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Abstract

After almost 60 years of attempts to implement natural language
competence on machines, there is still no automatic language pro-
cessing system that comes even close to human language perfor-
mance.

The fields of Computational Linguistics and Natural Language
Processing predominantly sought to teach the machine a variety of
subtasks of language understanding either by explicitly stating pro-
cessing rules or by providing annotations the machine should learn
to reproduce. In contrast to this, human language acquisition largely
happens in an unsupervised way – the mere exposure to numerous
language samples triggers acquisition processes that learn the gen-
eralisation and abstraction needed for understanding and speaking
that language.

Exactly this strategy is pursued in this work: rather than telling
machines how to process language, one instructs them how to dis-
cover structural regularities in text corpora. Shifting the workload
from specifying rule-based systems or manually annotating text to
creating processes that employ and utilise structure in language, one
builds an inventory of mechanisms that – once being verified on a
number of datasets and applications – are universal in a way that
allows their execution on unseen data with similar structure. This
enormous alleviation of what is called the "acquisition bottleneck of
language processing" gives rise to a unified treatment of language
data and provides accelerated access to this part of our cultural mem-
ory.

Now that computing power and storage capacities have reached
a sufficient level for this undertaking, we for the first time find our-
selves able to leave the bulk of the work to machines and to overcome
data sparseness by simply processing larger data.

In Chapter 1, the Structure Discovery paradigm for Natural Lan-
guage Processing is introduced. This is a framework for learning
structural regularities from large samples of text data, and for mak-
ing these regularities explicit by introducing them in the data via
self-annotation. In contrast to the predominant paradigms, Structure
Discovery involves neither language-specific knowledge nor super-
vision and is therefore independent of language, domain and data
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representation. Working in this paradigm rather means to set up dis-
covery procedures that operate on raw language material and itera-
tively enrich the data by using the annotations of previously applied
Structure Discovery processes. Structure Discovery is motivated and
justified by discussing this paradigm along Chomsky’s levels of ad-
equacy for linguistic theories. Further, the vision of the complete
Structure Discovery Machine is sketched: A series of processes that
allow analysing language data by proceeding from the generic to the
specific. At this, abstractions of previous processes are used to dis-
cover and annotate even higher abstractions. Aiming solely to iden-
tify structure, the effectiveness of these processes is judged by their
utility for other processes that access their annotations and by mea-
suring their contribution in application-based settings.

Since graphs are used as a natural and intuitive representation for
language data in this work, Chapter 2 provides basic definitions of
graph theory. As graphs built from natural language data often ex-
hibit scale-free degree distributions and the Small World property,
a number of random graph models that also produce these charac-
teristics are reviewed and contrasted along global properties of their
generated graphs. These include power-law exponents approximat-
ing the degree distributions, average shortest path length, clustering
coefficient and transitivity.

When defining discovery procedures for language data, it is cru-
cial to be aware of quantitative language universals. In Chapter
3, Zipf’s law and other quantitative distributions following power-
laws are measured for text corpora of different languages. The notion
of word co-occurrence leads to co-occurrence graphs, which belong
to the class of scale-free Small World networks. The examination
of their characteristics and their comparison to the random graph
models as discussed in Chapter 2 reveals that none of the existing
models can produce graphs with degree distributions found in word
co-occurrence networks.

For this, a generative model is needed, which accounts for the
property of language being among other things a time-linear se-
quence of symbols. Since previous random text models fail to explain
a number of characteristics and distributions of natural language, a
new random text model is developed, which introduces the notion
of sentences in random text and generates sequences of words with
a higher probability, the more often they have been generated before.
A comparison with natural language text reveals that this model suc-
cessfully explains a number of distributions and local word order re-
strictions in a fully emergent way. Also, the co-occurrence graphs of
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its random corpora comply with the characteristics of their natural
language counterparts. Due to its simplicity, it provides a plausible
explanation for the origin of these language universals without as-
suming any notion of syntax or semantics.

For discovering structure in an unsupervised way, language items
have to be related via similarity measures. Clustering methods serve
as a means to group them into clusters, which realises abstraction
and generalisation. Chapter 4 reviews clustering in general and
graph clustering in particular. A new algorithm, Chinese Whispers
graph partitioning, is described and evaluated in detail. At cost
of being non-deterministic and formally not converging, this ran-
domised and parameter-free algorithm is very efficient and espe-
cially suited for Small World graphs. This allows its application to
graphs of several million vertices and edges, which is intractable for
most other graph clustering algorithms. Chinese Whispers is param-
eter free and finds the number of parts on its own, making brittle tun-
ing obsolete. Modifications for quasi-determinism and possibilities
for obtaining a hierarchical clustering instead of a flat partition are
discussed and exemplified. Throughout this work, Chinese Whis-
pers is used to solve a number of language processing tasks.

Chapter 5 constitutes the practical part of this work: Structure Dis-
covery processes for Natural Language Processing using graph rep-
resentations.

First, a solution for sorting apart multilingual corpora into mono-
lingual parts is presented, involving the partitioning of a multilin-
gual word co-occurrence graph. The method has shown to be robust
against a skewed distribution of the sizes of monolingual parts and
is able to distinguish between all but the most similar language pairs.
Performance levels comparable to trained language identification are
obtained without providing training material or a preset number of
involved languages.

Next, an unsupervised part-of-speech tagger is constructed, which
induces word classes from a text corpus and uses these categories
to assign word classes to all tokens in the text. In contrast to previ-
ous attempts, the method introduced here is capable of building sig-
nificantly larger lexicons, which results in higher text coverage and
therefore more consistent tagging. The tagger is evaluated against
manually tagged corpora and tested in an application-based way.
Results of these experiments suggest that the benefit of using this
unsupervised tagger or a traditional supervised tagger is equal for
most applications, rendering unnecessary the tremendous annota-
tion efforts for creating a tagger for a new language or domain.
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A Structure Discovery process for word sense induction and dis-
ambiguation is briefly discussed and illustrated.

The conclusion in Chapter 6 is summarised as follows: Unsuper-
vised and knowledge-free Natural Language Processing in the Struc-
ture Discovery paradigm has shown to be successful and capable of
producing a processing quality equal to systems that are built in a
traditional way, if just sufficient raw text can be provided for the tar-
get language or domain. It is therefore not only a viable alternative
for languages with scarce annotated resources, but might also over-
come the acquisition bottleneck of language processing for new tasks
and applications.
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1 Introduction

"Linguistics accordingly works continuously with con-
cepts forged by grammarians without knowing whether
or not the concepts actually correspond to the constituents
of the system of language. But how can we find out? And
if they are phantoms, what realities can we place in oppo-
sition to them?" (de Saussure, 1966, p. 110)

In the past, Natural Language Processing (NLP) has always been
based on the explicit or implicit use of linguistic knowledge. Ex-
plicit rule based approaches prevail in classical linguistic applica-
tions, while machine learning algorithms use implicit knowledge for
generating linguistic annotations.

The question behind this work is: how far can we go in NLP with-
out assuming any linguistic knowledge? How much effort in annota-
tion and resource building is needed for what level of sophistication
in natural language analysis?

1.1 Structure Discovery for Language Processing

Working in what I call the Structure Discovery (SD) paradigm, the
claim being made here is that the knowledge needed can largely be
acquired by knowledge-free and unsupervised methods. By employ-
ing knowledge about language universals (cf. Chapter 3) it is possi-
ble to construct Structure Discovery processes, which operate on a
raw text corpus1 in iterative fashion to unveil structural regularities
in the text and to make them explicit in a way that further SD pro-
cesses can build upon it.

A frequent criticism on work dealing with unsupervised methods
in NLP is the question: "Why not take linguistic knowledge into ac-
count?" The simple answer to this is that for many languages and
applications, the appropriate linguistic knowledge just is not avail-
able. While annotated corpora, classification examples, sets of rules
and lexical semantic word nets of high coverage exist for English,

1the terms text, text data, corpus, text corpus, language and language data are used inter-
changeably throughout this work
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this does not reflect the situation for most of even the major world
languages. Further, handmade and generic resources often do not fit
the application domain, whereas resources created from and for the
target data inherently do not suffer from these discrepancies.

Structure in this context is any kind of automatically acquired an-
notation that relates elements of language along arbitrary kinds of
similarity. It is not restricted to a single language level, but encom-
passes labels with the scope of e.g. sentences, clauses, words or sub-
strings. Since the processes that discover and mark structural reg-
ularities are not allowed to choose from a predefined inventory of
labels, the names of the labels are meaningless and receive their in-
terpretation merely through the elements marked by them.

Unlike other works that proceed by teaching the machine directly
how to solve certain tasks – be it by providing explicit rules or implic-
itly by training the machine on handcrafted examples – the topic of
this work is the unsupervised, knowledge-free acquisition of struc-
tural regularities in language. Unsupervised means that no labelled
training material is provided as input. The machine is exposed to
language only, without being told what its output should look like.
Knowledge-free means that no knowledge about the specific lan-
guage, such as e.g. word order constraints or a list of personal pro-
nouns, is given to the system. The work of a Structural Discovery
engineer is rather to provide a suitable collection of natural language
data and to set up procedures that make use of it.

All knowledge about how to conduct this augmentation of struc-
ture is encoded procedurally in methods and algorithms. This keeps
the paradigm entirely language independent and applicable without
further effort to all human languages and sub-languages for which
data is available. Given the fact that several thousand human lan-
guages are spoken in the world and the ongoing specialisation in
science, production and culture, which is reflected in the respective
sub-languages or domains, this paradigm provides a cheaper, if not
the only way of efficiently dealing with this variety.

Shifting the workload from creating rich resources manually to
developing generic, automatic methods, a one-size-fits-all solution
needing only minimal adaptation to new domains and other lan-
guages comes into reach.

In the remainder of this section, the paradigms followed by the
fields of Computational Linguistics (CL) and Natural Language
Processing (NLP) are shortly contrasted after laying out the SD
paradigm in more detail. Further, the benefits and drawbacks
of knowledge-free as opposed to knowledge-intensive approaches,
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Text Data

SD algorithm

Find regularities by analysis

Annotate data with regularities
SD algorithm

SD algorithm
SD algorithms

Figure 1.1: Iterative methodology of the Structure Discovery paradigm: SD
algorithms find and annotate regularities in text data, which can
serve as input for further SD algorithms

as well as degrees of supervision are elaborated on and the SD
paradigm is compared to other paradigms.

1.1.1 Structure Discovery Paradigm

The Structure Discovery (SD) paradigm is the research line of algo-
rithmic descriptions that find and employ structural regularities in
natural language data. The goal of SD is to enable machines to grasp
regularities, which are manifold and necessary in data used for com-
munication, politics, entertainment, science and philosophy, purely
from applying operationalised procedures on data samples. Struc-
tural regularities, once discovered and marked as such in the data,
allow an abstraction process by subsuming structural similarities of
basic elements. These complex bricks constitute the building block
material for meta-regularities, which may themselves be subject of
further exploration.

The iterative methodology of the SD paradigm is laid out in Figure
1.1. It must be stressed that working in the SD paradigm means to
proceed in two directions: using the raw data for arriving at gener-
alisations and using these generalisations to structurally enrich the
data. While the first direction is conducted by all clustering ap-
proaches, the second direction of feeding the results back into the
data to perform self-annotation is only rarely encountered.

Unlike other schools that provide knowledge of some sort to re-
alise language processing, a system following the SD paradigm must
arrive at an adequate enrichment of language data with the instances
of the discovered structures, realising self-annotation of the data, as
merely the data in its raw form determines the kind of structures
found and instances identified thereof.

Solely working on algorithmically discoverable structures means
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to be consequently agnostic to linguistic theories. It is not possible
for machines to create proposals for analysis based on intuition and
introspection. Rather, the grammarian’s knowledge can stimulate
discovery process formulation. The native speaker’s intuition about
particular languages is replaced by a theory-independent intuition
of how to discover structure. While as well created intellectually,
the utility of the new discovery process can immediately be judged
and measured. Further, it is applicable for all data exhibiting similar
structure and thus more general.

1.1.2 Approaches to Automatic Language Processing

The discipline of automatically processing natural language is split
into two well-established subfields that are aimed at slightly differ-
ent goals. Computational Linguistics (CL) is mainly influenced by
linguistic thinking and aims at implementing linguistic theories fol-
lowing a rationalist approach. Focus is set on linguistic problems
rather than on robust and efficient processing. Natural Language
Processing (statistical NLP, in the definition of Manning and Schütze
(1999)), on the other hand, is not linked to any linguistic theory. The
goal of NLP is not understanding of language structure as an end
in itself. Rather, knowledge of language structure is used to build
methods that help in processing language data. The criterion of NLP
is the performance of the system, not the adequacy of the represen-
tation to human language processing, taking a pragmatic but theo-
retically poorly founded view. Regarding current research, the two
fields are not easily separated, as they influence and fertilise each
other, so there is rather a continuum than a sharp cutting edge be-
tween the two.

The history of automatic treatment of natural languages was dom-
inated consecutively by two major paradigms: rule-based and sta-
tistical approaches. Rule-based approaches are in line with the CL
tradition; statistical methods correspond roughly to the NLP view.
Starting with the realm of computers, rule-based approaches tackled
more and more problems of language processing. The leitmotiv was:
given enough time to develop more and more sophisticated rules,
eventually all phenomena of language will be encoded. In order to
operationalise the application of grammar formalisms, large systems
with several thousand grammar rules were built. Since these rules
interact with each other, the process of adding sensible rules gets
slower the more rules are already present, which makes the con-
struction of rule-based systems expensive. What is inherent of the
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top-down, introspection-driven construction of rule-based systems
is that they can only work on the subset of language covered by the
rules. The past showed that the size of this subset remained far from
getting close to full coverage, resulting in only a fraction of sentences
being processable.

Since the advent of large machine-readable text corpora starting
with the Brown Corpus (Francis and Kučera, 1982) and the comput-
ing power necessary to handle them, statistical approaches to lan-
guage processing received increased interest. By basing decisions on
probabilistic models instead of rules, this empiricist approach early
showed to be capable of reaching higher accuracy on language pro-
cessing tasks than the rule-based approach. The manual labour in
statistical methods is shifted from instructing the machines directly
by rules how to process the data to labelling training examples that
provide information on how a system’s output should look like. At
this point, more training means a richer basis for the induction of
probabilistic models, which in turn leads to better performance.

For understanding language from a linguistic point of view and
testing grammar theories, there does not seem to be another way
than the rule-based approach. For building applications, however,
statistical methods proved to be more robust and faster to set up,
which is probably best contrasted for Machine Translation by op-
posing Martin Kay’s essay "Machine Translation: The Disappointing
Past and Present" (Kay, 1997) to Franz Josef Och’s talk "Statistical
Machine Translation: The Fabulous Present and Future" (Och, 2005).

This work is clearly rooted at the NLP end of the line, as
knowledge-free methods by definition do not use theoretic results
achieved by a linguist’s introspection, but go a step further by not
even allowing implicit knowledge to be provided for training.

1.1.3 Knowledge-intensive and Knowledge-free

Another scale, along which it is possible to classify language process-
ing methods, is the distinction between knowledge-intensive and
knowledge-free approaches, see also (Bordag, 2007). Knowledge-
intensive approaches make excessive use of language resources
such as dictionaries, phrase lists, terminological resources, name
gazetteers, lexical-semantic networks such as WordNet (Miller et al.,
1990), thesauri such as Roget’s Thesaurus (Roget, 1852), ontologies
and alike. As these resources are necessarily incomplete (all re-
sources leak), their benefit will cease to exist beyond a certain point
and additional coverage can only be reached by substantial enlarge-
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ment of the resource, which is often too much of a manual effort.
But knowledge-intensiveness is not only restricted to explicit re-

sources: the rules in a rule-based system constitute a considerable
amount of knowledge just as positive and negative examples in ma-
chine learning.

Knowledge-free methods seek to eliminate human effort and in-
tervention. The human effort is not in specifying rules or examples,
but in the method itself, lending the know-how by providing dis-
covery procedures rather than presenting the knowledge itself. This
makes knowledge-free methods more adaptive to other languages
or domains, overcoming the brittleness of knowledge-intensive sys-
tems when exposed to an input substantially different from what
they were originally designed for.

Like above, there rather is a continuum than a sharp border be-
tween the two ends of the scale. Methods that incorporate only little
human intervention are sometimes labelled knowledge-weak, com-
bining the benefits of not having to prepare too much knowledge
with obtaining good results by using available resources.

1.1.4 Degrees of Supervision

Another classification of methods, which is heavily related to the
amount of knowledge, is the distinction between supervised, semi-
supervised, weakly supervised and unsupervised methods.

• In supervised systems, the data as presented to a machine learn-
ing algorithm is fully labelled. That means: all examples are
presented with a classification that the machine is meant to re-
produce. For this, a classifier is learned from the data, the pro-
cess of assigning labels to yet unseen instances is called classifi-
cation.

• In semi-supervised systems, the machine is allowed to addition-
ally take unlabelled data into account. Due to a larger data
basis, semi-supervised systems often outperform their super-
vised counterparts using the same labelled examples (see (Zhu,
2005) for a survey on semi-supervised methods and (Sarkar
and Haffari, 2006) for a summary regarding NLP and semi-
supervision). The reason for this improvement is that more un-
labelled data enables the system to model the inherent structure
of the data more accurately.

• Bootstrapping, also called self-training, is a form of learning
that is designed to use even less training examples, therefore
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sometimes called weakly-supervised. Bootstrapping (see (Bie-
mann, 2006a) for an introduction) starts with a few training ex-
amples, trains a classifier, and uses thought-to-be positive ex-
amples as yielded by this classifier for retraining. As the set of
training examples grows, the classifier improves, provided that
not too many negative examples are misclassified as positive,
which could lead to deterioration of performance.

• Unsupervised systems are not provided any training examples
at all and conduct clustering. This is the division of data in-
stances into several groups, (see (Manning and Schütze, 1999,
Ch. 14) and (Berkhin, 2002) for an overview of clustering
methods in NLP). The results of clustering algorithms are data
driven, hence more ’natural’ and better suited to the underlying
structure of the data. This advantage is also its major drawback:
without a possibility to tell the machine what to do (like in clas-
sification), it is difficult to judge the quality of clustering results
in a conclusive way. But the absence of training example prepa-
ration makes the unsupervised paradigm very appealing.

To elaborate on the differences between knowledge-free and unsu-
pervised methods, consider the example of what is called unsuper-
vised word sense disambiguation (cf. Yarowsky, 1995). Word sense
disambiguation (WSD) is the process of assigning one of many possi-
ble senses to ambiguous words in the text. This can be done supervis-
edly by learning from manually tagged examples. In the terminology
of Senseval-3 (Mihalcea and Edmonds, 2004), an unsupervised WSD
system decides the word senses merely based on overlap scores of
the word’s context and a resource containing word sense definitions,
e.g. a dictionary or WordNet. Such a system is unsupervised, as it
does not require training examples, but knowledge-intensive due to
the provision of the lexicographic resource.

1.1.5 Contrasting Structure Discovery with Previous
Approaches

To contrast the paradigm followed by this work with the two pre-
dominant paradigms of using explicit or implicit knowledge, Table
1.1 summarises their main characteristics.

Various combinations of these paradigms lead to hybrid systems,
e.g. it is possible to construct the rules needed for CL by statistical
methods, or to build a supervised standard NLP system on top of an
unsupervised, knowledge-free system, as conducted in Section 5.2.9.
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Paradigm CL NLP SD
Approach rule-based statistics statistics
Direction top-down bottom-up bottom-up
Knowledge Source manual manual –

resources annotation
Knowledge Intensity knowledge-

intensive
knowledge-
intensive

knowledge-
free

Degree of Supervision unsupervised supervised unsupervised
Corpus required – annotated

text
raw text

Table 1.1: Characteristics of three paradigms for the computational treat-
ment of natural language

As already discussed earlier, semi-supervised learning is located in
between statistical NLP and the SD paradigm.

1.2 Relation to General Linguistics

Since the subject of examination in this work is natural language,
it is inevitable to relate the ideas presented here to linguistics. Al-
though this dissertation neither implements one of the dominating
linguistic theories nor proposes something that would be dubbed
’linguistic theory’ by linguists, it is still worthwhile looking at those
ideas from linguistics that inspired the methodology of unsuper-
vised natural language processing, namely linguistic structuralism
and distributionalism. Further, the framework shall be examined
along desiderata for language processing systems, which were for-
mulated by Noam Chomsky.

Serving merely to outline the connection to linguistic science, this
section does by no means raise a claim for completeness on this issue.
For a more elaborate discussion of linguistic history that paved the
way to the SD paradigm, see (Bordag, 2007).

1.2.1 Linguistic Structuralism and Distributionalism

Now, the core ideas of linguistic structuralism will be sketched and
related to the SD paradigm. Being the father of modern linguistics,
de Saussure (1966) introduced his negative definition of meaning:
the signs of language (think of linguistic elements such as words for
the remainder of this discussion) are solely determined by their re-
lations to other signs, and not given by a (positive) enumeration of
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characterisations, thereby harshly criticising traditional grammari-
ans. This is to say, language signs arrange themselves in a space of
meanings and their value is only differentially determined by the
value of other signs, which are themselves characterised differen-
tially.

De Saussure distinguishes two kinds of relations between signs:
syntagmatic relations that hold between signs in a series in present
(e.g. neighbouring words in a sentence), and associative relations
for words in a "potential mnemonic series" (de Saussure, 1966, p.
123). While syntagmatic relationships can be observed from what de
Saussure calls langage (which corresponds to a text corpus in terms
of this work), all other relationships subsumed under ’associations’
are not directly observable and can be individually different. A fur-
ther important contribution to linguistic structuralism is attributed
to Zelling Harris (1951, 1968), who attempts to discover some of
these associative or paradigmatic relations. His distributional hypothe-
sis states that words of similar meanings can be observed in similar
contexts, or as popularised by J. R. Firth: "You shall know a word
by the company it keeps!" (Firth, 1957, p.179)2. This quote can be
understood as the main theme of distributionalism: determining the
similarity of words by comparing their contexts.

Distributionalism does not look at single occurrences, but rather at
a word’s distribution, i.e. the entirety of contexts (also: global con-
text) it can occur in. The notion of context is merely defined as lan-
guage elements related to the word; its size or structure is arbitrary
and different notions of context yield different kinds of similarities
amongst the words sharing them. The consequences of the study of
Miller and Charles (1991) allow to operationalise this hypothesis and
to define the similarity of two signs as a function over their global
contexts: the more contexts two words have in common, the more
often they can be exchanged, and the more similar they are. This im-
mediately gives rise to discovery procedures that compare linguistic
elements according to their distributions, as e.g. conducted in Chap-
ter 5.

Grouping sets of mutually similar words into clusters realises an
abstraction process, which allows generalisation for both words and
contexts via class-based models (cf. Brown et al., 1992). It is this
mechanism of abstraction and generalisation, based on contextual

2Ironically, Firth did not mean to pave the way to a procedure for statistically finding
similarities and differences between words. He greatly objected to de Saussure’s views
and clearly preferred the study of a restricted language system for building a theory,
rather than using discovery procedures for real, unrestricted data. In his work, the quote
refers to assigning correct meanings to words in habitual collocations.
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clues, that allows the adequate treatment and understanding of pre-
viously unseen words, provided their occurrence in well-known con-
texts.

