC99] that more comfortable postures
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Figure 6.4: Improved Metric Value and Total Task Time in Target Shooting.

generally create greater accuracy. However, the credibility of our results is limited
by the relatively small number of participants. Thus, further work is required before
strong conclusions can be made.
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7 Conclusion and Future Work

The main goal of this thesis was to create a metric for quick and objective evaluation of
hand posture comfort and discomfort. Furthermore, the metric’s relevance for design
of hand postures should be demonstrated by proving its influence on precision and
performance in a 3D pointing task. For the creation of the metrics known influences
on comfort and discomfort were combined with newly created components based on
state-of-the-art comfort and discomfort models applied to the special context of the
hand. Furthermore, data from a user study was used to improve the metrics. Results
from the testing user study suggest the improved metric to be a valid extrapolation of
the training data. Therefore, the improved metric can be used to predict user perceived
comfort and discomfort of a certain hand posture.

However, the improved metric is far from perfect. Due to the small number of
participants used for the creation, the computed formula is noisy and has some room
for improvement. In addition, comfort and discomfort causing factors were not strictly
separated during the creation of the metric. These might have different short- and
long-term effects on precision and performance.

However, the created metric served the purpose of indicating the existence of a
correlation between comfort/discomfort and precision/performance, as it was found in
the target shooting test results. This correlation was already indicated for other contexts
in other papers.

Even though the results of this paper only apply to hand posture comfort/discomfort,
the process of creating and testing a comfort/discomfort metric and its influence on
performance/precision, as shown in this paper, can be transferred to other parts of the
body. In addition to the primary search results, a bunch of byproducts were created
during the implementation. Thus, a flexible environment for hand tracking and hand
posture classification based on a k-NN algorithm was created that can be used with
the Leap or other finger tracking devices to create for example a game using free hand
postural user interaction.

Although the results of this thesis give a big first hint about the importance of
comfort and discomfort considerations for hand postures, more work has to be done to
get a solid model and metric for hand posture comfort and discomfort. For this the
models for hand posture comfort and discomfort have to be refined, new influencing
factors have to be determined and the computation of the existing components should
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be optimized. When creating the metric, either comfort and discomfort components
should be strictly separated or a metric should be created that preeminently focuses
on the performance influences of different hand postures. Another important next
step would be to differentiate between short-term and long-term effects of comfort
and discomfort in order to enable specific selection of hand postures for different user
contexts.
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