1.2.2 Adequacy of the Structure Discovery Paradigm

This section aims at providing theoretical justification for bottom-up
discovery procedures as employed in the SD paradigm. This is done
by discussing them along the levels of adequacy for linguistic theo-
ries, set up in (Chomsky, 1964), and examining to what extent this
classification applies to the procedures discussed in this work. For
this, Chomsky’s notions of linguistic theory and grammar have to be
sketched briefly. For Chomsky, a (generative) grammar is a formal
device that can generate the infinite set of grammatical (but no un-
grammatical) sentences of a language. It can be used for deciding
the grammaticality of a given sentence (see also Chomsky, 1957). A
linguistic theory is the theoretical framework, in which a grammar
is specified. Chomsky explicitly states that linguistic theory is only
concerned with grammar rules that are identified by introspection,
and rejects the use of discovery procedures of linguistic regularities
from text corpora, since these are always finite and cannot, in his
view, serve as a substitute for the native speaker’s intuitions.

Having said this, Chomsky provides a hierarchy of three levels of
adequacy to evaluate grammars.

• A grammar with observational adequacy accounts for observa-
tions by exhaustive enumeration. Such "item-and-arrangement
grammars" (Chomsky, 1964, p. 29) can decide whether a given
sentence belongs to the language described by the grammar or
not, but does not provide any insights into linguistic theory and
the nature of language as such.

• A higher level is reached with descriptive adequacy, which is
fulfilled by grammars that explain the observations by rules
that employ "significant generalizations that express underly-
ing regularities of language" (Chomsky, 1964, p. 63).

• Explanatory Adequacy is the highest level a grammar can reach
in this classification. Grammars on this level provide mecha-
nisms to choose the most adequate of competing descriptions,
which are equally adequate on the descriptive level. For this, "it
aims to provide a principled basis, independent of any particu-
lar language" (Chomsky, 1964, p. 63).

10



1.2 Relation to General Linguistics

According to Chomsky, the levels of descriptive and explanatory
adequacy can only be reached by linguistic theories in his sense,
as only theoretic means found by introspection based on the native
speaker’s intuition can perform the necessary abstractions and meta-
abstractions. Criticising exactly this statement is the topic of the re-
mainder of this section.

When restricting oneself to a rule-based description of universal
language structure like Chomsky, there does not seem to be any other
option than proceeding in an introspective, highly subjective and
principally incomplete way: as already Sapir (1921, p. 38) stated: "all
grammars leak", admitting the general defection of grammar theo-
ries to explain the entirety of language phenomena. Especially when
proceeding in a top-down manner, the choice "whether the concept
[an operational criterion] delimits is at all close to the one in which
we are interested" (Chomsky, 1964, p. 57) is subjective and never
guaranteed to mirror linguistic realities. But when abolishing the
constraint on rules and attributing explanatory power to bottom-up
discovery procedures, the levels of adequacy are also applicable to
the framework of SD.

Admitting that operational tests are useful for soothing the sci-
entific conscience about linguistic phenomena, Chomsky errs when
he states that discovery procedures cannot cope with higher levels
of adequacy (Chomsky, 1964, p. 59). By using clustering proce-
dures as e.g. described in (Brown et al., 1992) and in Chapters 4
and 5, abstraction and generalisation processes are realised that em-
ploy the underlying structure of language and thus serve as algo-
rithmic descriptions of language phenomena. Further, these class-
based abstractions allow the correct treatment of previously unob-
served sentences, and a system as described in Section 5.2 would
clearly attribute a higher probability (and therefore acceptability) to
the sentence "colorless green ideas sleep furiously" than to "furiously
sleep ideas green colorless" based on transition probabilities of word
classes (examples taken from (Chomsky, 1964, p. 57)).

Unlike linguistic theories, the systems equipped with these dis-
covery procedures can be evaluated either directly by examination
or indirectly by performance within an application. It is therefore
possible to decide for the most adequate, best performing discov-
ery procedure amongst several available ones. Conducting this for
various languages, it is even possible to identify to what extent dis-
covery procedures are language independent, and thus to arrive at
explanatory power, which is predictive in that sense that explanatory
adequate procedures can be successfully used on previously unseen
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1 Introduction

languages.
The great advantage of discovery procedures is, that once defined

algorithmically, they produce abstractions that are purely based on
the data provided, being more objective and conclusive than rules
found by introspection. While simply not fitting in the framework of
linguistic theories, they are not phantoms but realities of language, so
a complete description of language theory should account for them,
see also (Abney, 1996) on this issue.

In terms of quantity and quality, the goals of linguistic theory and
unsupervised discovery procedures are contrary to one another. Lin-
guistic theory aims at accounting for most types of phenomena irre-
spective of how often these are observed, while application-based
optimisation targets at an adequate treatment of the most frequent
phenomena. Therefore, in applying unsupervised discovery proce-
dures, one must proceed quantitatively, and not qualitatively, which
is conducted in this work at all times.

1.3 Similarity and Homogeneity in Language Data

1.3.1 Levels in Natural Language Processing

Since the very beginning of language studies, it is common ground
that language manifests itself by interplay of various levels. The
classical level hierarchy in linguistics, where levels are often stud-
ied separately, is the distinction of (see e.g. Grewendorf et al., 1987)
the phonological, morphological, syntactic, semantic and pragmatic
level. Since this work is only dealing with digitally available writ-
ten language, levels that have to do with specific aspects of spoken
language like phonology are not considered here. Merely consider-
ing the technical data format for the text resources used here, basic
units and levels of processing in the SD paradigm are (cf. Heyer et al.,
2006):

• character level

• token level

• sentence level

• document level

The character level is concerned with the alphabet of the language.
In case of digitally available text data, the alphabet is defined by the
encoding of the data and consists of all valid characters, such as let-
ters, digits and punctuation characters. The (white)space character
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1.3 Similarity and Homogeneity in Language Data

is a special case, as it is used as delimiter of tokens. Characters as the
units of the character level form words by concatenation. The units
of the token level are tokens, which roughly correspond to words.
Hence, it is not at all trivial what constitutes a token and what does
not. The sentence level considers sentences as units, which are con-
catenations of tokens. Sentences are delimited by sentence separa-
tors, which are given by full stop, question mark and exclamation
mark. Tokenisation and sentence separation are assumed to be given
by a pre-processing step outside of the scope of this work. Tech-
nically, the tools of the Leipzig Corpora Collection (LCC, (Quasthoff
et al., 2006)) were used throughout for tokenisation and sentence sep-
aration.

A clear definition is available for documents, which are complete
texts of whatever content and length, i.e. web pages, books, newspa-
per articles etc.

When starting to implement data-driven acquisition methods for
language data, only these units can be used as input elements for SD
processes, since these are the only directly accessible particles that
are available in raw text data.

It is possible to introduce intermediate levels: morphemes as sub-
word units, phrases as subsentential units or paragraphs as subdoc-
ument units. However, these and other structures have to be found
by the SD methodology first, so they can be traced back to the ob-
servable units.

Other directly observable entities, such as hyperlinks or formatting
levels in web documents, are genre-specific levels that might also be
employed by SD algorithms, but are not considered for now.

1.3.2 Similarity of Language Units

In order to group language units into meaningful sets, there must
be a means to compare them and assign similarity scores for pairs
of units. Similarity is determined by two kinds of features: internal
features and contextual features. Internal features are obtained by only
looking at the unit itself, i.e. tokens are characterised internally by
the letters and letter combinations (such as character N-grams) they
contain, sentences and documents are internally described with the
tokens they consist of. Contextual features are derived by taking the
context of the unit into consideration.

The context definition is arbitrary and can consist of units of the
same and units of different levels. For example, tokens or character
N-grams are contextually characterised by other tokens or character
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N-grams preceding them, sentences are maybe similar if they occur
in the same document, etc. Similarity scores based on both internal
and contextual features require exact definition and a method to de-
termine these features, as well as a formula to compute the similarity
scores for pairs of language units.

Having computational means at hand to compute similarity scores,
language units can eventually be grouped into homogeneous sets.

1.3.3 Homogeneity of Sets of Language Units

While the notion of language unit similarity provides a similarity
ranking of related units with respect to a specific unit, a further ab-
straction mechanism is needed to arrive at classes of units that can
be employed for generalisation. Thus, it is clear that a methodology
is needed for grouping units into meaningful sets. This is realised by
clustering, which will be discussed in depth in Chapter 4. In contrast
to the similarity ranking centred on a single unit, a cluster consists of
an arbitrary number of units. The advantage is that all cluster mem-
bers can be subsequently subsumed under the cluster, forming a new
entity that can give rise to even more complex entities.

Clustering can be conducted based on the pair wise similarity of
units, based on arbitrary features. In order to make such cluster-
ing and at the same time generalisation processes successful, the re-
sulting sets of units must exhibit homogeneity in some dimensions.
Homogeneity here means that the cluster members agree in a cer-
tain property, which constitutes the abstract concept of the cluster.
Since similarity can be defined along many features, it is to be ex-
pected that different dimensions of homogeneity will be found in the
data, each covering only certain aspects, e.g. on syntactic, semantic
or morphological levels. Homogeneity is, in principle, a measurable
quantity and expresses the plausibility of the grouping. In reality,
however, this is very often difficult to quantify, thus different group-
ings will be judged on their utility in the SD paradigm: on one hand
by their ability to generalise in a way that further structure can be
discovered with these abstract concepts forming the building blocks,
on the other hand by their utility as features in task-driven applica-
tions.

1.4 Vision: The Structure Discovery Machine

The remainder of this chapter is dedicated to an outline of the ulti-
mate goal of SD: a set of algorithmic procedures that encompasses
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1.4 Vision: The Structure Discovery Machine

the discovery of the entirety of structure that can be discovered in a
data-driven way. Viewing the practical results in Chapter 5 as being
only a starting point, I will now envision a number of capabilities of
such a system and discuss them along the usual pipeline of process-
ing steps for language processing. The ’traditional’ terms shall serve
as an aid for imagination – without doubt, the discovery procedures
will not reproduce theoretically pure sub-levels, as indicated above.
Nevertheless, linguistic theory can play the role of a source of what
is necessary and which phenomena are to be accounted for.

When exhibited to language data, the Structure Discovery Machine
(SDM) identifies the basic word and sentence units it will operate
on and finds a suitable representation – no matter whether the SDM
is exposed to text, speech or other encodings of language. Already
here, an abstraction process is involved that groups e.g. different
phonetic variants in speech or different character sets in written lan-
guage. Then, different languages are identified in the stream and the
corresponding parts are grouped (see Section 5.1). In a similar way,
domain-specific subsets of the monolingual material are marked as
such, e.g. by techniques as employed in document clustering (see
(Steinbach et al., 2000) for an overview).

For each language, a syntactic model is set up that encompasses
parts of speech (cf. Section 5.2) for basic word units, chunking to
phrasal units of several words (as in e.g. Cohen et al., 2007) and syn-
tactic dependencies between basic and complex units3 such as in
(Klein, 2005; Bod, 2006; Olney, 2007, inter al.). This requires a pro-
cedure handling derivation, inflection and compounding of units,
realised by a component similar to those compared in the Mor-
phoChallenge (Kurimo et al., 2006). Contextual analysis of content-
bearing units allows to hypothesise different meanings for units with
semantically ambiguous use and to disambiguate their occurrences
(cf. Section 5.3). Having circumnavigated the pitfalls of lexical ambi-
guity, units are classified according to their semantic function and re-
lation. Semantic classes have been previously learned in (e.g. Cardie
and Weischedel, 1997; Berland and Charniak, 1999; Thelen and Riloff,
2002); for semantic relations, (Turney, 2006) shows ways how to ex-
tract them from massive corpora. The works of Davidov and Rap-
poport (2006); Davidov et al. (2007) illustrate how to extract sets of
semantically similar words and their typical relations from web data.
Reoccurring relations between units of similar or different seman-
tic function will be marked as such, serving as something similar

3cf. approaches to parsing, such as HPSG (Pollard and Sag, 1994), LFG (Horn, 1983) and
dependency parsing (Nivre, 2006)

15



1 Introduction

to FrameNet (Baker et al., 2003) annotations. Coreference has been
successfully learnt in an unsupervised way by (Haghighi and Klein,
2007).

In its highest and purest form, the SDM will not even be engi-
neered by humans plugging together discovery procedures based
on their intuitions, but will self-assemble by trying out interplays
of a parameterisable inventory of procedures, thus optimising the
overall structural description in terms of generalisation power. This,
however, is a much larger project than could be treated by a single
dissertation at the time being and raises several yet unanswered re-
search questions.

Output of the SDM is a multidimensional annotation of the raw
input data with labels that denote abstractions of structurally simi-
lar phenomena. Some kinds of annotations are orthogonal to each
other, others can be arranged hierarchically and many will be depen-
dent on other annotations. The scope of annotations is not limited,
ranging from the most basic to the most complex units. This holistic
approach to data-driven self-annotation rather overgenerates and is
not restricted to a small set of structural phenomena. To determine
which generalisations are useful, these have to be tested for utility in
task-based evaluations.

Applications of these annotations are twofold: firstly, they can be
employed as features in machine learning for a task-based adap-
tation: stemming, parts-of-speech tagging, chunking, named en-
tity recognition, information extraction and parsing in their present
form will greatly benefit from this rich inventory of features, which
will reduce the necessary amount of training instances significantly.
Overlapping representations of complex facts give rise to mapping
queries to answers in a Question Answering system (as e.g. con-
ducted in (Ramakrishnan et al., 2004)), which is currently regarded
as one of the next steps to enhance today’s search engines. Since the
names and values of the features are irrelevant in this setting besides
their ability to grasp the differentiation granularity needed for the
task, the annotations generated by the SDM can be easily incorpo-
rated and evaluated in such an application-based way. Feature selec-
tion mechanisms (cf. Kohavi and John, 1997, inter al) allow to choose
those annotations that correlate best with the task-defined structural
regularities.

Secondly, when examining what annotations are the most impor-
tant for solving language processing tasks and tracing back their cre-
ation to their data-driven origin, one will find that the procedures of
the SDM provide insights into the system of constituents of natural
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1.4 Vision: The Structure Discovery Machine

language and could play the role of de Saussure’s desperately sought
realities in the initial quote of this chapter.
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2 Graph Models

This chapter provides basic definitions of graph theory, which is
a well-established field in mathematics, dealing with properties of
graphs in their abstract form. Graph models are a way of represent-
ing information by encoding it in vertices and edges. In the context
of language processing, vertices will denote language units, whereas
edges represent relations between these. This way, units and their
similarities are naturally and intuitively translated into a graph rep-
resentation.

After revisiting notions of graph theory in Section 2.1, the focus is
set on large-scale properties of graphs occurring in many complex
systems, such as the Small World property and scale-free degree dis-
tributions. A variety of random graph generation models exhibiting
these properties on their graphs will be discussed in Section 2.2.

The study of large-scale characteristics of graphs that arise in Natu-
ral Language Processing using graph representations are an essential
step towards approaching the data, in which structural regularities
shall be found. Structure Discovery processes have to be designed
with awareness about these properties. Examining and contrasting
the effects of processes that generate graph structures similar to those
observed in language data sheds light on the structure of language
and their evolution.

2.1 Graph Theory

2.1.1 Notions of Graph Theory

This section contains basic definitions of graph theory that will be
necessary in all later chapters. The notation follows (Bollobas, 1998).

Graph, Vertices, Edges

A graph G is a pair of finite sets (V, E) such that E is a subset of
unordered pairs of V × V. V is the set of vertices, E is the set of
edges. If G is a graph, then V = V(G) is the vertex set of G, and
E = E(G) is the edge set. An edge {x, y} is said to join the vertices
x and y and is denoted by xy, also e(x, y). Thus, xy and yx mean
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2 Graph Models

exactly the same edge, x and y are called endpoints of that edge, x
and y are said to be adjacent vertices. Equivalently, it is said that an
edge connects x and y. In the following, the graphs are restricted to
having no self-loops (irreflexive), i.e. edges with the same vertex for
both endpoints are not allowed, if not explicitly stated otherwise.

Subgraph

A subgraph G(S) of a graph G is induced by a set of vertices S ⊂
V(G) and contains all edges of G that connect si, sj ∈ S. The set of
edges of G(S) is denoted by E(S).

Order and Size

The order of G is the number of vertices in G, denoted by |G|, also
written |V(G)|. Here, |.| is the size of a set. The size of G is the
number of edges, denoted by |E(G)|. We write Gn for a graph of
order n. G(n, m) denotes a graph of order n and size m.

Subsets of Vertices

Considering two disjoint subsets U and W of the vertex set of a
graph V(G), the set of edges joining vertices from U and W is written
E(U, W). The number of edges in E(U, W) is |E(U, W)|.

Neighbourhood of a Vertex

The neighbourhood of a vertex v ∈ V(G) consists of the vertices
adjacent to v, that is neigh(v) = {x|{v, x} ∈ E(G)}. Sometimes this is
called open neighbourhood in contrast to the closed neighbourhood
formed by neigh(v) ∪ {v}.

Path

A path is a graph P of the form V(P) = {x0, x1,..., xl}, E(P) =
{x0x1, x1x2, ..., xl−1xl}. The path is denoted by x0x1..xl., l is the length
of the path P. P is said to be a path from x0 to xl or an x0 − xl path.

Distance

The distance d(x, y) between vertices x and y is the minimal length
of an x − y path. If no such path exists, d(x, y) = ∞. The distance
between a vertex and itself is d(x, x) = 0.
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Component

A graph is connected, if for every pair {x, y} of distinct vertices x ∈
V(G), y ∈ V(G), x 6= y there exists a path from x to y. A maximal
connected subgraph of G is called a component of G.

Partition

A partition of a graph G(V, E) is a set of disjoint sets of vertices
{P1, P2, ...Pn} with Pi ⊂ V such that for all i, j ∈ {1..n}, i 6= j:
Pi ∩ Pj = ∅ and

⋃
i=1..n Pi = V. The sets Pi are called parts, also

clusters. These two terms are used interchangeably in the remainder
of this work.

Cut

Any subset of vertices S ⊂ V creates a cut, which is a partition of V
into two disjoint subsets S and V \ S. The size of a cut S of graph G
is defined as cG(S) = e(S, V \ S). and measures the number of edges
that have to be eliminated in order to obtain the two components S
and V \ S from G.

A cutvertex is a vertex whose deletion increases the number of
components. An edge is called bridge, if its deletion increases the
number of components.

Bipartite Graph

A graph G is bipartite with vertex subsets V1 and V2 if V(G) = V1 ∪
V2, V1 ∩ V2 = ∅ and every edge joins a vertex from V1 and a vertex
from V2. Similarly, G is r-partite with vertex classes V1, V2, ...Vr, if
V(G) =

⋃
1..r Vi and Vi ∩ Vj = ∅ for all i, j ∈ {1..n}, i 6= j, and no

edge joins vertices of the same vertex part.

Complete Graph

A graph of order n and size (n
2) is called a complete n-graph and is

denoted by Kn (recall that self-loops are excluded). In Kn, all possible
pairs of vertices are adjacent to each other. Kn is also called n-clique.

Directed Graph

If the edges are ordered pairs of vertices (x, y) instead of sets {x, y},
the graph is called directed. An ordered pair (x, y) is said to be a
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directed edge from x to y, or beginning at x and ending at y, denoted
by xy.

Edge and Vertex Weight

A graph G is called edge-weighted if there exists a function ew :
E(G) → R+ that assigns an edge weight wxy to every edge {x, y} ∈
E(G). {x, y} is said to have the weight ew(x, y) = wxy. In analogy,
G is vertex-weighted, if there is a function vw : V(G) → R+ that
assigns a vertex weight vw(v) to each vertex v ∈ V(G). Unweighted
(also: simple) graphs are a special case of weighted graphs with all
vertex and edge weights set to 1.

Size of Cut in Weighted Graphs

The size of a cut cGw(S) induced by a subset of vertices S ⊂ V
in a weighted graph is defined as the sum of edge weights that
cross cluster boundaries: cGw(S) = ∑a∈S ∑b∈V\S ew(a, b). In case
of ew(a, b) 6∈ E, ew(a, b) = 0.

Edge and Vertex Type

A graph G is edge-typed, if there exists a function et : E(G) → S
with S set of edge types that assigns a type to every edge. A graph is
vertex-typed, if there is a function vt : V(G) → T with T set of vertex
types, such that every vertex v ∈ V(G) is assigned a type from T.
The entirety of vertex type assignments is called vertex-typisation.
A vertex typisation of G induces a partition of G : V(G) = V1 ∪ .. ∪
Vn, Vi ∩ Vj = ∅ for all i, j ∈ {1..n}, i 6= j, and for all x ∈ V(G), y ∈
V(G): if x ∈ Vi and y ∈ Vi, then vt(x) = vt(y).

Adjacency Matrix

The adjacency matrix of a graph G is a matrix AG associated with
G where (aij) = 1 if there exists an edge between vertices vi and vj,
(aij) = 0 otherwise. For edge-weighted graphs, (aij) = ew(i, j).

Geometrical Representation

A more intuitive way of specifying a graph is to depict it in a ge-
ometrical representation. Figure 2.1 illustrates various concepts of
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Geometrical representation

054000000I

501300000H

410200000G

032021110F

000201000E

000110000D

000100000C

000100002B

000000020A

IHGFEDCBAaij

Adjacency matrix

1

Set representation

G(V,E)

V={A,B,C,D,E,F,G,H,I}

E={AB,BF,CF,DE,DF,EF,FG,FH,GH,GI,HI}

ew(BF)=ew(CF)=ew(DE)=ew(DF)=ew(GH)=1;

ew(AB)=ew(EF)=ew(FG)=2; ew(FH)=3; 

ew(GI)=4; ew(HI)=5;

Figure 2.1: Example for representing a graph in geometrical, adjacency ma-
trix and set representation. B and F are cutvertices, AB, BF and
CF are bridges. A further possible representation, the incidence
matrix that stores vertices per edges, is not shown

graph theory in different notations. Notice that a graphical represen-
tation defines a graph unambiguously, but there are many possible
graphical representations that define the same graph.

2.1.2 Measures on Graphs

There exist a variety of measures that characterise certain properties
of graphs. The overview here is by no means complete and merely
defines measures that are needed at a later stage. For an exhaustive
treatment of graph measures the reader is referred to (Merris (2001),
inter al.).

Measures on graphs can be divided into local and global measures.
Local measures characterise single vertices. In global measures, char-
acteristics of the graph as a whole are combined into a single coeffi-
cient or into a distribution.
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Degree, Indegree, Outdegree

The number of edges including v, called degree of vertex v, is k(v) =
|neigh(G)|. A vertex of degree 0 is called isolated, also singleton. For
vertices x of directed graphs, the indegree kin(x) is defined as the
number of edges ending at x, the outdegree kout(x) is the number of
edges starting with x.

The average vertex degree < k > of graph G(V, E) is obtained by
averaging over the degrees of all vertices: < k >= ∑v∈V k(v)

|V| . Notice
that a distinction between average indegree and average outdegree
is superfluous.

Shortest Path Length and Diameter

The shortest path length between two vertices v and w is defined as
the distance d(v, w) between v and w. An efficient way to compute
the shortest path length is the Dijkstra-algorithm, see (Dijkstra, 1959).

The average shortest path length L of a graph G(V, E) is given by
averaging the shortest path lengths over all vertex pairs in the same
component. For components V1, ..., Vn, it is defined as:

L =
∑v∈V ∑w∈V,d(v,w)<∞ d(v, w)

∑i=1..n |Vi| · (|Vi| − 1)

The diameter D of a graph G(V, E) is defined as the length of the
longest of all shortest paths of G: D = maxv∈V,w∈V,d(v,w)<∞ d(v, w).

Clustering Coe�cient

Introduced by Watts and Strogatz (1998), the vertex clustering coeffi-
cient c for a vertex v with k(v) ≥ 2 in graph G measures the connec-
tivity of vertices in the neighbourhood of v:

c(v) =
2 · |{{u, w} ∈ E(G), u ∈ neigh(v), w ∈ neigh(v)}|

|neigh(v)| · (|neigh(v)| − 1)
.

The clustering coefficient C(G) of graph G is defined as the average
vertex clustering coefficient:

C(G) =
1
|V′| ∑

v∈V,k(v)≥2
c(v)

where V′ is the set of vertices with degree ≥2. Vertices with degree 1
or 0 are not taken into account.
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Transitivity

The transitivity T(G) of a graph G as defined by Newman et al. (2002)
is the number of fully connected triplets of vertices divided by the
total number of vertex triplets:

T(G) = ∑v∈V δ(v)

∑v∈V (k(v)
2 )

with δ(v) = |{{u, w} ∈ E and {v, u} ∈ E and {v, w} ∈ E}|.

Relation between Clustering Coe�cient and Transitivity

Despite other claims, transitivity is not equivalent to the clustering
coefficient, only for graphs where all vertices have the same degree
or the same local clustering coefficient, see (Schank and Wagner,
2004). This originates from the fact that C(G) is computed by av-
eraging over the vertex clustering coefficients, with each vertex con-
tributing equally to C(G). For T(G), vertices with higher degrees
take part in more vertex triplets and thus contribute more in rela-
tive terms to T(G). In (Schank and Wagner, 2004), a weighted clus-
tering coefficient that equals transitivity is proposed: here, vertices
v are weighted by the number of "possible opposite edges", that is
k(v)(k(v)− 1)/2. The study further discusses cases of graphs where
C(G) and T(G) differ considerably. For the random graph models
as discussed in Section 2.2, the most interesting case is a high value
for C(G) coupled with a low value of T(G). Figure 2.2 exemplifies a
graph where C → 1 and T → 0 as n → ∞. Less extreme cases for
high C(G) and low T(G) are characterised by low vertex clustering
coefficients for vertices with high degrees.

For determining C(G) and T(G), directed graphs are transformed
into undirected graphs. Throughout this work, the efficient imple-
mentation as described in (Schank and Wagner, 2005) is used for
computation of these measures.

Degree Distribution

The degree distribution P(k) of graph G(V, E) is a probability distri-
bution that provides the probability of choosing a vertex with degree
k when randomly selecting a vertex from V with uniform probabil-
ity. The indegree and outdegree distributions are defined in analogy.
When plotting the degree distribution as in Section 2.2, the number
of vertices per degree is depicted. This can be transformed into the
degree distribution by normalising with |V|.
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1 2 3 4 5 ... n

a

b

Figure 2.2: Example of a graph with C → 1 and T → 0 as n → ∞. Figure
adopted from (Schank and Wagner, 2004)

Symbol Explanation
n number of vertices
L average shortest path length
D diameter of the graph
C clustering coefficient
T transitivity
k, kin, kout the degree, the in-degree, and out-degree
P(k), P(kin), P(kout) degree distributions
< k > average degree

Table 2.1: Symbols referring to graph measures as used in this work

Component Size Distribution

The component size distribution Comp(x) of graph G(V, E) is a prob-
ability distribution that provides the probability of choosing a com-
ponent of size x when randomly selecting a component from V with
uniform probability. When plotting the component size distribution,
the number of components per size is depicted. This can be trans-
formed into the component size distribution by normalising.

Table 2.1 summarises the symbols used throughout this chapter,
largely following the notation of Steyvers and Tenenbaum (2005).

The graph in Figure 2.1 has the following values for the char-
acteristics introduced: n = 9, L = 2, D = 4, C = 0.638095,
T = 0.45,< k >= 22

9 and the degree distribution is given in Table
2.2.
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Degree k 1 2 3 4 5 6
Vertices per degree 2 4 2 0 0 1
P(k) 2

9
4
9

2
9 0 0 1

9

Table 2.2: Degree distribution for graph in Figure 2.1

2.2 Random Graphs and Small World Graphs

The previous section provided definitions and measures that char-
acterise graphs. Now we turn to the question, how graphs can be
generated and how properties of the generation process influence
the characteristics of the resulting graphs. As graphs can be seen
as abstractions of entities and their relations, a generative process is
concerned with describing how new entities and relations are added
to existing graphs in a systematic way. Different generation princi-
ples lead to graphs with different characteristics, and various graph
generation models have been proposed in order to yield graphs that
resemble observations on real-world data. Now, the most prominent
graph generation models in the literature are reviewed. The connec-
tion to language as the matter of interest will be indicated, but carried
out more thoroughly in Chapter 3.

2.2.1 Random Graphs: Erd®s-Rényi Model

The earliest and most basic model of random graph generation in
graph theory is the Erdős-Rényi-model (ER-model, Erdős and Rényi
(1960)). The generation process starts with n vertices and no edges.
Each of the possible number of n(n−1)

2 undirected vertex pairs gets
connected by an edge with probability p. The higher p, the denser
gets the graph, with the vertex degrees forming a binomial distribu-
tion around their mean < k >= p(n− 1).

For comparing graph models, the measures as defined in Section
2.1.2 are employed. Figure 2.3 shows the characteristics of two ER
random graphs with 10,000 vertices and p = 0.001 (p = 0.005).
Not surprisingly, the values for transitivity and clustering coefficient
hardly differ, as most values for vertex degrees k(v) are close to their
mean and the vertex clustering coefficient is directly dependent on p
and not on k(v).

The ER model triggered the theory of random graphs. Virtually all
studies in this field before the mid-nineties of the 20th century are
based on this model, see (Bollobas, 1985) for an extensive overview.
As shall be clear soon, however, the ER model does not capture the
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Figure 2.3: Characteristics of two ER random graphs. The degree distribu-
tions are given in a linear scale and in a log-log plot and follow
a binomial distribution, which is approximated by a normal dis-
tribution N(< k >,

√
< k >) in the plots
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characteristics of many graph abstractions of natural phenomena.
Another class of graphs that comes closer to what is observed in nat-
ural and artificial networks are Small World graphs (SWGs), which
will be discussed throughout the remainder of this section.

2.2.2 Small World Graphs: Watts-Strogatz Model

The first report on Small World phenomena was released by Milgram
(1967), who performed his well-known experiment using the social
network graph between people: addressing 60 letters to a stockbro-
ker living in Boston, he instructed various recruits in Omaha, Ne-
braska, to merely hand the letter to an acquaintance they would
think who could most likely know the receiver. Surprisingly, after six
transfers in average, a part of the letters had reached their destina-
tion, which was popularised as "six degrees of separation": anyone
knows all people on earth over six connections (at least within the
USA). In subsequent years, this experiment was repeated under var-
ious conditions, confirming this claim. Observations on social net-
works (as e.g. the entirety of acquaintances in Milgram’s experiment)
showed, that their corresponding graphs are characterised by a high
clustering coefficient C while retaining similar or slightly larger val-
ues of L as compared to a Erdős-Rényi random graph with similar
numbers of vertices and edges.

This could only be obtained in the Erdős-Rényi model by a proba-
bility p that would render us all ’famous party animals’: low values
of L in hand with high values of C can only be realised using high p
values in graph generation, leading to a large < k >.

To account for this discrepancy, SWGs were first defined by Watts
and Strogatz (1998), where a number of interesting graphs are de-
scribed as having the following property: n � k � ln(n) � 1,
where k � ln(n) guarantees that the graph is connected. They pro-
vide a rewiring procedure that constructs a SWG by rewiring edges
of a ring lattice with all vertices having the same degree (cf. Figure
2.4) with a certain probability to randomly chosen vertices. When
incrementing p, the characteristic path length L drops dramatically,
since shortcuts are introduced in the network. The high clustering
coefficient C in the regular ring lattice graph drops very slowly with
higher p, resulting in the desired characteristics for SWGs.

Since their discovery, graphs with Small World structure have been
observed in graphs corresponding to data as diverse as the topol-
ogy of food webs, electrical power grids, cellular and metabolic net-
works, the World Wide Web, the internet backbone, neural networks,
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p=0 p=1
increasing randomness

Figure 2.4: Building a SWG by rewiring edges of a regular ring lattice graph
(figure adopted from Watts and Strogatz (1998))

telephone call graphs, co-authorship and citation in networks of sci-
entists, movie actor networks and overlapping boards of large com-
panies, see (Strogatz, 2001) for reference. The omnipresence of SWGs
in networks whose growth is not governed by a centralised organi-
sation but emerge ’naturally’ indicates that understanding their for-
mation processes unveils general principles of nature.

The resulting SWGs are proposed as more accurate models for a
large number of self-organising systems, as clustering coefficients are
higher while retaining similar L values (cf. Figure 2.3). Figure 2.5
shows characteristics of WS-graphs. Again, transitivity and cluster-
ing coefficient highly agree for the same reasons as for the ER model.

2.2.3 Preferential Attachment: Barabási-Albert Model

Starting from the observation that in many self-organising systems
the degree distribution decays in a power-law, following P(k) ∼ k−γ

(γ = slope of the degree distribution when plotted on log-log scale),
Barabási and Albert (1999) introduce their graph growing model.
Unlike in the ER and WS models, where the number of vertices is
fixed in advance, the Barabási-Albert (BA) model starts with a small
number of vertices and no edge and iteratively introduces new ver-
tices to the graph, connecting them to a fixed number of existing
vertices with a probability based on the existing vertex’ degree. In-
creasing the probability of connection to ’popular’ vertices (i.e. ver-
tices with high degrees) is called preferential attachment. Barabási and
Albert (1999) show that preferential attachment makes the differ-
ence between an exponentially decreasing degree distribution and
a power-law distribution with γ = 3 for the standard BA-model as
proven in (Bollobas et al., 2001). Further, they give indications how to
obtain scale-free SWGs with different power-law exponents. Figure
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Figure 2.5: Characteristics of two graphs generated by the WS model in lin-
ear and log-log plot. The degree distribution decreases exponen-
tially with k, as in the ER-model
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2.6 shows the characteristics of BA-modelled graphs. Also in graphs
generated by the BA model, the values for transitivity and cluster-
ing coefficient are about similar, yet very low as compared to the WS
model.

Graphs with a power-law degree distribution are called scale-free
for the following reason: in scale-free graphs, there is a significant
number of vertices with very high degrees, called hubs, whereas in
SWGs with an exponential tail of P(k), no such hubs are observed.
The scale-free-ness manifests itself in the non-existence of a charac-
teristic vertex degree, i.e. all degrees are present at the same strength,
the number of edges for groups of vertices of similar degree is ap-
proximately equal. Formally, the degree distribution P(k) = Ak−γ

remains unchanged to within a multiplying factor when k is mul-
tiplied with a scaling factor, i.e. P(ax) = bP(x). This can be seen
in Figure 2.6, where the characteristics of graphs generated by the
BA-model are depicted. In the figure the exact degree distribution is
given on the left side. To obtain a smoother plot, the x-axis was di-
vided into intervals exponentially increasing in size, and the fraction
of vertices per degree is given in the figure on the right. For the re-
mainder, this process called logarithmic binning is carried out for most
figures depicting degree distributions.

2.2.4 Aging: Power-laws with Exponential Tails

Amaral et al. (2000) observe three kinds of Small World networks in
nature: scale-free graphs as characterised by a power-law distribu-
tion of vertex degrees, broad-scale graphs as power-law distributed
vertex connectivity with a sharp cut-off, and single-scale graphs with
faster decaying tails of the degree distribution. These three different
varieties of SWGs can be produced by introducing a limiting factor
when adding new edges. In the BA-model, an early vertex can ob-
tain an unlimited number of edges as the generation process goes
along. In the real world that we seek to model, however, this might
be impossible: whereas in a citation graph, a seminal paper can be
cited by many following works without any problem, the capability
of people to know a large number of acquaintances is limited natu-
rally by their lifetime. Dependent on the limit, the scale-free property
might hold for a certain range of connectivity. These findings are ex-
emplified on the movie-actor network (broad-scale as the number of
movies per actor is limited yet can reach a high number) and on high
school friendships (single-scale because of a smaller number of par-
ticipants). The authors provide a methodology of generating graphs
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Figure 2.6: The degree distributions of two undirected BA-graphs form a
straight line in the log-log plots, indicating that P(k) follows a
power-law distribution P(k) ∼ k−3. Notice that the clustering
coefficients are higher than in an ER model graph of the same
size and order, but lower than in the graphs generated by the
WS-model
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FIG. 4. Truncation of scale-free connectivity by adding constraints to the model of Ref. [5]. a Effect of aging of vertices on
the connectivity distribution; we see that aging leads to a cut-off of the power-law regime in the connectivity distribution. For
sufficient aging of the vertices, the power-law regime disappears altogether. b Effect of cost of adding links on the connectivity
distribution. Our results indicate that costs for adding links also leads to a cut-off of the power-law regime in the connectivity
distribution and that for sufficient costs the power-law regime disappears altogether.

7

Figure 2.7: Dependent on aging (a) or cost for highly connected vertices
(b), the SWG generation model of Amaral et al. (2000) produces
scale-free, broad-scale and single-scale SWGs (figure taken from
(Amaral et al., 2000))

of all three varieties by introducing the concept of aging for vertices
or alternatively adding cost to connections to vertices proportional
to the vertex’ degree into the BA-model. Figure 2.7 shows the char-
acteristic degree distributions of these three varieties in log-log plots
generated by various strengths of aging respectively cost.

2.2.5 Semantic Networks: Steyvers-Tenenbaum Model

Exploring the structure of semantic networks, which now links this
section to language data, is the topic of (Steyvers and Tenenbaum,
2005). The authors analyse the graph structures of a human associa-
tion network, Roget’s Thesaurus (Roget, 1852) and WordNet (Miller
et al., 1990), finding that all three resources exhibit the characteristics
of a scale-free SWG. As they observe much higher clustering coef-
ficients C than predicted by the BA-model, they propose their own
network growing algorithm, henceforth called ST-model. It gener-
ates scale-free SW graphs in the following way: we start with a small
number of fully connected vertices. When adding a new vertex, an
existing vertex u is chosen with a probability proportional to its de-
gree. The new vertex is connected to M vertices in the neighbour-
hood of u. The generative model is parameterised by the number of
vertices n and the network’s mean connectivity, which approaches
2M for large n. Steyvers and Tenenbaum propose a directed and an
undirected variant of this model and show high agreement with the
characteristics of the semantic networks they examine. The directed
variant is obtained from the undirected one by creating a directed
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edge from the new vertex with a probability d and to the new vertex
with a probability (1− d).

The main difference between the ST-model and the BA-model is
that the ST-model enforces a high clustering coefficient by attaching
all connections of a new vertex in the same neighbourhood. Figure
2.8 shows characteristics of graphs generated by the ST model.

In graphs generated by the ST-model, the transitivity values were
measured at about one third of the clustering coefficient of the same
graph, which indicates that the vertex clustering coefficients for ver-
tices with high degrees are lower than those of low degrees. This
follows from the construction principle: vertices in the neighbour-
hood of high degree vertices, which have themselves most probably
a high degree, get linked to many new vertices, which are themselves
interlinked scarcely. Therefore, the vertex clustering coefficient of
the high degree vertices is lower than for newer, low-degree vertices,
which mostly connect to highly interlinked old vertices.

2.2.6 Changing the Power-Law's Slope: (α, β) Model

The BA-model and the ST-model both produce power-law degree
distributions with a slope of γ = 3, which is an invariant of their
models rather than of SWGs in nature (see e.g. examples in Sec-
tion 3.2 for language data). A more flexible model, called the (α, β)-
model, is defined by Kumar et al. (1999). In this growth model for
directed SWGs, α is a parameter for specifying the slope of the in-
degree distribution γin = 1/(1 − α), β is its analogue for the out-
degree distribution γout = 1/(1 − β), with α, β ∈ [0, 1). However,
slopes of γ < 2 cannot be generated, as determined empirically
and proven for all preferential linking methods in (Dorogovtsev and
Mendes, 2001b). A further contribution of Dorogovtsev and Mendes
(2001b) is to explain power-law slope variation by a comparison be-
tween growth in the number of vertices and growth in the number of
edges: if the total number of edges increases faster than the number
of vertices – at this increasing the average degree – the exponent of
the degree distribution deviates from γ = 3.

The (α, β)-model is motivated by the observation that the web
graph contains a high number of bipartite cores, which are sets of
pages that can be separated into two groups with many links be-
tween these groups. These structures emerge in the following build-
ing process: each time a new vertex v is created, a fixed number of
edges is created as well following this method: two random num-
bers r1, r2 ∈ [0, 1] are drawn. If r1 falls within the interval [0, α], the
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Figure 2.8: Characteristics of graphs generated by the ST model
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destination of the edge is the new vertex v, otherwise the destination
is the destination of a randomly chosen edge. The source of the edge
is determined using r2: if r2 is in [0, β], then the source is v, otherwise
it is the source of a randomly chosen edge.

Notice that randomly choosing edges in case of r1 > α (r2 > β) re-
alises preferential attachment, as vertices with higher in-degree (out-
degree) more likely become the destination (source) of the new edge.
With the possibility to tailor the degree distributions directly to ar-
bitrary slopes in [2, ∞), the (α, β)-model captures the degree distri-
butions of the web graph. This is the only graph generation model
discussed here that is reflexive, i.e. edges are allowed to have the
same vertex as source and destination. When measuring characteris-
tics, these edges are ignored. The average degree < k > is dependent
on the values of α and β. Figure 2.9 shows characteristics for graphs
with different α and β values. As a consequence of the construction
process, a constant fraction of vertices with both kin = 0 and kout = 0
can be found in graphs generated by the (α, β)-model. For low val-
ues of either α or β, the power-law’s slope for the undirected version
of the graph is steep. With no mechanism in the construction pro-
cess that connects vertices adjacent to vertices with high degrees, the
discrepancy between C and T is very large.

2.2.7 Two Regimes: Dorogovtsev-Mendes Model

In co-occurrence networks of natural language, sometimes a degree
distribution that follows power-laws with two different exponents
is observed. The Dorogovtsev-Mendes (DM) model, proposed in
(Dorogovtsev and Mendes, 2001a) captures this effect in a genera-
tion process for undirected graphs. A DM-generated graph is built
in the following way: at each time step t, a new vertex is introduced
and connected to one present vertex by preferential attachment, i.e.
with a probability proportional to the old vertex’ degree. This step is
equal to the BA-model with < k >= 2. But in difference to the BA-
model, ct edges between old vertices are introduced in every time
step t between previously not connected old vertices i and j, with a
probability according to the product of their vertex degrees k(i) · k(j).

It has been shown in (Dorogovtsev and Mendes, 2001a) that the av-
erage degree is dependent on the time step and is given by < k >=
2 + ct. For 1 � ct, the degree distribution is governed by two power-
laws with γ1 = 1.5 for low degrees and γ2 = 3 for high degrees, with
a crossover point at kcross =≈

√
ct(2 + ct)1.5. This is achieved by mix-

ing two different growth rates of edges as compared to vertices (see
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Figure 2.9: Characteristics of graphs generated by the (α, β)-model. For
this directed model, in-degree and out-degree distributions are
given separately.
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Figure 2.10: Characteristics of graphs generated by the DM-model. Two
power-law regimes can be observed. The higher the average
degree < k >, the higher is the crossover degree kcross

Dorogovtsev and Mendes, 2001b): a constant growth for edges in-
volving the newly introduced vertices and an increasing growth rate
for edges between old vertices. Dorogovtsev and Mendes success-
fully modelled the word web as described by Ferrer-i-Cancho and
Solé (2001): word tokens represent vertices and edges are introduced
if their corresponding endpoints are found in adjacent positions in
the underlying text corpus. These word co-occurrence graphs will be
subject to deeper exploration in Section 3.2.

Figure 2.10 displays the degree distribution and the characteristics
of graphs generated by the DM-model. The DM-model generates
scale-free Small World graphs with two power-law regimes. Values
for C and T are much higher than in a BA-model graph. As opposed
to the ST model, a higher < k > in the DM-model leads to higher
C and T values. Throughout, transitivity T is measured somewhat
lower than the clustering coefficient C.
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Model ER WS BA ST (α, β) DM
undirected yes yes yes yes no yes
directed no no no yes yes no
L ≈5 ≈6 ≈4 ≈4 ≈4 ≈4
D ≈7 ≈7 ≈6 ≈8 ≈9 ≈8
C very low high low high high high
T very low high low low low high
C Q T C = T C = T C = T C � T C � T C > T
< k > 10 10 10 10 ≈8 10
P(k) tail exp. exp. pl pl pl pl

γ = 3 γ = 3 / γ ∈ [2, ∞) γ1 = 1.5
γ ∈ [2.5, ∞) γ2 = 3

Table 2.3: Comparison of graph models: ER-model, WS-model, BA-model,
ST-model, (α,β)-model and DM-model for graphs with n=10,000
and < k >= 10. Approximate values are marked by≈, pl denotes
power-law

2.2.8 Further Remarks on Small World Graph Models

In (Aiello et al., 2000), no generation model is provided, but state-
ments about the component size distribution of scale-free graphs for
different degree distribution slopes γ are proven. While for γ < 1,
the graph is almost surely fully connected, a γ between 1 and 2 pro-
duces one very large component and some small components of con-
stant size. The range of 2 < γ < 3.47851 delimits a family of graphs
with small components in a size order of the logarithm of the num-
ber of vertices, and γ > 3.4785 yields graphs with component size
distributions following a power-law as well.

To compare the graph models discussed so far, Table 2.3 contrasts
their characteristics. The ST-model, the (α, β)-model and the DM-
model generate scale-free SWGs. Graphs generated by the ER-model
and the BA-model exhibit a small clustering coefficient, ER-model
and WS-model graphs are not scale-free.

Up to this point, only simple, i.e. unweighted models of SWGs
have been discussed. As graph representations of natural phenom-
ena are often weighted, extensions to weighted graphs are shortly
mentioned in the following.

Vertex weights correspond to the importance of the represented en-
tities, edge weights model the strength of interaction. If vertex weights
are set to the degree of the vertex and edge weights to the product

1numerical result of a complex expression as given in (Aiello et al., 2000)
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2.2 Random Graphs and Small World Graphs

of the weight of its two vertices, a scale-free graph exhibits also a
power-law distribution of vertex and edge weights, as observed in
real-world data by Li and Chen (2003) and Barrat et al. (2004a).

Barrat et al. (2004b) describe a generative model quite similar to
the BA-model, only that vertex weights are the influencing factor for
attachment rather than degree. When attaching a new vertex, the
old vertex’ weight is increased by the weight of the new vertex plus
a parameter δ; for δ = 0, this is equivalent to the BA-model. As
δ → ∞, the power-law exponent decreases to γ = 2.

2.2.9 Further Reading

A survey of models for the directed web graph that compares several
models on various properties can be found in (Bonato, 2005), includ-
ing several models that not only model the addition of new vertices
but also deletion of old ones. The works of Jon Kleinberg (Klein-
berg, 1999; Kleinberg et al., 1999, inter al.) convey the consequences
for navigation and search algorithms when operating on web-like
SWGs. Comprehensive surveys on SWGs in a World Wide Web con-
text are (Deo and Gupta, 2001) and more recently (Chakrabarti and
Faloutsos, 2006). On employing Small World network structures in
distributed information retrieval, consult (Holz et al., 2007).

Arguments against over-estimating the findings of omnipresent
large-scale properties are given by Keller (2005). While this author is
right in the respect that the scale-free property found in many com-
plex systems not necessarily implies a common architecture, it is still
important to account for these properties when processing data ex-
hibiting them.

This chapter provided definitions and terminology of graph the-
ory. Properties of Small World graphs were discussed and the most
prominent graph generation models were reviewed. In the next
chapter, SWGs occurring in natural language will be examined and
a generation model for language will be developed.
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3 Small Worlds of Natural

Language

The previous chapter introduced notions of graph theory and re-
viewed several random graph generation models. In this chapter,
power-law distributions and Small World Graphs originating from
natural language data are examined in the fashion of Quantitative
Linguistics. After giving several data sources that exhibit power-
law distributions in rank-frequency in Section 3.1, graphs with Small
World properties in language data are discussed in Section 3.2. We
shall see that these characteristics are omnipresent in language data,
and we should be aware of them when designing Structure Discov-
ery processes. When knowing e.g. that a few hundreds of words
make the bulk of words in a text, it is safe to use only these as con-
textual features without loosing a lot of text coverage. Knowing
that word co-occurrence networks possess the scale-free Small World
property has implications for clustering these networks.

An interesting aspect is whether these characteristics are only in-
herent to real natural language data or whether they can be produced
with generators of linear sequences in a much simpler way than our
intuition about language complexity would suggest – in other words,
we shall see how distinctive these characteristics are with respect to
tests deciding whether a given sequence is natural language or not.

Finally, a random text generation model that captures many of the
characteristics of natural language is defined and quantitatively ver-
ified in Section 3.3.

3.1 Power-Laws in Rank-Frequency Distribution

G.K. Zipf (1935, 1949) described the following phenomenon: if all
words in a corpus of natural language are arranged in decreasing
order of frequency, then the relation between a word’s frequency
and its rank in the list follows a power-law. Since then, a signifi-
cant amount of research has been devoted to the question how this
property emerges and what kinds of processes generate such Zipfian
distributions. Now, some datasets related to language will be pre-
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Figure 3.1: Zipf’s law for various corpora. The numbers next to the lan-
guage give the corpus size in sentences. Enlarging the corpus
does not effect the slope of the curve, but merely moves it up-
wards in the plot. Most lines are almost parallel to the ideal
power-law curve with z = 1. Finnish exhibits a lower slope of
γ ≈ 0.8, akin to higher morphological productivity

sented that exhibit a power-law on their rank-frequency distribution.
For this, the basic units as given in Section 1.3.1 will be examined.

3.1.1 Word Frequency

The relation between the frequency of a word at rank r and its rank
is given by f (r) ∼ r−z, where z is the exponent of the power-law that
corresponds to the slope of the curve in a log-log plot. The exponent
z was assumed to be exactly 1 by Zipf; In natural language data, also
slightly differing exponents in the range of about 0.7 to 1.2 are ob-
served (see Zanette and Montemurro, 2005). B. Mandelbrot (1953)
provided a formula that closer approximates the frequency distri-
butions in language data, noticing that Zipf’s law holds only for the
medium range of ranks, whereas the curve is flatter for very frequent
words and steeper for high ranks. Figure 3.1 displays the word rank-
frequency distributions of corpora of different languages taken from
the Leipzig Corpora Collection1.

There exist several exhaustive collections of research capitalising
Zipf’s law and related distributions2 ranging over a wide area of

1LCC, see http://www.corpora.uni-leipzig.de [July 7th, 2007]
2e.g. http://www.nslij-genetics.org/wli/zipf/index.html [April 1st, 2007] or
http://linkage.rockefeller.edu/wli/zipf/index_ru.html [April 1st, 2007]
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3.1 Power-Laws in Rank-Frequency Distribution

datasets; here, only findings related to natural language will be re-
ported. A related distribution which will play a role at a later stage
is the lexical spectrum (see Ferrer-i-Cancho and Solé, 2002), which
gives the probability of choosing a word from the vocabulary with a
given frequency. For natural language, the lexical spectrum follows
a power-law with slope γ = 1

z + 1, where z is the exponent of the
Zipfian rank-frequency distribution. For the relation between lexical
spectrum, Zipf’s law and Pareto’s law, see (Adamic, 2000).

But Zipf’s law in its original form is just the tip of the iceberg of
power-law distributions in a quantitative description of language.
While a Zipfian distribution for word frequencies can be obtained by
a simple model of generating letter sequences with space characters
as word boundaries (Mandelbrot, 1953; Miller, 1957), these models
based on "intermittent silence" can neither reproduce the distribu-
tions on sentence length (see Sigurd et al., 2004), nor explain the rela-
tions of words in sequence. But before elaborating further on this
point in Section 3.3, more power-law distributions in natural lan-
guage are discussed and exemplified.

3.1.2 Letter N-grams

To continue with a counterexample, letter frequencies do not obey
a power-law in the rank-frequency distribution. This also holds for
letter N-grams (including the space character), yet for higher N, the
rank-frequency plots show a large power-law regime with exponen-
tial tails for high ranks. Figure 3.2 shows the rank-frequency plots
for letter N-grams up to N = 6 for the first 10,000 sentences of the
British National Corpus (BNC3, Burnard (1995)).

Still, letter frequency distributions can be used to show that let-
ters are not forming letter bigrams from single letters independently,
but there are restrictions on their combination. While this intuitively
seems obvious for letter combination, the following test is proposed
for quantitatively examining the effects of these restrictions: from
letter unigram probabilities, a text is generated that follows the letter
unigram distribution by randomly and independently drawing let-
ters according to their distribution and concatenating them. The let-
ter bigram frequency distribution of this generated text can be com-
pared to the letter bigram frequency distribution of the real text the
unigram distribution was measured from. Figure 3.3 shows the gen-
erated and the real rank-frequency plot, again from the small BNC
sample.

3http://www.natcorp.ox.ac.uk/ [April 1st, 2007]
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3.1 Power-Laws in Rank-Frequency Distribution

The two curves clearly differ. The generated bigrams without re-
strictions predict a higher number of different bigrams and lower
frequencies for bigrams of high ranks as compared to the real text
bigram statistics. This shows that letter combination restrictions do
exist, as not nearly all bigrams predicted by the generation process
were observed, resulting in higher counts for valid bigrams in the
sample.

3.1.3 Word N-grams

For word N-grams, the relation between rank and frequency follows
a power-law, just as in the case for words (unigrams). Figure 3.4 (left)
shows the rank-frequency plots up to N = 4, based on the first 1 mil-
lion sentences of the BNC. As more different word combinations are
possible with increasing N, the curves get flatter as the same total
frequency is shared amongst more units, as previously observed by
e.g. (Smith and Devine, 1985) and (Ha et al., 2002). Testing concate-
nation restrictions quantitatively as above for letters, it might at the
first glance seem surprising that the curve for a text generated with
word unigram frequencies differs only very little from the word bi-
gram curve, as Figure 3.4 (right) shows. Small differences are only
observable for low ranks: more top-rank generated bigrams reflect
that words are usually not repeated in the text. More low-ranked
and less high-ranked real bigrams indicate that word concatenation
takes place not entirely without restrictions, yet is subject to much
more variety than letter concatenation. This coincides with the intu-
ition that it is, for a given word pair, almost always possible to form
a correct English sentence in which these words are neighbours. Re-
garding quantitative aspects, the frequency distribution of word bi-
grams can be produced by a generation process based on word uni-
gram probabilities. In Section 3.3, a measure will be introduced that
can better distinguish between a text generated in this way and a real
text.

3.1.4 Sentence Frequency

In larger corpora that are compiled from a variety of sources, the
number of duplicate sentences is not to be neglected. In the full
BNC, which serves as data basis in this case, 7.3% of the sentences
occur two or more times. The most frequent sentences are "Yeah.",
"Mm.", "Yes." and "No.", which are mostly found in the section of
spoken language. But also longer expressions like "Our next bulletin
is at 10.30 p.m." have a count of over 250. The sentence frequencies
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also follow a power-law with an exponent close to 1 (cf. Figure 3.5),
indicating that Zipf’s law also holds for sentence frequencies.
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3.1.5 Other Power-Laws in Language Data

The results above strongly suggest that when counting document
frequencies in large collections such as the World Wide Web, another
power-law distribution would be found, but an analysis has not been
carried out and would require access to the index of a web search en-
gine.

Further, there are more power-laws in language-related areas,
some of which are provided briefly to illustrate their omnipresence:

• Web page requests follow a power-law, which was employed
for a caching mechanism in (Glassman, 1994).

• Related to this, frequencies of web search queries during a fixed
time span also follow a power-law, as exemplified in Figure 3.6
for a 7 million queries log of AltaVista4 as used by Lempel and
Moran (2003).

• The number of authors of Wikipedia5 articles was found to fol-
low a power-law with γ ≈ 2.7 for a large regime in (Voss, 2005),
who also discusses other power-laws regarding the number of
links.

4http://www.altavista.com
5http://www.wikipedia.org
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3 Small Worlds of Natural Language

3.2 Scale-Free Small Worlds in Language Data

Whereas the previous section discussed the shape of rank-frequency
distributions for natural language units, now the properties of
graphs with units represented as vertices and relations between them
as edges will be in the focus of interest. As already stated in Sec-
tion 1.3.2, internal as well as contextual features can be employed for
computing similarities between language units that are represented
as (possibly weighted) edges in the graph. Some of the graphs dis-
cussed here can be classified in being scale-free Small World graphs;
others differ from these characteristics and represent other, but re-
lated graph classes.

3.2.1 Word Co-occurrence Graph

The notion of word co-occurrence is used to model dependencies be-
tween words. If two words X and Y occur together in some contex-
tual unit of information (as neighbours, in a word window of 5, in a
clause, in a sentence, in a paragraph), they are said to co-occur. When
regarding words as vertices and edge weights as the number of times
two words co-occur, the word co-occurrence graph of a corpus is given
by the entirety of all word co-occurrences.

In the following, specifically two types of co-occurrence graphs
are considered: the graph as induced by neighbouring words,
henceforth called neighbour-based graph, and the graph as induced
by sentence-based co-occurrence, henceforth called sentence-based
graph. The neighbour-based graph can be undirected or directed
with edges going from the left to the right words as found in
the corpus, the sentence-based graph is undirected. To illustrate
co-occurrence graphs, Figure 3.7 displays the sentence-based co-
occurrence graph and the co-occurrence graph based on neighbour-
ing words for a song by Radiohead.

To find out whether the co-occurrence of two specific words A and
B is merely due to chance or exhibits a statistical dependency, mea-
sures are used that compute, to what extent the co-occurrence of A
and B is statistically significant. Many significance measures can be
found in the literature, for extensive overviews consult e.g. (Evert,
2004) or (Bordag, 2007). In general, the measures compare the prob-
ability of A and B to co-occur under the assumption of their statis-
tical independence with the number of times A and B actually co-
occurred in the corpus. In this work, the log likelihood ratio (Dun-
ning, 1993) is used to sort the chaff from the wheat. It is given in
expanded form by Bordag (2007):
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3.2 Scale-Free Small Worlds in Language Data

Exit Music (for a film) 

Wake from your sleep

The drying of your tears

Today we escape

We escape.

Pack and get dressed

Before your father hears us

Before all hell breaks loose.

Breathe keep breathing

Don’t lose your nerve.

Breathe keep breathing

I can’t do this alone.

Sing us a song

A song to keep us warm

There is such a chill

Such a chill.

You can laugh

A spineless laugh

We hope that your rules

and wisdom choke you

Now we are one

In everlasting peace

We hope that you choke,      

that you choke

We hope that you choke,      

that you choke

We hope that you choke,      

that you choke

sentence

neighbour

Figure 3.7: The co-occurrence graphs for the song "Exit Music (for a film)"
by Radiohead. Upper graph: words co-occurring in the same
verse. Lower graph: words co-occurring as neighbours. Edge
weights are omitted. Notice that the neighbouring relation does
not cross verse boundaries
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3 Small Worlds of Natural Language

−2 log λ = 2

 n log n− nA log nA − nB log nB + nAB log nAB
+ (n− nA − nB + nAB) log (n− nA − nB + nAB)
+ (nA − nAB) log (nA − nAB) + (nB − nAB) log (nB − nAB)
− (n− nA) log (n− nA)− (n− nB) log (n− nB)


where n is the total number of contexts, nA the frequency of A,

nB the frequency of B and nAB the number of co-occurrences of A
and B. As pointed out by Moore (2004), this formula overestimates
the co-occurrence significance for small nAB. For this reason, often
a frequency threshold t on nAB (e.g. a minimum of nAB = 2) is ap-
plied. Further, a significance threshold s regulates the density of the
graph; for the log likelihood ratio, the significance values correspond
to the χ2 tail probabilities (Moore, 2004), which makes it possible to
translate the significance value into an error rate for rejecting the in-
dependence assumption. For example, a log likelihood ratio of 3.84
corresponds to a 5% error in stating that two words do not occur by
chance, a significance of 6.63 corresponds to 1% error.

The operation of applying a significance test results in pruning
edges being in existence due to random noise and keeping almost
exclusively edges that reflect a true association between their end-
points. Graphs that contain all significant co-occurrences of a cor-
pus, with edge weights set to the significance value between its end-
points, are called significant co-occurrence graphs in the remainder. For
convenience, no singletons in the graph are allowed, i.e. if a vertex is
not contained in any edge because none of the co-occurrences for the
corresponding word is significant, then the vertex is excluded from
the graph.

As observed by Ferrer-i-Cancho and Solé (2001) and Quasthoff
et al. (2006), word co-occurrence graphs exhibit the scale-free Small
World property. This goes in line with co-occurrence graphs reflect-
ing human associations (see Rapp, 1996) and human associations
in turn forming Small World graphs (see Steyvers and Tenenbaum,
2005). The claim is confirmed here on an exemplary basis with the
graph for LCC’s 1 million sentence corpus for German. Figure 3.8
gives the degree distributions and graph characteristics for various
co-occurrence graphs.

The shape of the distribution is dependent on the language, as Fig-
ure 3.9 shows. Some languages – here English and Italian – have a
hump-shaped distribution in the log-log plot where the first regime
follows a power-law with a lower exponent than the second regime,
as observed by Ferrer-i-Cancho and Solé (2001). For the Finnish and
German corpora examined here, this effect could not be found in the
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de1M sb t=10
power law gamma=2

de1M sig. sb t=10 s=10 

Characteristic nb sig. nb sb sig. sb
t=2 t=10 s=10 t=10 t=10, s=10

n 217,491 37,728 82,008 42,507
L 3.1005 3.3947 1.9997 2.8437
D 8 10 2 7
C 0.56087 0.20372 0.99188 0.71327
T 0.00563 0.00429 0.01274 0.01788
< k > 9.8034 6.4109 29.4379 12.8376

Figure 3.8: Graph characteristics for various co-occurrence graphs of LCC’s
1 Million sentence German corpus. Abbreviations: nb =
neighbour-based, sb = sentence-based, sig. = significant, t =
co-occurrence frequency threshold, s = co-occurrence signifi-
cance threshold. While the exact shapes of the distributions are
language and corpus dependent, the overall characteristics are
valid for all samples of natural language of sufficient size. The
slope of the distribution is invariant to changes of thresholds.
Characteristic path length and a high clustering coefficient at
low average degrees are characteristic for SWGs
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Figure 3.9: Degree distribution of significant sentence-based co-occurrence
graphs of similar thresholds for Italian, English and Finnish

data. This property of two power-law regimes in the degree distri-
bution of word co-occurrence graphs motivated the DM-model (see
Section 2.2.7, (Dorogovtsev and Mendes, 2001a)). There, the cross-
over-point of the two power-law regimes is motivated by a so-called
kernel lexicon of about 5,000 words that can be combined with all
words of a language.

The original experiments of Ferrer-i-Cancho and Solé (2001) oper-
ated on a word co-occurrence graph with window size 2: an edge
is drawn between words if they appear together at least once in a
distance of one or two words in the corpus. Reproducing their ex-
periment with the first 70 Million words of the BNC and corpora of
German, Icelandic and Italian of similar size reveals that the degree
distribution of the English and the Italian graph is in fact approxi-
mated by two power-law regimes. In contrast to this, German and
Icelandic show a single power-law distribution, just as in the experi-
ments above, see Figure 3.10. These results suggest that two power-
law regimes in word co-occurrence graphs with window size 2 are
not a language universal, but only hold for some languages.

To examine the hump-shaped distributions further, Figure 3.11
displays the degree distribution for the neighbour-based word co-
occurrence graphs and the word-co-occurrence graphs for connect-
ing only words that appear in a distance of 2. As it becomes
clear from the plots, the hump-shaped distribution is mainly caused
by words co-occurring in distance 2, whereas the neighbour-based
graph shows only a slight deviation from a single power-law. To-
gether with the observations from sentence-based co-occurrence
graphs of different languages in Figure 3.9, it becomes clear that a
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Figure 3.10: Degree distributions in word co-occurrence graphs for win-
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Figure 3.11: Degree distributions in word co-occurrence graphs for distance
1 and distance 2 for English (BNC) and Italian. The hump-
shaped distribution is much more distinctive for distance 2

hump-shaped distribution with two power-law regimes is caused by
long-distance relationships between words, if present at all.

Applications of Word Co-occurrences

Word co-occurrence statistics are an established standard and have
been used in many language processing systems. My work in-
cludes including bilingual dictionary acquisition as in (Biemann and
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3 Small Worlds of Natural Language

Quasthoff, 2005) and (Cysouw et al., 2007), semantic lexicon exten-
sion (see Biemann et al., 2004c) and visualisation of concept trails in
(Biemann et al., 2004b). In Chapter 5, they will be used as building
blocks in various Structure Discovery processes.

3.2.2 Co-occurrence Graphs of Higher Order

The significant word co-occurrence graph of a corpus represents
words that are likely to appear near to each other. When interested in
words co-occurring with similar other words, it is possible to trans-
form the above defined (first order) co-occurrence graph into a sec-
ond order co-occurrence graph by drawing an edge between two
words A and B if they share a common neighbour in the first or-
der graph. Whereas the first order word co-occurrence graph repre-
sents the global context per word, the corresponding second order
graph contains relations between words which have similar global
contexts. The edge can be weighted according to the number of com-
mon neighbours, e.g. by weight = |neigh(A)∩ neigh(B)|. Figure 3.12
shows neighbourhoods of the significant sentence-based first-order
word co-occurrence graph from LCC’s English web corpus6 for the
words jazz and rock. Taking into account only the data depicted, jazz
and rock are connected with an edge of weight 3 in the second-order
graph, corresponding to their common neighbours album, music and
band. The fact that they share an edge in the first order graph is ig-
nored.

In general, a graph of order N + 1 can be obtained from the graph
of order N, using the same transformation. The higher order trans-
formation without thresholding is equivalent to a multiplication of
the unweighted adjacency matrix A with itself, then zeroing the main
diagonal by subtracting the degree matrix of A. Since the average
path length of scale-free SW graphs is short and local clustering is
high, this operation leads to an almost fully connected graph in the
limit, which does not allow to draw conclusions about the initial
structure. Thus, the graph is pruned in every iteration N in the fol-
lowing way: For each vertex, only the maxN outgoing edges with the
highest weights are taken into account. Notice that this vertex degree
threshold maxN does not limit the maximum degree, as thresholding
is asymmetric. This operation is equivalent with only keeping the
maxN largest entries per row in the adjacency matrix A = (aij), then
At = (sign(aij + aji)), resulting in an undirected graph.

6http://corpora.informatik.uni-leipzig.de/?dict=en [April 1st, 2007]
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Figure 3.12: Neighbourhoods of jazz and rock in the significant sentence-
based word co-occurrence graph as displayed on LCC’s En-
glish Corpus website. Both neighbourhoods contain album, mu-
sic and band, which leads to an edge weight of 3 in the second-
order graph
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Figure 3.13: Degree distributions of word-co-occurrence graphs of higher
order. The first order graph is the sentence-based word co-
occurrence graph of LCC’s 1 million German sentence corpus
(s = 6.63, t = 2). Left: N = 2 for max2 = 3, max2 = 10 and
max2 = ∞. Right: N = 3 for t2 = 3, t3 = ∞

To examine quantitative effects of the higher order transforma-
tion, the sentence-based word co-occurrence graph of LCC’s 1 mil-
lion German sentence corpus (s = 6.63, t = 2) underwent this op-
eration. Figure 3.13 depicts the degree distributions for N = 2 and
N = 3 for different maxN.

Applying the maxN threshold causes the degree distribution to
change, especially for high degrees. In the third order graph, two
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3 Small Worlds of Natural Language

power-law regimes are observable.
Studying the degree distribution of higher order word co-

occurrence graphs revealed that the characteristic of being governed
by power-laws is invariant to the higher order transformation, yet
the power-law exponent changes. This indicates that the power-law
characteristic is inherent at many levels in natural language data.

To examine what this transformation yields on the graphs gener-
ated by the random graph models in the previous chapter, Figure
3.14 shows the degree distribution of second order and third order
graphs as generated by the models described in Section 2.2. The un-
derlying first order graphs are the undirected graphs of order 10,000
and size 50,000 (< k >= 10) from the BA-model, the ST-model, and
the DM-model.

While the thorough interpretation of second order graphs of ran-
dom graphs might be subject to further studies, the following should
be noted: the higher order transformation reduces the power-law ex-
ponent of the BA-model graph from γ = 3 to γ = 2 in the second
order and to γ ≈ 0.7 in the third order. For the ST-model, the de-
gree distribution of the full second order graph shows a maximum
around 2M, then decays with a power-law with exponent γ ≈ 2.7.
In the third order ST-graph, the maximum moves to around 4M2 for
sufficient max2. The DM-model second order graph shows, like the
first order DM-model graph, two power-law regimes in the full ver-
sion, and a power-law with γ ≈ 2 for the pruned versions. The third
order degree distribution exhibits many more vertices with high de-
grees than predicted by a power-law.

In summary, all random graph models exhibit clear differences to
word co-occurrence networks with respect to the higher order trans-
formation. The ST-model shows maxima depending on the average
degree of the first oder graph. The BA-model’s power law is de-
creased with higher orders, but is able to explain a degree distribu-
tion with power-law exponent 2. The full DM model exhibits the
same two power-law regimes in the second order as observed for
German sentence-based word co-occurrences in the third order.

Applications of Co-occurrence Graphs of Higher Orders

In (Biemann et al., 2004a) and (Mahn and Biemann, 2005), the util-
ity of word co-occurrence graphs of higher orders are examined
for lexical semantic acquisition. The highest potential for extract-
ing paradigmatic semantic relations can be attributed to second- and
third-order word co-occurrences. Second-order graphs are evaluated
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Figure 3.14: Second and third order graph degree distributions for BA-
model, ST-model and DM-model graphs
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Figure 3.15: Component size distribution for the sentence similarity graph
of LCC’s 3 Million sentence German corpus. The component
size distribution follows a power-law with γ ≈ 2.7 for small
components, the largest component comprises 211,447 out of
416,922 total vertices. The component size distribution com-
plies to the theoretical results of Aiello et al. (2000), see Section
2.2.8

by Bordag (2007) against lexical semantic resources. In Section 5.2, a
second-order graph based on neighbouring words on both sides will
be, amongst other mechanisms, used for inducing syntactic word
classes.

3.2.3 Sentence Similarity

Using words as internal features, the similarity of two sentences can
be measured by how many common words they share. Since the
few top frequency words are contained in most sentences as a con-
sequence of Zipf’s law, their influence should be downweighted or
they should be excluded to arrive at a useful measure for sentence
similarity. Here, the sentence similarity graph of sentences sharing at
least two common words is examined, with the maximum frequency
of these words bounded by 100. The corpus of examination is here
LCC’s 3 Million sentences of German. Figure 3.15 shows the compo-
nent size distribution for this sentence-similarity graph, Figure 3.16
shows the degree distributions for the entire graph and for its largest
component.
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3 Small Worlds of Natural Language

The degree distribution of the entire graph follows a power-law
with γ close to 1 for low degrees and decays faster for high degrees,
the largest component’s degree distribution plot is flatter for low
degrees. This resembles the broad-scale degree distribution as in-
troduced in Section 2.2.4 and can be attributed to limited sentence
length: as sentences are not arbitrarily long (see more on sentence
length distribution in Section 3.3.6), they cannot be similar to an ar-
bitrary high number of other sentences with respect to the measure
discussed here, as the number of sentences per feature word is bound
by the word frequency limit. Cost in terms of Section 2.2.4 corre-
sponds to sentence length restrictions here. However, the extremely
high values for transitivity and clustering coefficient and the low γ
values for the degree distribution for low degree vertices and com-
parably long average shortest path lengths indicate that the sentence
similarity graph belongs to a different graph class than the ones pre-
sented in Section 2.2.

Applications of the Sentence Similarity Graph

A similar measure is used in (Biemann and Quasthoff, 2007) for doc-
ument similarity, obtaining well-correlated results when evaluating
against a given document classification. A precision-recall tradeoff
arises when lowering the frequency threshold for feature words or
increasing the minimum number of common feature words two doc-
uments must have in order to be connected in the graph: both im-
proves precision but results in many singleton vertices which lowers
the total number of documents that are considered.

3.2.4 Summary on Scale-Free Small Worlds in Language Data

The examples above confirm the claim that graphs built on various
aspects of natural language data often exhibit the scale-free Small
World property or similar characteristics. Experiments with gener-
ated text corpora suggest that this is mainly due to the power-law
frequency distribution of language units, cf. also Section 3.3. The
slopes of the power-law approximating the degree distributions can
often not be produced using the random graph generation models
of Section 2.2: especially, all previously discussed generation mod-
els fail on explaining the properties of word co-occurrence graphs,
where γ ≈ 2 was observed as power-law exponent of the degree dis-
tribution. Of the generation models inspired by language data, the
ST-model exhibits γ = 3, whereas the universality of the DM-model
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3.3 A Random Generation Model for Language

to capture word co-occurrence graph characteristics can be doubted
after examining data from different languages.

Therefore, a new generation model is described in the following
section, which succeeds in modelling the co-occurrence graph and
other properties of natural language. For this, the graph is not gener-
ated directly, but obtained from a linear sequence of generated text.

3.3 A Random Generation Model for Language

Now, a graph-based generation model for language will be given
that reproduces the large-scale behaviour of language, i.e. a Zipfian
distribution of word frequency and a power-law distribution with
γ = 2 in the co-occurrence graph. Further, the model will pro-
duce sentence-like concatenations of words. At this, these charac-
teristics emerge in a generation process, rather than being directly
constrained by them. The model is inspired by SWG generation
models as discussed in Section 2.2 and reproduces the language-
characteristic graphs discussed above. This is the main contribution
of the generation model and its distinguishing feature from previ-
ous random text models. The random text model first appeared in
(Biemann, 2007).

The study of random text models unveils, which of the characteris-
tics of natural language can be produced by well-understood mech-
anisms. When keeping these mechanisms as simple as possible, they
can be perceived as plausible explanations for the origin of language
structure. Common characteristics of random text and natural lan-
guage indicate the amount of structure that is explained by the gen-
eration process, differences indicate missing aspects in the random
generator. These discrepancies can inspire both more complex ran-
dom text models and Structure Discovery processes that employ the
yet unmodelled regularities that cause them.

3.3.1 Review of Random Text Models

B. Mandelbrot (1953) provided a word generation model that pro-
duces random words of arbitrary average length in the following
way: with a probability w, a word separator is generated at each step,
with probability (1 − w)/N, a letter from an alphabet of size N is
generated, each letter having the same probability. This is sometimes
called the "monkey at the typewriter" (Miller, 1957). The frequency
distribution follows a power-law for long streams of words, yet the
equiprobability of letters causes the plot to show a step-wise rather
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3 Small Worlds of Natural Language

than a smooth behaviour, as examined in (Ferrer-i-Cancho and Solé,
2002) and shown in Figure 3.18. In the same study, a smooth rank dis-
tribution could be obtained by setting the letter probabilities accord-
ing to letter frequencies in a natural language text. But the question
of how these letter probabilities emerge remained unanswered7. Li
(1992) formally proves that the power-law frequency distribution in
this random text model is a consequence of the transformation from
the word’s length to its rank, stretching the exponential distribution
to a power-law.

Another random text model is given in (Simon, 1955), which does
not take an alphabet of single letters into consideration. Instead,
at each time step, a previously unseen new word is added to the
stream with probability α, whereas with probability (1− α), the next
word is chosen amongst the words at previous positions. As words
with higher frequency in the already generated stream have a higher
probability of being added again, this imposes a strong competition
among different words, resulting in a frequency distribution that fol-
lows a power-law with exponent γ = (1 − α). This was taken up
by Zanette and Montemurro (2005), who slightly modify Simon’s
model. They introduce sublinear vocabulary growth by addition-
ally making the new word probability dependent onto the time step.
Furthermore, they apply a threshold on the maximal probability a
previously seen word is generated with, being able to modify the
exponent z as well as to model the flatter curve for high frequency
words.

Neither the Mandelbrot nor the Simon generation model takes the
sequence of words into account. Simon treats the previously gener-
ated stream as a bag of words, and Mandelbrot does not consider
the previous stream at all. This is certainly an over-simplification, as
natural language exhibits structural properties within sentences and
texts that are not grasped by a bag of words approach.

The work by Kanter and Kessler (1995) is, to my knowledge, the
only piece of research with word order awareness for random text
generation. They show that a 2-parameter Markov process gives
rise to a stationary distribution that exhibits the word or letter fre-
quency distribution characteristics of natural language. However,
the Markov process is initialised such that any state has exactly two
successor states, which means that after each word only two different
succeeding words are possible. This is certainly not reflecting natu-
ral language properties, where in fact successor frequencies of words

7A suitable random initialisation of letter frequencies can produce a smooth rank distribu-
tion, yet is still not emergent
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3.3 A Random Generation Model for Language

follow a power-law and more successors can be observed for more
frequent words. But even when allowing a more realistic number of
successor states, the transition probabilities of a Markov model need
to be initialised a priori in a sensible way. Further, the fixed number
of states does not account for arbitrary large, extensible vocabularies.

While these previous random text models mainly aim at produc-
ing a Zipfian distribution of word frequencies, the new model pre-
sented here also takes the properties of neighbouring co-occurrence
into account and introduces the notion of sentences in random text.
After having pointed out the deficiencies of related models, a gen-
eration process is provided that takes neither the Zipf distribution
on word frequencies nor the Small World property of the neighbour-
ing co-occurrence graph as a constraint. Nevertheless, these distri-
butions emerge in the process. The distributions obtained with the
random generation model are compared to a sample of natural lan-
guage data, showing high agreement also on word length and sen-
tence length.

3.3.2 Desiderata for Random Text Models

The construction of the novel random text generation model pro-
ceeds according to the following guidelines (see Kumar et al., 1999):

• simplicity: a generation model should reach its goal using the
simplest mechanisms possible but results should still comply
to characteristics of real language

• plausibility: without claiming that the model is an exhaustive
description of what makes human brains generate and evolve
language, there should be at least a possibility that similar
mechanisms can operate in human brains.

• emergence: rather than constraining the model with the char-
acteristics we would like to see in the generated stream, these
features should emerge in the process.

The model described here is basically composed of two parts that
will be described separately: a word generator that produces random
words composed of letters, and a sentence generator that composes
random sentences of words. Both parts use an internal graph struc-
ture, where traces of previously generated words and sentences are
memorised. A key notion is the strategy of following ’beaten tracks’:
letters, words and sequences of words that have been generated be-
fore are more likely to be generated again in the future. But before
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3 Small Worlds of Natural Language

laying out both generators in detail, ways of testing agreement of a
random text model with natural language text are introduced.

3.3.3 Testing Properties of Word Streams

All previous approaches aimed at reproducing a Zipfian distribution
on word frequency, which is a criterion that certainly has to be ful-
filled. But there are more characteristics that should be obeyed to
make a random text more language-like than previous models:

• Lexical spectrum: the smoothness or step-wise shape of the rank-
frequency distribution affects the lexical spectrum, which is the
probability distribution on word frequency. In natural language
texts, this distribution follows a power-law with an exponent
close to 2 (cf. Ferrer-i-Cancho and Solé, 2002).

• Distribution of word length: according to Sigurd et al. (2004), the
distribution of word frequencies by length follows a variant of
the gamma distribution, which is given by F(x) = xa · bx.

• Distribution of sentence length: the random text’s sentence length
distribution should resemble natural language. In (Sigurd et al.,
2004), the same variant of the gamma distribution as for word
length is fitted to sentence length.

• Significant neighbour-based co-occurrence: at random generation
without word order awareness, the number of word pairs that
are significantly co-occurring in neighbouring positions should
be very low. In text generation, the number of significant co-
occurrences in natural language as well as the graph structure
of the neighbour-based co-occurrence graph should be repro-
duced.

The latter characteristic refers to the distribution of words in sequence.
As written language is rather an artefact of the most recent millen-
nia than a realistic sample of everyday language, the beginning of the
spoken language section of the BNC is used to test the model against.
For simplicity, all letters are capitalised and special characters are re-
moved, such that merely the 26 letters of the English alphabet are
contained in the sample. Being aware of the fact that letter transcrip-
tion is in itself an artefact of written language, this is chosen as a
good-enough approximation. The sample contains 1 million words
in 125,395 sentences with an average length of 7.975 words, which
are composed of 3.502 letters in average.
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3.3 A Random Generation Model for Language

3.3.4 Word Generator

The word generator emits sequences of letters, which are generated
randomly in the following way: the word generator starts with a di-
rected graph Gl with all N letters it is allowed to choose from as ver-
tices. Initially, all vertices are connected to themselves with weight 1.
When generating a word, the generator chooses a letter x according
to the letter’s probability P(letter = x), which is computed as the
normalised weight sum of outgoing edges:

P(letter = x) =
weightsum(x)

∑i∈Gl
weightsum(i)

where weightsum(x) = ∑v∈V(Gl) ew(x, v).
Then the word generator proceeds with the next position. At every

position, the word ends with a probability w ∈ (0, 1). Otherwise, the
next letter is generated according to the letter production probabil-
ity given above. For every letter bigram, the weight of the directed
edge between the preceding and current letter in the letter graph is
increased by one. This results in self-reinforcement of letter probabil-
ities: the more often a letter is generated, the higher its weight sum
will be in subsequent steps, leading to an increased generation prob-
ability. Figure 3.17 shows how a word generator with three letters A,
B, C changes its weights during the generation of the words AA, BCB
and ABC. The word generating function is given in Algorithms 1 and
2: here, concatenate(.,.) returns a string concatenation of its two
string arguments, random-number returns a random number between
0 and 1. In the implementation, the Mersenne Twister (Matsumoto
and Nishimura, 1998) is used for random number generation.

Algorithm 1 initialise-letter-graph Gl

insert X1, X2, ..XN vertices in V(Gl)
insert edges e(Xi, Xj) for i, j ∈ {1, 2, ..N} into E(Gl) with weight 0
insert edges e(Xi, Xi) for i ∈ {1, 2, ..N} into E(Gl) with weight 1

The word generator alone does produce a smooth Zipfian distribu-
tion on word frequencies and a lexical spectrum following a power-
law. Figure 3.18 shows the frequency distribution and the lexical
spectrum of 1 million words as generated by the word generator
with w = 0.3 on 26 letters in comparison to a Mandelbrot genera-
tor with the same parameters. As depicted in Figure 3.18, the word
generator fulfils the requirements on Zipf’s law and the lexical spec-
trum, yielding a Zipfian exponent of around 1 and a power-law ex-
ponent of around 2 in the lexical spectrum, both matching the values
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Algorithm 2 generate-word
word=(empty string)
previous-letter=(empty string)
repeat

next-letter=pick letter randomly according to P(letter)
word=concatenate(word,next-letter)
if not previous-letter equals (empty string) then

increase weight of e(previous-letter,next-letter) in Gl by 1
end if
previous-letter=next-letter

until random-number < w
return word

as observed previously in natural language in e.g. (Zipf, 1949) and
(Ferrer-i-Cancho and Solé, 2002). In contrast to this, the Mandelbrot
model has a step-wise rank-frequency distribution and a distorted
lexical spectrum. The word generator itself is therefore already an
improvement over previous models as it produces a smooth Zipfian
distribution and a lexical spectrum following a power-law, incorpo-
rating a notion of letters with emergent letter probabilities. But to
comply to the other requirements, the process has to be extended by
a sentence generator.

The reader might notice that a similar behaviour could be reached
by just setting the probability of generating a letter according to its
relative frequency in previously generated words. The graph seems
an unnecessary complication for that reason. But retaining the letter
graph with directed edges gives rise to a more plausible morpholog-
ical production in future extensions of this model, probably in a way
similar to the sentence generator.

3.3.5 Sentence Generator

The sentence generator model retains a directed graph Gw. Here,
vertices correspond to words and edge weights correspond to the
number of times two words were generated in a sequence. The word
graph is initialised with a begin-of-sentence (BOS) and an end-of-
sentence (EOS) symbol, with an edge of weight 1 from BOS to EOS.
When generating a sentence, a random walk starts at the BOS ver-
tex. With a probability (1− s), an existing edge is followed from the
current vertex to the next vertex according to its weight: the prob-
ability of choosing endpoint X from the endpoints of all outgoing
edges from the current vertex C is given by
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Figure 3.17: Letter graph of the word generator during the generation
of three words. The small numbers next to edges are edge
weights. The probability for the letters for the next step are
P(letter = A) = 0.375, P(letter = B) = 0.375 and P(letter =
C) = 0.25

P(word = X|C) =
ew(C, X)

∑N∈neigh(C) ew(C, N)

Otherwise, with probability s ∈ (0, 1), a new word is generated by
the word generator, and a next word is chosen from the word graph
in proportion to its weighted indegree: the probability of choosing
an existing vertex E as successor of a newly generated word N is
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Figure 3.18: Rank-frequency distribution and lexical spectrum for the word
generator in comparison to the Mandelbrot model

given by

Psucc(word = E) =
indgw(E)

∑v∈V indgw(v)

with
indgw(X) = ∑

v∈V
ew(v, X)

For each generated sequence of two words, the weight of the di-
rected edge between them is increased by 1. Figure 3.19 shows the
word graph for generating in sequence: (empty sentence), AA, AA
BC, AA, (empty sentence), AA CA BC AA, AA CA CA BC. The sen-
tence generating function is given in Algorithms 3 and 4.

Algorithm 3 initialise-word-graph Gw

insert BOS vertex into V(Gw)
insert EOS vertex into V(Gw)
insert e(BOS,EOS) into E(Gw) with weight 1

During the generation process, the word graph grows and contains
the full vocabulary used so far for generating in every time step. It is
guaranteed that a random walk starting from BOS will finally reach
the EOS vertex. It can be expected that sentence length will slowly
increase during the course of generation as the word graph grows
and the random walk has more possibilities before finally arriving at
the EOS vertex. A similar effect, however, can be observed in human
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Algorithm 4 generate-sentence
current-vertex=BOS
repeat

r=random-number
if r < s then

new-word=generate-word
if new-word ∈ V(Gw) then

increase weight of e(current-vertex,new-word) by 1
else

insert new-word into V(Gw)
insert e(current-vertex,new-word) into E(Gw) with weight 1

end if
sentence=concatenate(sentence, new-word)
successor=pick word randomly according to Psucc(word)
increase weight of e(new-word,successor) by 1
sentence=concatenate(sentence,successor)
current-vertex=successor

else
next-word=pick word randomly according to P(word|current-
vertex)
sentence=concatenate(sentence,next-word)
increase weight of e(current-vertex,next-word) by 1
current-vertex=next-word

end if
until current-vertex equals EOS
return sentence

language learning, where children start with one- and two-word sen-
tences and finally produce sentences of more than 1000 words in
case of growing up to philosophers (see Meyer, 1967). The sentence
length is influenced by both parameters of the model: the word end
probability w in the word generator and the new word probability s
in the sentence generator. By feeding the word transitions back into
the generating model, a reinforcement of previously generated se-
quences is reached. Figure 3.20 illustrates the sentence length growth
for various parameter settings of w and s.

When setting the new word probability s to 0 and not updating
weights in Gw, the model is equivalent to a stationary Markov pro-
cess with a horizon of 1. However, in this case, an initialisation with
a fixed vocabulary and given transition probabilities would be neces-
sary. Both word and sentence generator can be viewed as weighted
finite automata (cf. Allauzen et al., 2003) with self training.
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Figure 3.19: Word graph of the sentence generator model. Notice that in the
last step, the second CA was generated as a new word from the
word generator, and so was the last AA in the previous sen-
tence. The generation of empty sentences (omitted in output)
happens frequently
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Figure 3.20: Sentence length growth, plotted in average sentence length per
intervals of 10,000 sentences. The straight lines in the log-log
plot indicate polynomial growth

After having defined a random text generation model, the subse-
quent section is devoted to testing it according to the criteria given
above.

3.3.6 Measuring Agreement with Natural Language

To measure agreement with the BNC sample, random text was gener-
ated with the sentence generator with w = 0.4 and N = 26 to match
the English average word length and setting s = 0.08. The first 50,000
sentences were skipped to reach a relatively stable sentence length
throughout the sample. To make the samples comparable, 1 million
words totalling 12,552 sentences with an average sentence length of
7.967 are used.

Rank-Frequency

The comparison of the rank-frequency distributions for English and
the sentence generator is depicted in Figure 3.21.

Both curves follow a power-law with γ close to 1.5, in both cases
the curve is flatter for high frequency words as observed by Mandel-
brot (1953). This effect could not be observed to this extent for the
word generator alone (cf. Figure 3.18).
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Figure 3.21: Rank-frequency plot for English and the sentence generator

Word Length

While the word length in letters is the same in both samples, the sen-
tence generator produced more words of length 1, more words of
length>10 and less words of medium length. The deviation in single
letter words can be attributed to the writing system being a transcrip-
tion of phonemes – and few phonemes being expressed with only
one letter. However, the slight quantitative differences do not op-
pose the similar distribution of word length in both samples, which
is reflected in a curve of similar shape in Figure 3.22 and fits well the
gamma distribution variant of Sigurd et al. (2004).

Sentence Length

The comparison of sentence length distribution shows again a high
capability of the sentence generator to model the distribution of the
English sample. As can be seen in Figure 3.23, the sentence gener-
ator produces less sentences of length>25 but does not show much
differences otherwise.

In the English sample, there are surprisingly many two-word sen-
tences. Inspection of the English sample revealed that most of the
surprisingly long sentences are prayers or similar items, which have
been marked as a single sentence.
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Figure 3.22: Comparison of word length distributions. The dotted line is
the function as introduced in (Sigurd et al., 2004) and given by
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 1

 10

 100

 1000

 10000

 1  10  100

n
u
m

b
e
r 

o
f 
s
e
n
te

n
c
e
s

length in words

sentence length

sentence generator

English

Figure 3.23: Comparison of sentence length distributions

75



3 Small Worlds of Natural Language

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000

n
r 

o
f 
v
e
rt

ic
e
s

degree interval

degree distribution

sentence generator

English

word generator

power law z=2

Text BNC sample sent. gen. word gen. ER graph
n 7,154 14,234 3,498 10,000
L 2.933 3.147 3.601 4.964
< k > 9.445 6.307 3.069 7
C 0.2724 0.1497 0.0719 6.89E-4

Figure 3.24: Characteristics of the significant neighbour-based co-
occurrence graphs of English and the generated samples
of word and sentence generator

Neighbour-based Co-occurrence

Next, the structure of the significant neighbour-based co-occurrence
graphs is examined. The significant neighbour-based co-occurrence
graph contains all words as vertices that have at least one
co-occurrence to another word exceeding a certain significance
threshold. The edges are undirected and weighted by significance.
Recall that the neighbour-based co-occurrence graph is scale-free and
the Small World property holds, cf. Section 3.2.1.

For comparing the sentence generator sample to the English sam-
ple, log likelihood statistics on neighbouring words are computed
with t = 2 and s = 3.84. For both graphs, the number of vertices,
the average shortest path length, the average degree, the clustering
coefficient and the degree distribution are given in Figure 3.24. Fur-
ther, the characteristics of a comparable random graph as generated
by the ER-model and the graph obtained from the 1 million words
generated by the word generator model are shown.

From the comparison with the random graph it is clear that both
neighbour-based graphs exhibit the Small World property as their
clustering coefficient is much higher than in the random graph while
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3.3 A Random Generation Model for Language

the average shortest path lengths are comparable. In quantity, the
graph obtained from the generated sample has about twice as many
vertices as the English sample, but its clustering coefficient is about
half as high. This complies to the steeper rank-frequency distri-
bution of the English sample (see Figure 3.21), which is, however,
much steeper than the average exponent found in natural language.
The degree distributions clearly match with a power-law with γ =
2. The word generator data produced a number of significant co-
occurrences that lies in the range of what can be expected from the
5% error of the statistical test. The degree distribution plot appears
shifted downwards about one decade, clearly not producing the dis-
tribution of words in sequence of natural language. Considering the
analysis of the significant neighbour-based co-occurrence graph, the
claim is supported that the sentence generator model reproduces the
characteristics of word sequences in natural language on the basis of
bigrams.

Sentence-based Co-occurrence

It is not surprising that the sentence generator produces high agree-
ment with natural language regarding neighbour-based significant
word co-occurrences, since the random text model incorporates a no-
tion of local word order. But also when measuring sentence-based
word co-occurrence, the agreement is high, as Figure 3.25 shows: the
sentence-based word co-occurrence graph (t = 2 and s = 6.63) for
the generated text and the BNC sample show a very similar degree
distribution, whereas the word generator produces less significant
co-occurrences, although the difference is not as large as for word
bigrams. For low degrees, the word generator graph’s degree distri-
bution follows the power-law distribution much more closely than
the sentence generator and the natural language graphs.

3.3.7 Summary for the Generation Model

A random text generation model was introduced that fits well
with natural language with respect to frequency distribution, word
length, sentence length and neighbouring co-occurrence. The model
was not constrained by any a priori distribution – the characteristics
emerged from a two-level process involving one parameter for the
word generator and one parameter for the sentence generator. This is
the first random text generator that models sentence boundaries be-
yond inserting a special blank character at random: rather, sentences
are modelled as a path between sentence beginnings and sentence
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Figure 3.25: Degree distributions of the significant sentence-based co-
occurrence graphs of English, sentence generator and word
generator. The differences are similar to measurements on
neighbour-based co-occurrences, but not as distinctive

ends which imposes restrictions on the words at sentence begin-
nings and endings. Considering its simplicity, a plausible model for
the emergence of large-scale characteristics of language is proposed
without assuming a grammar or semantics. After all, the model pro-
duces gibberish – but gibberish that is well distributed.

The studies of Miller (1957) rendered Zipf’s law un-interesting for
linguistics, as it is a mere artefact of language – as it emerges when
putting a monkey in front of a typewriter – rather than playing an
important role in its production. The model introduced here does not
only explain Zipf’s law, but many other characteristics of language,
which are obtained with a monkey that follows beaten tracks. These
additional characteristics can be thought of as artefacts as well, but
I strongly believe that the study of random text models can provide
insights in the process that lead to the origin and the evolution of
human languages.

For further work, an obvious step is to improve the word generator
so that it produces phonologically plausible sequences of letters and
to intertwine both generators for the emergence of word categories.
At this, letters could be replaced by phonemes, allowing only possi-
ble transitions as studied in the field of phonotactics (see Ladefoged
and Maddieson, 1996). This would not mean an a-priori initialisa-
tion of the model but a necessary adaptation to the human phonetic
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3.3 A Random Generation Model for Language

apparatus.
Another suggestion is to introduce more levels with similar gener-

ators, e.g. for morphemes, phrases and paragraphs. For evaluation
of these additional generators, however, much more precise quanti-
tative measures would be needed.

Furthermore, it is desirable to embed the random generator in
models of communication where speakers parameterise language
generation of hearers and to examine, which structures are evolu-
tionary stable (see Jäger, 2003). This would shed light on the inter-
actions between different levels of human communication. In this
context, it would be desirable to ground the utterances to real-world
situations, as carried out in the talking heads experiments of Steels
(2003) and to simulate on a realistic social network, as proposed in
Mehler (2007).
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4 Graph Clustering

Having shown in the previous chapter that many phenomena in
natural language can be modelled quantitatively with Small World
graphs, this chapter is now devoted to discovering structure in these
graphs by grouping their vertices together in meaningful clusters.

Clustering is the process of grouping objects in a way that similar
objects are found within the same group. Informally, the similarity
between objects within a group should be higher than the similarity
between objects of different groups. These groups are called clusters.
Clustering is data exploration contrary to classification, which is the
learning of a classifier that assigns objects to a given set of classes.
Clustering is also known as unsupervised machine learning.

Among researchers, there is no consensus of what exactly consti-
tutes a cluster. In (Meilă, 2005), different measures are given that de-
termine the quality of clusterings, yet the optimisation of a clustering
with respect to one measure often results in a performance drop of
another. Therefore the question cannot be how to produce an opti-
mal clustering by itself, but to produce the best clustering for a given
task, where the grouping of objects is used to achieve an improve-
ment over not using a grouping or over an inferior way of grouping.

In Section 4.1, clustering in its broadness is briefly reviewed in gen-
eral. The discipline of graph clustering is embedded into the broad
field of clustering and discussed in detail and a variety of graph
clustering algorithms are examined in terms of mechanism, algorith-
mic complexity and adequacy for Small World graphs. Taking their
virtues and drawbacks into consideration, an efficient graph parti-
tioning algorithm called Chinese Whispers is developed in Section
4.2. This algorithm will be used throughout this work to solve sev-
eral NLP tasks.

4.1 Review on Graph Clustering

This section provides a review on graph clustering methods and their
properties. After a introduction to clustering in general and graph
clustering in particular, the distinction between spectral and non-
spectral methods is drawn and several algorithms are described in
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more detail.

4.1.1 Introduction to Clustering

To be able to set up a clustering method, a measure is needed that
defines a similarity (or dissimilarity) value for pairs of objects, repre-
sented by features. Independent of the clustering method used, the
similarity measure has a large influence on the result. Depending on
the representation of objects (i.e. what kind of features are used), a
plethora of similarity measures are possible and have to be chosen in
order to meet the invariants of objects. For example, when clustering
handwritten digits for optical character recognition, the shape of dig-
its is more discriminative than their horizontal or vertical displace-
ment or their size. Traditionally, objects are given as data points in
a high-dimensional space, where the dimensions represent features
that can be determined by examining the object. For the handwrit-
ten digits, every pixel could play the role of a feature, with the value
set to the colour intensity of the pixel. The object’s data point in the
feature space is often referred to as feature vector.

Here, only the most basic differences of clustering methods are
displayed rather than elaborated, to merely put the discipline of
graph clustering into the right place. For recent extensive overviews
of clustering methods, the reader is referred to (Everitt et al., 2001;
Berkhin, 2002).

Different methods of clustering can be classified into hierarchical
methods and partitionings. Hierarchical methods arrange the objects
in nested clusters, following divisive (top-down) or agglomerative
(bottom-up) strategies: In divisive clustering, all objects are regarded
as being contained in one large cluster in the beginning. Clusters
are iteratively split until either only single objects are found in the
clusters of the lowest hierarchy level or a stopping criterion is met.
Agglomerative methods proceed the opposite way: in initialisation,
every object constitutes its own cluster. Iteratively, clusters are joined
to form larger clusters of clusters until all objects are in one big clus-
ter or the process stops because none of the intermediate clusters are
similar enough to each other. For the notion of similarity of clusters,
again, various strategies are possible to compute cluster similarity
based on the similarity of the objects contained in the clusters, e.g.
single-link, complete-link and average-link cluster similarity, which
are defined as the highest, lowest or the average similarity of pairs of
objects from different clusters. Commonly used is also the distance
of centroids: a cluster centroid is an artificial data point whose co-
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Figure 4.1: Example of hierarchical clustering. Left: data points,
right: dendrogram and possible vertical cuts for parti-
tions {{A, B, C, D}, {E, F}}, {{A, B}, {C, D}, {E, F}} and
{{A, B}, {C}, {D}, {E}, {F}}. Dotted circles display the nested
clusters in the data; for similarity, the inverse distance between
centres of these circles was used

ordinates are achieved by averaging over the coordinates of all data
points in the cluster. The benefit of hierarchical clustering methods,
namely the arrangement of objects into nested clusters that are re-
lated to each other, is also its largest drawback: in applications that
need a sensible number of non-nested clusters (such as the handwrit-
ten digits, which require 10 parts of the data), the question of where
to place the vertical cut in the cluster hierarchy is non-trivial. Fig-
ure 4.1 shows the visualisation of a hierarchical clustering of points
with similarity based on their distance in their 2-dimensional space,
called dendrogram. The dotted lines are possible vertical cuts to turn
the hierarchy into a flat partition.

The other option is to directly partition the objects into a set of dis-
joint sets of objects such that each object is member of exactly one
cluster. This makes the vertical cut in the cluster hierarchy obsolete.
The most prominent representative of partitioning algorithms is k-
means (MacQueen, 1967). The k-means algorithm retains k cluster
centroids which are initialised randomly in the vector space spanned
by the set of features. Each data point is assigned to the centroid to
which it is most similar. Then, the cluster centroids are recomputed
by averaging the feature vectors of the data points assigned to them.
This is done iteratively until no changes can be observed in subse-
quent steps. K-means is very efficient, yet has two disadvantages:
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the number of clusters k has to be set beforehand and outcomes of
different runs might differ due to the random initialisation of cen-
troids: the algorithm gets stuck in local optima – a feature that is
shared by all randomised approaches.

Most literature on clustering encompasses methods operating on
data points in an n-dimensional space, and a metric is used to com-
pute similarity values. This is due to the data, which is naturally rep-
resented as feature vectors in many settings. An alternative, which
will be used throughout this work, is the graph representation. Here,
objects are represented as vertices in an undirected graph, and edge
weights between these vertices reflect similarity.

Traditionally, the vector space model (Salton et al., 1975), origi-
nating from the field of information retrieval (see Baeza-Yates and
Ribeiro-Neto, 1999, for a survey), has been widely used in NLP and
examined in great detail in (Sahlgren, 2006, inter al.). In Schütze’s
Word Space (Schütze, 1993) and related works, an entity (e.g. a doc-
ument) is represented as a high-dimensional feature vector, whereas
features are usually words appearing in the document. Notice that
it is straightforward to compute the graph representation from the
vector space representation by constructing a graph with one vertex
per object and computing pair-wise similarities on the vector space
that form the weights of edges between the respective vertices. This
conversion is lossy, as it is not possible to restore the original feature
vectors from the similarity graph. As clustering algorithms normally
operate on similarities rather than on the single feature vectors, how-
ever, this loss does not render graph-based methods less powerful.

Variants of this conversion are possible: an edge between two ver-
tices can be drawn only if the weight exceeds a certain threshold.
Notice that some entities in the vector representation might not end
up in the graph in this case. Another variation could be adding only
the N most similar adjacent vertices for each vertex.

There are fundamental differences between vector space and graph
representation. First of all, vector spaces have dimensions, which
are spanned by the features respectively the vector entries. There is
nothing corresponding to a dimension in graphs – they encode sim-
ilarity directly instead of assigning a location in a high-dimensional
space. For this reason, the vector space notion of a centroid as the av-
erage vector of a set of vectors does not have an equivalent in graphs.
A consequence of thresholding the minimum weight in the conver-
sion is the possible unrelatedness of individual entities in the graph:
whereas a suitable similarity function assigns non-zero values to all
vector pairs, and thus grades the similarity scores, there is a possibly
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large fraction of vertex pairs in the graph with zero similarity to all
other vertices, which have to be excluded from the clustering.

The conversion algorithm outlined above has a quadratic time-
complexity in the number of entities, as each possible pair of entities
has to be considered. This is unwanted, as we shall see that fur-
ther processing steps can have much lower time-complexities which
would turn this conversion into a bottleneck. A heuristic to optimise
the conversion is to index the term-document matrix by feature and
to compare only pairs of entities that show to be amongst the top N
entities which have this feature set to a non-zero value.

When transforming data which is represented in a vector space,
the question arises why to do so. Dependent on the task to be solved,
this may or may not be advantageous.

In some cases, feature vector-based techniques are not applicable,
as the data is already given in a graph representation. This is often
the case in the field of natural language processing, and this is why
this work concentrates mainly on graph methods. For an easily di-
gestible and yet thorough introduction to graph models in NLP, the
reader is referred to (Widdows, 2004).

In the next section, two different paradigms of graph clustering are
described, one operating directly on graphs, the other operating on
the spectrum of its adjacency matrix.

4.1.2 Spectral vs. Non-spectral Graph Partitioning

Spectral graph clustering is based on spectral graph theory, see
(Chung, 1997; Cvetkovič et al., 1995) for thorough overviews of this
field. Spectral methods make use of invariants of the adjacency ma-
trix (especially its Laplacian1), such as characteristic polynomials,
eigenvalues and eigenvectors. This is closely related to dimension-
ality reduction techniques like singular value decomposition (SVD)
and latent semantic analysis (LSA, (Deerwester et al., 1990)). E.g.
the algorithm of Shi and Malik (2000) splits the vertices in two parts
based on the second-smallest eigenvalue of the Laplacian. A related
setup is used by Meilă and Shi (2000), where the eigenvectors for the
largest k eigenvalues of a adjacency matrix invariant are used as ini-
tial centroids for k-means, which of course requires a vector space
representation of the data. For spectral clustering, the eigenvectors
corresponding to the largest k eigenvalues define the clusters, which
means that spectral clustering always needs the number of clusters k

1the Laplacian matrix is given by L = DG − AG, where DG is the degree matrix of graph
G that contains the degree of vertices in the main diagonal
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as an input parameter. In general, spectral methods rely on various
matrix operations, most of which cause the entire algorithm to be
slower than time-quadratic2 in the number of vertices, making spec-
tral techniques only applicable to graphs of at most several thousand
vertices. As in NLP, often millions of vertices are needed to represent
e.g. different words in a corpus, and dimensionality reduction tech-
niques have generally shown to be inadequate for the power-law dis-
tributions found in natural language (cf. Levin et al., 2006; Steyvers
and Tenenbaum, 2005), the focus of this work will be on non-spectral
methods in the remainder. Non-spectral methods operate directly on
the graph or its adjacency matrix without computing the invariants
as described above. Methods are often inspired by ’classical’ graph
theory, which is outlined in e.g. (Bollobas, 1998) or (Gibbons, 1985).
In the next subsection, a number of non-spectral graph clustering al-
gorithms are summarised.

4.1.3 Graph Clustering Algorithms

Given a graph, the question arises how it should be split into two
or more parts. Intuitively, a cluster in a graph is connected with
many internal edges, and there are only few edges between clusters.
In graph theory, several measures have been proposed to determine
how vertices and groups of vertices relate to each other.

Measures of Cluster Quality

Šíma and Schaeffer (2005) summarise several locally computable fit-
ness functions, which are used for measuring the quality of a cluster
within a graph.

The conductance of a cut S, φ(S), is defined as the size of the cut,
divided by the minimum of the sums of degree in the parts:

φG(S) =
cG(S)

min(∑a∈S(kS(a), ∑b∈V/S(kV/S(b)))

For clustering, the conductance of a cut should be minimised. The
conductance of a weighted graph is also called normalised cut, as used
by Shi and Malik (2000).

The local density of a subset ∅ 6= S ⊂ V in a graph G is the ratio
of the number of edges in the subgraph G(S) induced by S over the

2iterative improvements in matrix multiplication complexity suggest that its time com-
plexity is quadratic, although the fastest known algorithms are slower, see (Cohn et al.,
2005)
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number of edges in a clique of |S| vertices:

ldensityG(S) =
2|E(S)|

(|S| · (|S| − 1))
.

The local density measures the ratio between actual and possible
edges in a set of vertices. For clustering, the local density of parts
should be maximised.

The relative density of a cut S is defined as

rdensityG(S) =
|E(S)|

(|E(S)|+ cG(S))

and measures the amount edges that are within the parts versus the
amount that are in the cut. Cluster quality is higher for larger relative
density.

Single cluster editing of a subset S ⊂ V counts the number of
edge operations (additions of edges and deletions of edges) needed
to transform S into an isolated clique and can be computed as

sinclueditG(S) =
(
|S|
2

)
− |E(S)|+ cG(S).

Single cluster editing should be minimised for a good clustering.
Many graph clustering algorithms search for clusters that directly

optimise these measures (see e.g. Brandes et al., 2003; Jain et al., 1999;
Mihail et al., 2002; Schaeffer, 2005).

In (Šíma and Schaeffer, 2005), proofs are given that optimising each
single of the four measures is NP-complete, i.e. the number of com-
putations needed for the optimisation is exponential in the number
of vertices, making the optimisation intractable: there exist no effi-
cient solutions for large numbers of vertices3. Therefore, algorithms
that optimise these measures are theoretically justified, but are not
applicable for large graphs because their run-times are too long to be
of practical use. Other NP-complete measures and approximations
thereof can be found in (Bern and Eppstein, 1997). In (Kannan et al.,
2000), cases where the optimisation of graph measures even leads to
undesired results are discussed and exemplified.

Desiderata on Graph Clustering for Natural Language

Graph partitioning has been of practical use mainly in the field of
very large scale integration (VLSI), being a part of hardware design

3if P 6= NP holds for the classes P and NP in computational complexity, which is un-
proven, yet widely accepted
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for processors. A major question in VLSI is now to distribute digital
logic on several chips. Atomic circuits can be modelled as vertices
in a graph, where edges represent dependencies between circuits.
To arrive at a performant architecture, the number of dependencies
between different chips should be minimised, because the transfer
between chips is much slower than within chips. An additional con-
straint in VLSI is that the parts are of roughly equal size to implement
the overall circuit on several equisized chips. See (Fjällström, 1998)
for a survey on graph partitioning in VLSI and (Hauck and Borriello,
1995) for an evaluation of bipartitioning techniques. Unfortunately,
methods developed for VLSI are only applicable with restrictions to
language data, as the constraint of a fixed number of equisized parts
does not reflect the natural structure of language: as indicated in
Chapter 3, the distribution of cluster sizes in language data can be
expected to follow a power-law, which implies a highly skewed dis-
tribution on natural cluster sizes rather than clusters of similar scale.
As an example, the number of word types in syntactic word classes
differ considerably: whereas open word classes like nouns, adjec-
tives and verbs contain a large number of members, closed word
classes like determiners, prepositions and pronouns only posses a
few. A clustering algorithm on word classes that aims at equisized
clusters would split open word classes into several clusters while
crudely lumping closed word classes together. Another difference
between applications like VLSI and natural language is that in con-
trast to an engineer’s task of distributing a current network over a
fixed number of chips, in natural language it is often not known be-
forehand, how many clusters is a sensible choice. Think of the num-
ber of topics in a text collection: without reading the collection, a user
will not be able to specify their number, but clustering into topics is
exactly what a user wants in order to avoid reading the whole collec-
tion. Other examples include the number of different languages in a
random internet crawl, which will be discussed in depth in Section
5.1, and the number of word meanings in word sense induction, see
Section 5.3.

Facing the NP-completeness of the measures above, a constructor
of an efficient graph clustering algorithm is left with two choices:
either to optimise a measure that is not NP-complete, or to give com-
putationally low-cost heuristics that only approximate one of the
measures above. Both strategies can be observed in a selection of
graph clustering algorithms that will be presented now.
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Figure 4.2: Two possible minimal cuts for an unweighted graph of 8 ver-
tices. Cutting only one vertex off is counter-intuitive and does
not optimise any of measures given above

Graph Clustering Review

The most widely known polynomial-time graph measure is mincut
(minimal cut): a graph is (iteratively) split in a top-down manner
into two parts in each step, such that the size of the cut is minimised.
Finding a minimal cut is equivalent to finding the maximal flow be-
tween two vertices in a current network as stated in the max-flow
min-cut theorem (Ford and Fulkerson, 1956). The global minimal cut
is achieved by minimising over max-flows between all pairs of ver-
tices. The mincut problem can be solved for weighted, undirected
graphs in O(|E| + log3(|V|) as proposed by Karger (1996) and is
therefore a measure that has viable run-time properties for graphs
with several thousand vertices. For larger graphs, Wu and Leahy
(1993) describe a method to transform the graph into a cut-equivalent
tree that allows even faster processing times. Another alternative of
scaling is the use of parallelisation (see Karger, 1993, 1996). Min-
cut is used for building trees on graphs by Flake et al. (2004) for
web community identification. A problem of mincut, however, is
that several minimum cuts can exist, of which many can be counter-
intuitive. Figure 4.2 illustrates two possible outcomes of mincut on
an unweighted graph with cut size of 4.

The counter-intuitiveness of the ’bad’ minimal cut in Figure 4.2
originates in the fact that one of the 4-cliques is cut apart. To over-
come this flaw by balancing cluster sizes, ratio cuts were used by Wei
and Cheng (1991) for VLSI and normalised cuts by Shi and Malik
(2000) for image segmentation. In (Shi and Malik, 2000), a spectral
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approximation for minimising conductance only results in bearable
run-times for pictures of some 10,000 pixels when taking properties
of image segmentation into account: e.g. that the graphs are only
locally connected – again a property that does not hold for graphs
in natural language, opposing the shortest average path lengths in
word graphs, see Chapter 3. When using mincut to iteratively split a
graph in a hierarchical setting, the number of clusters or a maximum
cut value has to be defined, making the methods subject to individ-
ual tuning for each dataset.

More appropriate for the clustering of Small World graphs seems
Small World Clustering (Matsuo, 2002). Here, the weighted sum
of average shortest path length and clustering coefficient are to be
maximised by removing and adding edges until a local maximum
is found. Non-connected components of the resulting graph consti-
tute the clusters. The author tests the approach on a small word co-
occurrence network. Since the computation of both measures is com-
putationally expensive, a more efficient heuristic would be needed in
order to make the procedure feasible for large graphs.

Much faster and also employing the Small World property is the
HyperLex algorithm of Veronis (2004). Here, the following steps
are repeated on an undirected graph, edge-weighted by dissimilar-
ity of vertex pairs: the largest hub is identified as being a root vertex,
and all of its neighbours are deleted from the graph, until no more
hub vertex with a sufficient degree and local clustering coefficient
can be found. These root vertices form the first level of a minimum
spanning tree (that is, the tree containing all vertices of the graph
with the minimum total edge weight), which contains the clusters of
vertices in its first level subtrees. The minimum spanning tree can
be computed in O(|E|log|E|), which makes the overall procedure
very efficient. HyperLex was developed and evaluated for word
sense induction, see Section 5.3. The various parameters for deter-
mining whether a vertex is counted as hub, however, are subject to
application-dependent fine-tuning.

An interesting point is raised by Ertöz et al. (2002) in the context of
graph-based document clustering: a general problem with cluster-
ing algorithms is that regions with a higher density, i.e. many data
points in a local neighbourhood in the vector space or highly con-
nected subgraphs in the graph model, tend to be clustered together
earlier than regions of low density. It might be the case that in hier-
archical settings, two dense clusters that are close to each other are
agglomerated while sparse regions are still split into small pieces, re-
sulting in an unbalanced clustering. Figure 4.3 shows an illustrating
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Figure 4.3: Dense and sparse regions: the dense clusters are joined before
the sparse region is clustered. In hierarchical settings, this situ-
ation leads to no vertical cut that would produce the intuitively
expected clusters. In partitioning the same problem arises with
either too many small clusters in the sparse region or too large
clusters in the dense region. Shades indicate the desired parti-
tion; the dotted circles show two levels of hierarchical clustering

example.
To overcome this problem, Ertöz et al. (2002) introduce self scaling

in the graph model: for each vertex, only the N most similar (highest-
weighted) neighbours are considered. A new graph is computed
from this top-N graph by counting the number of different paths
of length 2 between any pair of vertices and assigning the result as
edge weights in the new graph. The more common neighbours two
vertices had in the top-N graph, the higher is their resulting weight
in the new graph, cf. the higher order transformation described in
Section 3.2.2. As the operation of taking the top N neighbours is
not attributed with a weight or similarity threshold, this operation
adapts to the density differences in the original graph. Further, Ertöz
et al. (2002) describe the necessity for various similarity thresholds:
for clustering, a higher threshold is used to determine the partition.
As thresholding might result in a portion of vertices without edges,
these are attributed to their nearest cluster in a subsequent step that
uses a lower threshold. In this way, vertices with low edge weights
do not contribute to the cluster structure but are nevertheless part of
the final clustering.

Elaborating on the bipartite structure of many datasets (e.g. terms
and documents in information retrieval), Zha et al. (2001) apply
methods designed for general graphs to the bipartite setting and de-
fine bipartite cuts and bipartite normalised cuts. The divisive binary
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clustering algorithm described there is time-linear in the number of
vertices, which is achieved by an approximation using singular value
decomposition (which has to be computed beforehand). Here, again,
the number of relevant dimensions determines the number of clus-
ters and has to be provided as a parameter.

Another way of looking at graph clustering is based on the notion
of a random walk on graphs. A random walk is the formalisation of
the idea of taking successive steps at random along possible paths.
In graphs, a random walk is a path through vertices of a graph along
the edges; in weighted graphs, the probability of walking along an
edge is proportional to its weight. Random walks on graphs can
be viewed as Markov chains: the next step is only dependent on the
vertex (state) where the random walker is positioned at a certain time
step, and time invariance is given by the fact that the probabilities of
successor vertices (edge weights) are invariant of specific time steps.

Random walks have been applied to rank vertices according to
their prominence in PageRank (Brin and Page, 1998) for internet
search engines, further for text summarisation in (Mihalcea and Ta-
rau, 2004) and (Erkan and Radev, 2004) and for word sense induction
by Agirre et al. (2006b). Prominence ranking using random walks is
based on the intuition that the more important a vertex is, the more
often it is visited by a long random walk.

Using random walks in clustering is based on another idea: ran-
dom walks starting at some point in a cluster should be ending up
in the same cluster after a couple of steps more likely than ending
up in another cluster because of a higher inter-cluster than intra-
cluster connectivity that constitutes a desired clustering. This idea is
employed in Markov Chain Clustering (MCL, (van Dongen, 2000)).
Since MCL has been used in NLP for word sense induction by Wid-
dows and Dorow (2002) and can be viewed as a generalisation of a
clustering algorithm that will be introduced in the next section, it is
explained in more detail.

MCL is the parallel simulation of all possible random walks up
to a finite length on a graph G. MCL simulates flow on a graph
by repeatedly updating transition probabilities between all vertices,
eventually converging to a transition matrix after k steps that can be
interpreted as a clustering of G. This is achieved by alternating an
expansion step and an inflation step. The expansion step is a matrix
multiplication of the adjacency matrix AG with the current transition
matrix. The inflation step is a column-wise non-linear operator that
increases the contrast between small and large transition probabili-
ties and normalises the column-wise sums to 1. The k matrix mul-
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tiplications of the expansion step of MCL lead to a time-complexity
worse than quadratic. The outcome of the algorithm is determini-
stic and depends sensitively on four parameters that have to be fine-
tuned by the user: a loop weight for allowing the random walk to
stay at a vertex, two inflation constants for influencing the cluster
granularity, and an initial prefix length for manipulating the input
data. The number of clusters is found by the method itself.

It has been observed by van Dongen (2000) that only a few early
iterations operate on dense matrices – when using a strong infla-
tion operator, matrices in the later steps tend to be sparse. The au-
thor further discusses pruning schemes that only keep a few of the
largest entries per column dependent on an additional pruning pa-
rameter, leading to drastic optimisation possibilities. But the most
aggressive sort of pruning is not considered: only keeping one sin-
gle largest entry. This and other optimisations will be undertaken in
the next section, at the price of ending up with a randomised and
non-deterministic, yet more efficient algorithm.

4.2 Chinese Whispers Graph Clustering

In this section, the Chinese Whispers (CW) graph clustering algo-
rithm is described. CW was first published in (Biemann and Teres-
niak, 2005) and later more formally described in (Biemann, 2006b),
both publications form the basis for this section. Additionally, exten-
sions of CW are discussed. The development of this algorithm is one
of the major contributions of this thesis, and the algorithm is used
throughout Chapter 5 to realise Structure Discovery procedures.

As data sets in NLP are usually large, there is a strong need for
efficient methods, i.e. of low computational complexities. In the pre-
vious section, several graph clustering algorithms were examined on
their utility for these datasets. It turned out that algorithms that ex-
actly optimise graph-theoretical measures are mostly intractable, and
that most approximations either aim at producing equisized clusters
or take the number of desired clusters as input parameter. Now,
a very efficient graph clustering algorithm is introduced that is ca-
pable of partitioning very large graphs in comparatively short time.
This is realised by merely taking local properties of vertices into ac-
count, in contrast to optimising global measures like the minimal cut.
The number of parts emerges in the process and does not have to be
defined by the user. While this is reached by a non-deterministic
and formally not converging algorithm, the method is applicable ef-
ficiently to datasets that are prohibitively large for most other meth-
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ods.

4.2.1 Chinese Whispers Algorithm

CW is a very basic – yet effective – algorithm to partition the ver-
tices of weighted, undirected graphs. The name is motivated by the
eponymous children’s game, where children whisper words to each
other4. While the game’s goal is to arrive at some funny derivative
of the original message by passing it through several noisy channels,
the CW algorithm aims at finding groups of vertices that broadcast
the same message to their neighbours. It can be viewed as a simula-
tion of an agent-based social network; for an overview of this field,
see (Amblard, 2002). The algorithm is outlined as follows:

Algorithm 5 Standard Chinese Whispers CW(graph G(V, E))
for all vi ∈ V do

class(vi) = i
end for
for it=1 to number-of-iterations do

for all v ∈ V, randomised order do
class(v)=predominant class in neigh(v)

end for
end for
return partition P induced by class labels

Intuitively, the algorithm works in a bottom-up fashion: first, all
vertices get different classes. Then the vertices are processed in ran-
dom order for a small number of iterations and inherit the predomi-
nant class in the local neighbourhood. This is the class with the max-
imum sum of edge weights to the current vertex. In case of multi-
ple predominant classes, one is chosen randomly. This behaviour on
predominant class ties and the random processing order of vertices
within one iterations render the algorithm non-deterministic.

Regions of the same class stabilise during the iteration and grow
until they reach the border of a stable region of another class. Notice
that classes are updated continuously: a vertex can obtain classes
from the neighbourhood that were introduced there in the same iter-
ation. The fractions of a class a in the neighbourhood of a vertex v is
computed as

f raction(a, v) =
∑w∈neigh(v),class(w)=a ew(v, w)

∑w∈neigh(v) ew(v, w)
,

4the name was given by Vincenzo Moscati in a personal conversation
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Figure 4.4: The class label of vertex A changes from L1 to L3 due to the
following scores in the neighbourhood: L3:9, L4:8 and L2:5
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Figure 4.5: Clustering an 11-vertices graph with CW in two iterations

the predominant class a in the neighbourhood of v is given by

arg max
a

f raction(a, v).

For each class label in the neighbourhood, the sum of the weights
of the edges to the vertex in question is taken as score for ranking.
Figure 4.4 illustrates the change of a class label.

With increasing iterations, clusters become self-preserving: if a
strongly connected cluster happens to be homogeneous with respect
to class labels, it will never be infected by a few connections from
other clusters.

Figure 4.5 illustrates how a small unweighted graph is clustered
into two regions in two iterations. Different classes are symbolised
by different shades of grey.
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Figure 4.6: The middle vertex gets assigned the grey or the black class.
Small numbers denote edge weights

The CW algorithm cannot cross component boundaries, because
there are no edges between vertices belonging to different compo-
nents along which class labels could be spread. Further, vertices that
are not connected by any edge are discarded from the clustering pro-
cess, which possibly leaves a portion of vertices unclustered. For-
mally, CW does not converge, as Figure 4.6 exemplifies: here, the
middle vertex’s neighbourhood consists of a tie that can be decided
in assigning the class of the left or the class of the right vertices in
any iteration all over again. Ties, however, do not play a major role
in most weighted graphs.

Apart from ties, the classes usually do not change any more after
a handful of iterations. The number of iterations depends on the
diameter of the graph: the larger the distance between two vertices
is, the more iterations it takes to percolate information from one to
another.

The result of CW is a hard partition of the given graph into a num-
ber of parts that emerges in the process – CW is parameter-free. It is
possible to obtain a soft partition by assigning a class distribution to
each vertex, based on the weighted distribution of (hard) classes in
its neighbourhood in a final step.

In an unweighted setting, isolated n-cliques always get assigned
the same class label. This is due to the reason that a vertex typing
with two different class labels in a n-clique is not stable under CW it-
erations, as there are always more edges to the larger one of the parts
than to vertices having the same label for sizes up to n

2 . Recursively
applying this argument leads to homogeneity of classes in n-cliques.

Another algorithm that uses only local contexts for time-linear
clustering is DBSCAN as described in (Ester et al., 1996), which de-
pends on two input parameters (although the authors propose an
interactive approach to determine them). DBSCAN is especially
suited for graphs with a geometrical interpretation, i.e. the objects
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have coordinates in a multidimensional space. A quite similar algo-
rithm to CW is MAJORCLUST (Stein and Niggemann, 1999), which
is based on a comparable idea but converges slower, because vertex
type changes do not take effect until the next iteration.

As CW can be viewed as a special and altered case of MCL (van
Dongen (2000), see Section 4.1.3), similarities and differences are ex-
amined. The main contribution in the complexity of MCL originates
from the multiplication of non-sparse matrices, which is alleviated
through pruning most row entries to zero. In CW, the same pruning
is done but with the difference of keeping only one single non-zero
entry per row, i.e. one class label per vertex.

One could try writing CW as a matrix process in the style of MCL
(see van Dongen, 2000). Let maxrow(.) be an operator that operates
row-wise on a matrix and sets all entries of a row to zero except the
largest entry, which is set to 1. Then, the algorithm is denoted as
simple as this:

Algorithm 6 matrix-CW(adjaceny matrix AG)
D0 = In

for t=1 to number-of-iterations do
Dt−1 = maxrow(Dt−1)
Dt = Dt−1 AG

end for

In Algorithm 6, t is time step, In is the identity matrix of size n× n,
AG is the adjacency matrix of graph G and Dt is the matrix retaining
the clustering at time step t.

By applying maxrow(.), Dt−1 has exactly n non-zero entries. This
causes the time-complexity to be dependent on the number of edges,
namely O(|E|). In the worst case of a fully connected graph, this
equals the time-complexity of MCL. However, as shall be clear from
Section 2.2, Small World graphs are rather sparsely connected. A
problem with the matrix CW process is that it does not necessarily
converge to an iteration-invariant class matrix D∞, but rather to a
pair of oscillating class matrices. Figure 4.7 shows an example.

This is caused by the stepwise update of the class matrix: entries
changed in the previous iteration do not take effect until the next iter-
ation. As opposed to this, the standard CW as outlined in Algorithm
5 immediately updates D after the processing of each vertex. Apart
from pruning with the maxrow(.) operator, this is the main differ-
ence between CW and MCL. Due to the immediate update mecha-
nism, standard CW can not be expressed as a process involving ma-
trix multiplications. To avoid these oscillations, alternative measures
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Figure 4.7: Oscillating states in matrix CW for an unweighted graph

could be taken:

• Random mutation: with some probability, the maxrow operator
places the 1 for an otherwise unused class.

• Keep class: with some probability, the row is copied from Dt−1
to Dt.

While converging to the same limits, the continuous update strat-
egy converges the fastest because prominent classes are spread much
faster in early iterations. Random mutation showed to have negative
effects when partitioning small graphs, as mutation weakens clusters
in their formation phase, which then possibly gets overtaken by the
labels of a strong neighbouring cluster.

4.2.2 Empirical Analysis

The analysis of the CW process is difficult due to its nonlinear and
randomised nature. Its run-time complexity indicates that it cannot
directly optimise most global graph cluster measures mentioned in
Section 4.1.3. Therefore, experiments on synthetic graphs are per-
formed to empirically arrive at an impression of the algorithm’s
abilities. All experiments were conducted with an implementation
following Algorithm 5. Experiments with synthetic graphs are re-
stricted to unweighted graphs, if not stated otherwise.

A cluster algorithm should keep dense regions together while cut-
ting apart regions that are sparsely connected. The highest density is
reached in fully connected sub-graphs of n vertices, a.k.a. n-cliques.
An n-bipartite-clique is defined as a graph of two n-cliques, which are
connected such that each vertex has exactly one edge going to the
clique it does not belong to. Figures 4.7 and 4.8 are n-bipartite cliques
for n = 4, 10.
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Figure 4.8: The 10-bipartite clique
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Figure 4.9: Percentage of obtaining two clusters when applying CW on n-
bipartite cliques. Data obtained from 10,000 runs/n

From a graph clustering algorithm, it can be clearly expected to cut
the two cliques apart. In the unweighted case, CW is left with two
choices: producing two clusters of n-cliques or grouping all vertices
into one cluster (recall that n-cliques always receive a homogeneous
class labelling). This is largely dependent on the random choices in
very early iterations – if the same class is assigned to several vertices
in both cliques, it will finally cover the whole graph. Figure 4.9 illus-
trates on what rate this happens on n-bipartite-cliques for varying
n.

It is clearly a drawback that the outcome of CW is non-
deterministic. Only two third of the experiments with 4-bipartite
cliques resulted in separation. But the problem is only dramatic on
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Figure 4.10: Rate of obtaining two clusters for mixtures of SW-graphs de-
pendent on merge rate r. Data obtained for 5 mixtures and 10
runs per mixture for each data point

small graphs and ceases to exist for larger graphs as demonstrated
in Figure 4.9. These small clustering problems can also be solved ex-
actly with other clustering algorithms – interesting in the context of
NLP is the performance on larger graphs and graphs with the Small
World property.

For the next experiment, it is assumed that natural systems can
be characterised by Small World graphs. If two or more of those
systems interfere, their graphs are joined by merging a part of their
vertices, retaining their edges. A graph clustering algorithm should
split the resulting graph in its original parts, at least if not too many
vertices were merged. To measure CW’s performance on SW-graph
mixtures, graphs of various sizes were generated and merged in var-
ious extents in a pair-wise fashion. Now it is possible to measure the
amount of cases where clustering with CW leads to the reconstruc-
tion of the original parts. Graphs were generated using the Steyvers-
Tenenbaum model (see Section 2.2): the mean connectivity 2M was
fixed to 20, the number of vertices n and the merge rate r, which is the
fraction of vertices of the smaller graph that is merged with vertices
of the larger graph, was varied.

Figure 4.10 summarises the results for equisized mixtures of 300,
3,000 and 30,000 vertices and mixtures of 300 with 30,000 vertices.

It is not surprising that separating the two parts is more difficult
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Iter 1 2 3 5 10 20 30 40 49
1K 1 8 13 20 37 58 90 90 91
10K 6 27 46 64 79 90 93 95 96
7ling 29 66 90 97 99.5 99.5 99.5 99.5 99.5

Table 4.1: Normalised Mutual Information values for three graphs and dif-
ferent iterations in %

for higher r. Results are not very sensitive to size and size ratio,
indicating that CW is able to identify clusters especially if they differ
considerably in size. The separation quality depends on the merge
rate, but also on the total number of common vertices.

As the algorithm formally does not converge, it is important to
define a stopping criterion or to set the number of iterations. To show
that only a few iterations are needed until almost-convergence, the
normalised Mutual Information (nMI) between the clustering in the
50th iteration and the clusterings of earlier iterations was measured.
The normalised Mutual Information between two partitions X and Y
is defined as

nMI(X, Y) =
(H(X) + H(Y)− H(X, Y))

max(H(X), H(Y))

with entropy
H(X) = − ∑

i=1..n
p(Xi)log(p(Xi))

for p(Xi) probability of choosing from part Xi when selecting a ver-
tex from X randomly, X1..Xn forming a partition of X, and

H(X, Y) = −∑
x,y

px,ylog(px,y)

joint entropy of X and Y. A value of 0 denotes independence, 1 cor-
responds to congruence of partitions X and Y.

This was conducted for two unweighted ST-graphs with 1,000 (1K)
and 10,000 (10K) vertices, M = 5 and a weighted 7-lingual co-
occurrence graph (cf. Section 5.1, as used in (Biemann and Teresniak,
2005)) with 22,805 vertices and 232,875 edges. Table 4.1 indicates that
for unweighted graphs, only small changes happen after 20-30 itera-
tions. In iterations 40-50, the normalised MI-values do not improve
any more. The weighted graph converges much faster due to fewer
ties and reaches a stable plateau after only 6 iterations.

To summarise the empirical analysis, experiments with synthetic
graphs showed that for small graphs, results can be inconclusive due
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to the randomised nature of CW. But while there exist a huge vari-
ety of clustering approaches that can deal well with small graphs,
its power lies in its capability of handling very large graphs in edge-
linear time. The applicability of CW rather reaches out in size re-
gions, where other approaches’ solutions are intractable. In Chapter
5, CW will be evaluated in the context of unsupervised NLP appli-
cations. But before, I will discuss extensions, some of which will be
used in Chapter 5 as well.

4.2.3 Weighting of Vertices

Until now, the update step of CW treats all neighbouring vertices
equally. That means, the strength of neighbouring class labels only
depends on the edge weights to the vertex to be updated, and not on
other properties. If a graph possesses scale-free Small World struc-
ture, then it contains vertices with very high degrees (hubs), which
try to propagate their class label to a large number of vertices. As the
nature of those hubs implies that they have connections to many re-
gions of the graph, this effect might be unwanted, as class labels can
tunnel through them, probably resulting in several intuitive parts to
obtain the same class – this especially happens if several hubs obtain
the same class in early iterations. A possibility would be the dele-
tion of hubs (see (Albert et al., 2000) for attacking the connectivity of
graphs) – hence it is not clear how many of the vertices with very
high degrees should be deleted. Another possibility is to downgrade
the influence of hubs by assigning lower vertex weights vw to them.
For the vertex weighted version, the fraction of a class a in the neigh-
bourhood of a vertex v is rewritten as:

f raction(a, v) =
∑w∈neigh(v),class(w)=a vw(w) · ew(v, w)

∑w∈neigh(v) vw(w) · ew(v, w)
.

Note that the incorporation of vertex weights is a real extension,
as the function vw(.) is arbitrary and can lead to different effective
weights of edges, dependent on which vertex is to be updated. For
downgrading hubs, vw(x) can be defined to be dependent on the
degree of vertex x. Here, two variants are examined: vwLIN(x) =
1/k(x) and vwLOG(x) = 1/ log(1 + k(x)). Dependent on vertex
weighting, different outcomes of update steps can be achieved, as
Figure 4.11 illustrates.

Weighting down hubs should result in more and smaller clus-
ters. To test this hypothesis, a ST-network (see Section 2.2) with
100,000 vertices and an average degree of 2M = 5 was generated
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Figure 4.11: Effects of vertex weighting in the neighbourhood of vertex A.
The table summarises the fractions of the different classes in the
neighbourhood for different ways of vertex weighting. Stan-
dard CW is equivalent to constant vertex weighting
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Figure 4.12: Cluster size distribution for different vertex weighting schemes

and clustered using the different vertex weighting schemes. Figure
4.12 shows the distribution of cluster sizes.

The data presented in Figure 4.12 supports the claim that the more
rigid hubs get weighted down according to their degree, the more
and the smaller clusters arise. Whereas in this experiment the largest
cluster for the standard setting was 358 vertices, it was 46 vertices
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Figure 4.13: Topped tetrahedron graph with plausible partition

using vwLOG and only 21 vertices in the case of vwLIN. In summary,
vertex weighting provides a means for influencing the granularity of
the partition.

4.2.4 Approximating Deterministic Outcome

It might seem an undesired property of CW that different runs on the
same graph can produce different outcomes, which is caused by the
randomised nature of CW. This behaviour does not result in severe
performance drops on real world data (see Chapter 5), because there
are several ways to split a graph in equally motivated clusters, which
result in similar performance in applications. Still, a possibility of al-
leviating this problem is discussed here shortly. Consider the topped
tetrahedron graph (cf. van Dongen, 2000) in Figure 4.13.

A plausible partition would split this graph into four parts, con-
sisting of one triangle each. As in the experiments with n-bipartite
graphs, however, CW is able to find this partition, but can assign the
same class to arbitrary combinations of these four parts, yielding 1,
2, 3 or 4 parts for this graph. Deterministic Chinese Whispers combines
several runs of standard CW in the following way: amongst all runs,
the run having produced the most parts is chosen. This serves as a
reference run all other partitions are aligned to. For each other run, a
confusion matrix of class labels is computed: looking up the classes
for every vertex in both partitions, the confusion matrix contains the
number of times the two class labels of the reference run and the
other run are found together. For the classes of the other run, a fuzzy
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Figure 4.14: Three partitions of the topped tetrahedron. The first run is se-
lected for reference

mapping to the reference classes is then given by the vector of refer-
ence classes per other class. The final result is obtained by replacing
the classes in all runs by their reference class vectors and summing
up the vectors position-wise. Vertices with the same reference vec-
tors belong to the same class. Figure 4.14 shows an example for three
different partitions of the topped tetrahedron graph.

From the example it should be clear that the finest-grained parti-
tion possible is found by merging possibly overlapping partitions.
The result partition does not have to be contained in any of the runs,
and can be sometimes finer-grained than any partition of a single
run: the graph in Figure 4.6 is split into three clusters in the result,
while in both possible outcomes of single CW runs only two clusters
are found. Picking the run with the maximum number of clusters
as reference avoids picking a trivial partition, and aligning all other
runs to it keeps the procedure linear in the number of vertices. Using
enough runs, this procedure finds all pairs of vertices that can pos-
sibly end up in two different parts when applying CW. In this way,
the outcome of CW can be made almost deterministic. The number
of standard CW runs does not have to be fixed beforehand, but can
be iteratively increased until no changes are observed in the result.
The convergence test pins down to counting the number of differ-
ent classes in the combined result, which increases monotonically
until the maximum possible number is reached. As this operation
involves n (number of vertices) operations, it does not increase the
computational complexity of the overall process, yet larger graphs
require a larger number of runs. Using this stopping criterion, how-
ever, does not give a guarantee that the maximal possible number of
clusters is found, as the currently last run of standard CW does not
increase the number of clusters if equivalent in result to a previous
run. When taking several recent runs without changes into account,
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class A B C D E F G H
A 6 0 0 3 3 3 3 0
B 0 3 0 3 0 0 0 3
C 0 0 3 3 0 3 0 3
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Figure 4.15: Reference class vectors obtained from comparing run 1 with
run 2 and run 1 with run 3, then result, which is equivalent
to the plausible partition in Figure 4.13. Notice that no class
occurs in more than one partition
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Figure 4.16: Left: a graph. Right: its disambiguated graph

however, the possibility of premature convergence can be lowered.

4.2.5 Disambiguation of Vertices

Now, a graph transformation is described that performs the conver-
sion of the original graph into a graph with disambiguated vertices.
The transformation is motivated by the fact that in natural language,
ambiguity, i.e. the possibility to use the same symbol for several de-
notations, is omnipresent. The most widely used example for lexical
ambiguity is "bank", which can be used in the sense of a financial
institution or refer to a river bank. But also other levels of ambigu-
ity, e.g. in compound noun splitting, part-of-speech, phoneme-to-
text conversion and phrase attachment need to be resolved. In the
graph framework, a vertex is said to be ambiguous, if it belongs to
more than one group, therefore acting in different roles and having
edges to vertices of all groups it is related to. This property of ver-
tices is purely local and constitutes itself in the neighbourhood of
the vertex, not being affected by other regions of the graph. Fol-
lowing the idea of Widdows and Dorow (2002), the different roles
or usages of a vertex v can be obtained by partitioning the sub-
graph induced by the neighbourhood of vertex v, G(neigh(v)). As
v /∈ neigh(v), the subgraph may be formed of several components
already. Partitioning neigh(v) with CW results in m ≥ 1 parts of
G(neigh(v)). For the transformation, vertex v is replaced by m ver-
tices v@0, v@1, ...v@(m − 1), and v@i is connected to all vertices in
cluster i, retaining edge weights. This is done iteratively for all ver-
tices, and the results are combined in the disambiguated graph. Fig-
ure 4.16 shows an unweighted graph and its disambiguated graph.
Note that all neighbourhoods of vertices apart from vertex 1 yield
one cluster, whereas neigh(1) is split into two clusters.

Whereas a CW-partition of the original graph can result in one
cluster, the disambiguated version is always split into two clus-
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Figure 4.17: Left: the 4-bipartite clique. Right: the disambiguated 4-
bipartite clique

ters. Applying the disambiguation transformation to the n-bipartite
cliques above results in splitting the graph in n + 2 components, of
which n reflect the connecting edges between the cliques, and the re-
maining two are formed by the cliques, see Figure 4.17. The small
components reflecting the connecting edges can be pruned by not
allowing singletons in the neighbourhood graphs.

4.2.6 Hierarchical Divisive Chinese Whispers

In Section 4.1.1, the differences between a hierarchical clustering and
a partition were laid out. CW in its presently discussed form is a
partitioning algorithm that returns un-nested groups of vertices. To
turn CW into a hierarchical cluster algorithm, one can split a cluster
iteratively into smaller parts in a top-down way. Since a CW cluster
is a set of vertices that receives a uniform class labelling and CW op-
erates locally, a CW clustering of the subgraph induced by the clus-
ter will again result in a uniform labelling. To be able to still split
this cluster, the subgraph has to be modified in a way that CW will
be able to find more subclusters. A way of doing this for weighted
graphs is to apply a threshold on edge weights and to delete edges
that have a weight below that threshold. This can result in singleton
vertices, which will not be contained in any of the subclusters, but
remain assigned to the upper level cluster.

Especially for scale-free Small World graphs, hierarchical divisive
CW provides a means to avoid one very large cluster. To illus-
trate this, the following experiment was carried out on the sentence-
based significant word-cooccurrence graph of LCC’s 1 million sen-
tence German corpus (as used in Section 3.2.2): clustering this graph
of 245,990 vertices with standard CW, the largest cluster consisted of
219,655 vertices. Only the largest cluster was selected for splitting:
the edge weight threshold was set in a way that half of the vertices
remained in the subgraph, the other half was left aside. In the first
division step, clustering the subgraph of 109,827 vertices yielded a
largest cluster of 44,814 vertices, of which again half of the vertices
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Figure 4.18: Cluster size distribution for standard CW and three times ap-
plying a hierarchical divisive clustering step on the largest clus-
ter

were selected for the second step. The largest cluster of this sub-
graph’s partition (22,407 vertices) contained 16,312 vertices. In a sim-
ilar third step, a subgraph of 8,157 vertices produced a largest cluster
of 5,367 vertices.

Figure 4.2.6 shows the cluster size distribution of the standard clus-
tering and after the third divisive step. For the size distribution, the
hierarchy of clusters is ignored. The quantitative analysis shows that
the vertices of the very large initial cluster are separated in many
small clusters after three times splitting the largest remaining cluster.
The number of clusters increased from 9,071 in the initial clustering
to 24,880 after the third step.

The decisions about which clusters to split and how many vertices
to involve in the subcluster clustering render hierarchical divisive
CW difficult to apply in a conclusive and motivated way. Easier
to handle is the bottom-up variant of hierarchical clustering as pre-
sented in the next section.

4.2.7 Hierarchical Agglomerative Chinese Whispers

Section 4.2.4 described how the combination of several runs of CW
runs results in a maximally fine-grained partition with respect to the
iterative CW process. In applications, this partition might be too
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fine-grained, as having more clusters means less vertices per clus-
ter, which might cause data sparseness problems in the application.
As an example, consider lexical ambiguity: whereas CW, as other
clustering algorithms, might find so-called micro-senses or facets (cf.
Cruse, 2002), these fine-grained distinctions between e.g. school as
a building or as an institution might not be useful in a word sense
disambiguation task, or even harmful as there might not be enough
clues for either micro-sense, yet the combination of their clues could
suffice to distinguish them from unrelated usages.

Now a possibility is described how clusters can be arranged hi-
erarchically in an agglomerative fashion. A partition of a graph
can be viewed as dividing the graph’s edges into inter-cluster and
intra-cluster edges, the former connecting vertices in the same clus-
ter whereas the latter being edges between clusters. Intuitively, two
clusters have more in common, or are more similar to each other, if
there is a large amount of inter-cluster edges connecting their ver-
tices. In hierarchical agglomerative CW, hypervertices are formed
by subsuming all vertices of one cluster under one hypervertex. the
hyperedges connecting the hypervertices are weighted, their weight
reflects the connection strength between the respective clusters. For
example, a hyperedge weighting function can be given as

hyperweight(Pi, Pj) =
|{{u, w}|u ∈ Pi, w ∈ Pj}|

min(|Pi|, |Pj|)

where Pi is the set of vertices constituting cluster i. This hyper-
weight function measures the amount of vertices in the smaller clus-
ter that are endpoints of an edge between the two clusters. The re-
sulting hypergraph – hypervertices and hyperedges – is again par-
titioned with CW, resulting in a set of hyperclusters. In this way,
nested clusters are obtained by subordinating the clusters of the
graph under the hyperclusters in the hypergraph. Iterative appli-
cation results in a hierarchical clustering, with as many top-clusters
as there are components in the graph. Figure 4.19 shows the hierar-
chical clustering of a graph in three steps.

As compared to other hierarchical clustering methods that mostly
produce binary tree hierarchies, hierarchical agglomerative CW re-
sults in flat hierarchies with arbitrary branching factors. Apart from
the instantiation of the hyperweight function, the hierarchical ag-
glomerative version is parameter-free, and all modifications of CW
can be employed for it.
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4.2.8 Summary on Chinese Whispers

With its run-time linear in the number of edges, Chinese Whispers
belongs to the class of graph partitioning algorithms at the lower
bound of computational complexity: at least, the graph itself has to
be taken into account when attempting to partition it, and the list
of edges is the most compact form of its representation. The ran-
domised nature of CW make it possible to run the algorithm in a
decentralised and distributed way: since there are no constraints on
the processing order of vertices and the algorithm uses only local in-
formation when updating the class of a vertex, a parallelisation is
straightforward. This enables the partitioning of even larger graphs
than the ones discussed here.

The property of standard CW to be parameter-free is highly de-
sired for applications, as brittle parameter tuning can be avoided.
Nevertheless, for datasets that demand a different treatment than
standard CW provides, various extensions that try to leverage the
non-deterministic nature and the absence of hierarchically nested
clusters were laid out.

Since theoretical results are hard to obtain for randomised and
non-deterministic algorithms, CW was tested on a variety of artificial
graphs, showing great capabilities of producing meaningful clusters.
Exploring the practical utility of CW will be undertaken in the next
chapter.

An implementation of Chinese Whispers is available for down-
load5.

5http://wortschatz.uni-leipzig.de/�cbiemann/software/CW.html [June 1st, 2006]
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This chapter discusses the application of the graph clustering algo-
rithm as introduced in Chapter 4 to unsupervised natural language
learning, following the Structure Discovery paradigm. With the im-
plementation of every step that recognises and uses structural prop-
erties of natural language, the vision of natural language under-
standing by machines as outlined in Section 1.4 becomes more fea-
sible. Nevertheless, the various methods and algorithms described
here merely exemplify possibilities of unsupervised and knowledge-
free natural language learning – the compilation of a more compre-
hensive system goes beyond the scope of a single dissertation and is
left for future work.

Referring back to Section 1.3, methods that find homogeneous
word sets on various levels of homogeneity are laid out in theory and
practice. Section 5.1 is devoted to language separation: monolingual
chunks of a mixed-language corpus shall be identified, resulting in
a language identifier. It contains a modified and extended version
of (Biemann and Teresniak, 2005). Section 5.2 constitutes the main
practical contribution of this work: the implementation and evalua-
tion of an unsupervised part-of-speech tagger that assigns syntactic-
semantic categories to all words in a monolingual corpus. The sys-
tem was previously described in (Biemann, 2006c). This tagging
method is also evaluated in an application-based way as a compo-
nent in various systems, published as (Biemann et al., 2007).

Another procedure tackling the problem of word senses, which
was only set up prototypically and rather indicates future directions
than a components in their final form, is discussed in Section 5.3.

5.1 Unsupervised Language Separation

This section presents an unsupervised solution to language identi-
fication. The method sorts multilingual text corpora sentence-wise
into different languages. Here, no assumptions about number or size
of the monolingual fractions are made.

With a growing need for text corpora of various languages in mind,
the question of how to build monolingual corpora from multilingual
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sources is addressed. Admittedly, language identification is a solved
problem, as reflected in the title of (McNamee, 2005), where it is ren-
dered as a suitable task for undergraduate exercises. In this attempt,
the main difference to previous methods is that no training data for
the different languages is provided and the number of languages
does not have to be known beforehand. This application illustrates
the benefits of a parameter-free graph clustering algorithm like Chi-
nese Whispers, as the data – words and their statistical dependencies
– are represented naturally in a graph, and the number of clusters
(here: languages) as well as their size distribution is unknown.

5.1.1 Related Work

According to Banko and Brill (2001), Pantel et al. (2004) and others,
shallow methods of text processing can yield comparable results to
deep methods when allowing them to operate on large corpora. The
larger the corpus, however, the more difficult it is to ensure sufficient
corpus quality. Most approaches in computational linguistics work
on monolingual resources or on multilingual resources with mono-
lingual parts, and will be disturbed or even fail if a considerable
amount of ’dirt’ (sublanguages or different languages) are contained.
Viewing the World Wide Web as the world’s largest text corpus, it
is difficult to extract monolingual parts of it, even when restricting
crawling to country domains or selected servers.

While some languages can be identified easily due to their unique
encoding ranges in ASCII or UNICODE (like Greek, Thai, Korean,
Japanese and Chinese), the main difficulty arises in the discrimina-
tion of languages that use the same encoding and some common
words, as most of the European languages do. In the past, a va-
riety of tools have been developed to classify text with respect to
its language. The most popular free system, the TextCat Language
Guesser1 by Cavnar and Trenkle (1994), makes use of the language-
specific letter N-gram distribution and can determine 69 different
natural languages. According to Dunning (1994), letter trigrams can
identify the language almost perfectly from a text-length of 500 bytes
on. Other language identification approaches use short words and
high-frequency words as features, e.g. (Johnson, 1993), or combine
both approaches (cf. Schulze, 2000). For a comparison, see (Grefen-
stette, 1995).

All of these approaches work in a supervised way: given a sample
of each language, the model parameters are estimated and texts are

1http://odur.let.rug.nl/�vannoord/TextCat/Demo/ [December 1st, 2006]
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classified according to their similarity to the training texts. But su-
pervised training has a major drawback: the language identifier will
fail on languages that are not contained in the training and, even
worse, it will mostly have no clue about that and assign some arbi-
trary language: TextCat assigns ’Nepali’ to texts like "xx xxx x xxx ..."
and ’Persian’ to "öö ö öö ööö ...".

The method described here operates on words as features and
finds the number of languages in a fully unsupervised way. Fur-
ther, it is able to decide for every single sentence, to which language
it belongs. Of course, it is not able to label text with the names of
the involved languages, but rather groups sentences of the same lan-
guage together.

5.1.2 Method

Employing word co-occurrence statistics (cf. Section 3.2.1), weigh-
ted graphs built from words as vertices and their associations as
edges are constructed. Assuming monolinguality of sentences, there
are more word pairs of the same language exhibiting significant co-
occurrence than word pairs of different languages, Chinese Whispers
will find one cluster for each language. The words in the clusters
serve as features to identify the languages of the text collection by
using a word-based language identifier.

As input, a multilingual, sentence-separated plain text corpus is as-
sumed. The accuracy of the sentence separation, however, does not
play an important role here and can be realised by splitting sentences
on sentence delimiters like ".!?" or merely using paragraph bound-
aries. What matters is that the corpus is split into parts roughly cor-
responding to sentences in order to define the significant sentence-
based co-occurrence graph as described in Section 3.2.1. Alterna-
tively, window-based word co-occurrences could be employed.

A multilingual word co-occurrence graph is constructed by adding
all word pairs that occur together at least twice with a significance of
at least 1.64 (20% error; as preliminary experiments showed, how-
ever, the significance level can be set to any value in reasonable
ranges without influencing results much), adding the words as ver-
tices and weighting the edges by the significance value.

This multilingual word co-occurrence graph is clustered with stan-
dard Chinese Whispers, using 20 iterations. All clusters that exceed
1% of the size of the whole graph are used to define languages: the
assumption is that words of the same language are found in the same
cluster. Words that are contained in two or more languages will be
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assigned to only one cluster, languages are labelled by their cluster
ID. The size threshold of 1% is arbitrary but showed to be a suitable
setting to exclude noise in preliminary experiments.

These language clusters are used in the simple word-based lan-
guage identifier described in (Teresniak, 2005) to assign cluster IDs
to sentences: counting, how many words of the sentence are found
in which cluster, the sentence is labelled with the ID of the cluster
that contained most of the words. For labelling, at least two words
and at least 10% of the words in the sentence have to be found in
a cluster, otherwise the sentence is marked as ’unknown’ – this was
found to be a sensible setup to exclude questionable cases.

The algorithm for language separation that assigns a language ID
l(s) to every sentence s of corpus C is given in Algorithm 7:

Algorithm 7 langSepP(corpus C):
G = significant sentence-based word co-occurrence graph of C
partition P = CW(G)
for all sentences s = {w1, w2, ...wn} in C do

language L = arg maxPi |s ∩ Pi|
if (|L ∩ s| < 2) OR (|L ∩ s| · 10 < |s|) then

l(s)=unknown
else

l(s) = L
end if

end for

5.1.3 Evaluation

To test performance of the language separator, monolingual corpora
of different languages are combined into a multilingual corpus. The
success of the language separator is measured by the extent to which
the original monolingual parts can be restored. For this, standard
measures as used in information retrieval are employed:

• Precision (P) is the number of true positives divided by the sum
of true positives and false positives,

• Recall (R) is the number of true positives divided by the total
number of target items.

As it cannot be assumed beforehand that the number and extension
of monolingual parts equals the number of language clusters, the
following mapping between target languages and language clusters
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N 1 2 3 4 5 map P R
A 100 75 0 0 0 0 1 1 0.75
B 200 5 110 40 1 20 2 0.625 0.55
C 300 5 120 60 30 10 4 0.133 0.1
D 400 15 0 280 25 0 3 0.875 0.7

Table 5.1: Exemplary mapping of target languages and cluster IDs. N =
number of sentences in target language, the matrix {A, B, C, D}
× {1, 2, 3, 4, 5} contains the number of sentences of language A..D
labelled with cluster ID 1..5. Column ’map’ indicates which clus-
ter ID is mapped to which target language, columns P and R pro-
vide precision and recall for the single target languages, overall
precision: 0.6219, overall recall: 0.495

is carried out: a target language is mapped to the cluster ID that
is found predominantly in the monolingual part of the target lan-
guage. In case a cluster ID is found predominantly in several target
languages, it is only mapped to the one target language where it con-
stitutes the largest fraction, the other target languages get the next
predominant cluster ID until a free cluster ID is found.

Table 5.1 shows an example of the mapping for a hypothetical data-
set and exemplifies overall precision and recall as well as for single
target languages. Here, language C gets assigned ID 4 from the clus-
tering although the overlap between language C and cluster ID 2 is
higher. The reason is that ID 2 is already mapped to language B,
which has a higher percentual overlap to cluster ID 2 than language
C. Notice that cluster ID 5 is not mapped to any language, which
effects overall recall negatively.

5.1.4 Experiments with Equisized Parts for 10 Languages

In (Biemann and Teresniak, 2005), experiments on mixing equisized
parts to 7-lingual corpora are described. Here, the difficulty of the
task is increased slightly in two ways: for experiments with equi-
sized parts, 10 languages are used, and the sentences are not drawn
subsequently from documents, but randomly from a large corpus.
By randomly selecting sentences, the effect of word burstiness (cf.
Church, 2000) is ruled out, which leads to fewer significant co-
occurrences for small monolingual chunks: sentences from the same
document tend to be centred around the document’s topic which is
reflected in their wording, producing significant co-occurrences of
these topic-specific words. These should not be observed to that
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Figure 5.1: Language separation in 10-lingual corpora with equisized
monolingual parts for varying numbers of sentences

extent when selecting sentences randomly from documents encom-
passing a wide range of topics, making the task more difficult.

LCC was used as a data source to compile multilingual corpora
consisting of Dutch, English, Finnish, French, German, Icelandic,
Italian, Japanese, Norwegian and Sorbian up to 100,000 sentences
per language.

Sorbian is a special case, as it is the only language that is not an
official language of a country, but spoken by a Slavonic minority in
Eastern Germany, why Sorbian texts contain words and even sen-
tences in German. Considering this, it is not surprising that perfor-
mance on Sorbian was lowest among all languages involved. Figure
5.1 shows overall results and results for Sorbian.

From 100 sentences per language on, the method is able to find ex-
actly 10 clusters, and map them to the 10 languages involved. For
fewer sentences, the number of clusters was smaller (7 for 10 sen-
tences per language, 9 for 30 sentences per language). The easiest
language to recognise in this experiment is Japanese, which shows a
precision of 1 in all experiments and recall values from 0.9987 to 1.
This can be attributed to its distinct character set – the second eas-
iest language is English, scoring more than 0.9997 on precision and
more than 0.997 on recall for all experiments from 1,000 sentences
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cluster ID 1 2 3 4 5 6 7 8 9 10
French 99709 13 3 3 1
English 19 99950 3 1 2
Icelandic 26 118 99060 17 13 30 17 2
Japanese 99993

Italian 29 34 1 1 99451 2 1 3
Norwegian 56 158 668 4 8 97165 27 4 36 4
German 21 117 1 1 6 99235 7 2
Finnish 14 21 5 1 4 60 3 99616 2 2
Dutch 611 999 2 1 30 6 273 4 96793 5
Sorbian 36 138 3 2 13 7 920 14 4 96909

Table 5.2: Confusion matrix of clusters and languages for the experiment
with 100,000 sentences per language

per language on. In the Sorbian case, a manual inspection revealed
that about 1% of sentences in this data are either proper German or
German dialect, sometimes mixed with Sorbian.

Most misclassifications are caused by embedded foreign-language
elements, such as the sentence "INA besitzt Anteile an der Banca
Nazionale di Lavoro und am Banco di Napoli." in the German part that
is misclassified as Italian because it contains names of two Italian
banks. Languages of the same language family are more difficult
to separate, e.g. Norwegian-Icelandic or Dutch-German. Most con-
fusion is observable for English, which is the largest contributor of
foreign-language material in all other languages. Table 5.2 shows the
confusion matrix for the experiment with 100,000 sentences per lan-
guage.

Recall is dependent on sentence length: in short sentences, it is less
likely to find enough words from the clusters. This is depicted in Fig-
ure 5.2: sentences longer than 10 words almost surely get classified.

Most long sentences marked as ’unknown’ contained names, dates
or address parts, such as e.g.

• Ruth Klink, Niddatal 1, 100,- ; Margot Klöck, 50,- ; Frank Klöß, Bad
Vilbel, 20,-. (German)

• BC-Net Secretariat , European Commission , DG23 , Rue de la Loi
200 , B-1049 Brussels . (English)

• Aspelinin veli ) 22 - Aspelin Emil ( JRA:n serkku ) 10 - Aspelin Hen-
rik Emanuel ( Manne , JRA:n veli ) 1 Hr19 J.R. (Finnish)

These kind of sentences are not informative regarding language
structure and it might be a good idea to remove them during cor-
pus compilation anyway.
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Figure 5.2: Coverage dependent on sentence length

Unsupervised language separation proves capable of separating
equisized monolingual chunks from each other. Performance is al-
most perfect starting from a few hundred sentences per language.
The next section is devoted to testing the stability of the method
when applying it to bilingual mixtures with monolingual parts of
different sizes.

5.1.5 Experiments with Bilingual Corpora

While the experiments in the previous section focussed on equal frac-
tions of many languages, the method is now evaluated on bilingual
corpora with monolingual fractions of differing sizes. This setting
is somewhat more realistic when identifying languages in web data,
for a top-level domain usually provides most of its content in one
language, and the task is to remove substantially smaller parts of
foreign language material. The experimental setup is as follows: into
a monolingual corpus of 100,000 sentences, chunks of 10, 30, 100,
300, 1,000, 3,000, 10,000 and 30,000 sentences of another language are
injected. The major language is always identified; therefore perfor-
mance is only reported on the injected language.

In the previous section it was observed that languages of the same
language family are harder to separate than very different languages
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or even languages using different alphabets. Therefore, two extreme
cases are examined here: mixtures of French as major and Japanese
as minor language, and mixtures of Swedish as major and Norwe-
gian as a minor language. Separation of other language pairs can be
expected to perform in between these borderline cases.

French and Japanese do not have any words in common apart from
names; therefore the multilingual word graph is easily separable.
The only crucial parameter is the cluster size threshold: setting it
to 1% as in the previous section, the Japanese part is recognised per-
fectly from 300 sentences on. Lowering the threshold to 0.03%, it is
even possible to find every single of the 10 sentences of Japanese in
a 100,000 sentence corpus of French without a drop on precision and
recall in the French part.

In (Biemann and Teresniak, 2005), experiments on injecting English
in an Estonian corpus and Dutch in a German corpus succeeded in
almost perfect separation from 500 minor language sentences on. It
was only slightly more difficult to find the French injection into an
Italian corpus due to the relatedness of these languages: the more
words languages have in common, the more difficult it is to separate
them. In (Quasthoff and Biemann, 2006), the overlap between the
most frequent 1,000 words of several European languages is given.
Danish and Norwegian are the most similar languages with respect
to this measure, as they share almost half of their top 1,000 words.
Experiments aiming at separating Danish and Norwegian mixtures
with the method described here did not succeed. The next most
similar language pair is Swedish and Norwegian with sharing over
1/4th of these words. As the results in Figure 5.3 show, this results
in lower performance on this pair as compared to the multilingual
experiments.

While performance on 100,000 sentences of each Norwegian and
Swedish is comparable to what has been reported in the equisized
experiments, smaller fractions of Norwegian are difficult to identify
and get often labelled with the same ID as the larger Swedish part.

5.1.6 Summary on Language Separation

Apart from the experiments with Scandinavian languages, which
aimed at testing the method for very extreme cases, it is possible to
conclude that unsupervised language separation arrives at perfor-
mance levels that are comparable to its supervised counterparts. The
problem of language separation and identification can be regarded
as solved not only from a supervised, but also from a Structure Dis-
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Figure 5.3: Language separation performance for Norwegian injected in a
Swedish corpus of 100,000 sentences

covery perspective.
To collect the few unclassified sentences, the approach could be

extended to the document level: unknown sentences are assigned
the language that surrounds them. Using the extensions of CW as
discussed in Sections 4.2.4 and 4.2.5 does not seem necessary in the
light of the obtained performance levels.

An implementation of this method called "langSepP" (language
separation program) is available for download2.

5.2 Unsupervised Part-of-Speech Tagging

The previous section presented a method that produced homogene-
ity in word sets with respect to different languages. Now, homogene-
ity with respect to parts-of-speech (POS) is aimed at. The method
presented in this section is called unsupervised POS-tagging, as its
application results in corpus annotation in a comparable way to what
POS-taggers provide. Nevertheless, its application results in slightly
different categories as opposed to what is assumed by a linguisti-
cally motivated POS-tagger. These differences hamper evaluation

2http://wortschatz.uni-leipzig.de/�cbiemann/software/langSepP.html [July 7th,
2007]
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procedures that compare the output of the unsupervised POS-tagger
to a tagging with a supervised tagger, and will be illustrated be-
low. To measure the extent to which unsupervised POS tagging can
contribute in application-based settings, the system is evaluated in
supervised POS tagging, word sense disambiguation, named entity
recognition and chunking.

Unsupervised POS-tagging has been explored since the beginning
of the 1990s. Unlike in previous approaches, the kind and number
of different tags is here generated by the method itself. Another dif-
ference to other methods is that not all words above a certain fre-
quency rank get assigned a tag, but the method is allowed to ex-
clude words from the clustering, if their distribution does not match
closely enough with other words. The lexicon size is considerably
larger than in previous approaches.

The system description is an extended version of (Biemann, 2006c),
the application-based evaluation was previously described in (Bie-
mann et al., 2007).

5.2.1 Introduction to Unsupervised POS Tagging

Assigning syntactic categories to words is an important pre-
processing step for most NLP applications. POS tags are used for
parsing, chunking, anaphora resolution, named entity recognition
and information extraction, just to name a few.

Essentially, two things are needed to construct a tagger: a lexicon
that contains tags for words and a mechanism to assign tags to to-
kens in a text. For some words, the tags depend on their use, e.g.
in "I saw the man with a saw". It is also necessary to handle pre-
viously unseen words. Lexical resources have to offer the possible
tags, and a mechanism has to choose the appropriate tag based on
the context, in order to produce annotation like this: "I/PNP saw/VVD

the/AT0 man/NN1 with/PRP a/AT0 saw/NN1 ./PUN"3.
Given a sufficient amount of manually tagged text, two approaches

have demonstrated the ability to learn the instance of a tagging
mechanism from labelled data and apply it successfully to unseen
data. The first is the rule-based approach (Brill, 1992), where trans-
formation rules are constructed that operate on a tag sequence de-
livered by the lexicon. The second approach is statistical, for exam-
ple HMM-taggers (Charniak et al., 1993, inter al.) or taggers based

3in this tagset (Garside et al., 1987), PNP stands for personal pronoun, VVD is full verb,
AT0 is determiner is singular or plural, NN1 is singular noun, PRP is Preposition, PUN
is punctuation
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5 Structure Discovery Procedures

on conditional random fields (see Lafferty et al., 2001). Both ap-
proaches employ supervised learning and therefore need manually
tagged training data. Those high-quality resources are typically un-
available for many languages and their creation is labour-intensive.
Even for languages with rich resources like English, tagger perfor-
mance breaks down on noisy input. Texts of a different genre than
the training material may also create problems, e.g. e-mails as op-
posed to newswire or literature. It is, in general, not viable to anno-
tate texts for all these cases.

Here, an alternative needing much less human intervention is de-
scribed. Steps are undertaken to derive a lexicon of syntactic cat-
egories from unstructured text following the Structure Discovery
paradigm. Hence, it is not possible to aim at exact correspondence
with linguistically motivated tagsets, but for obvious reasons: even
for the same language, linguistically motivated tagsets differ consid-
erably, as it was measured for various tagsets for English by Clark
(2003).

Two different techniques are employed here, one for high-and
medium frequency words, another for medium- and low frequency
words. The categories will be used for the tagging of the same text
the categories were derived from. In this way, domain- or language-
specific categories are automatically discovered. Extracting syntactic
categories for text processing from the texts to be processed fits the
obtained structures neatly and directly to them, which is not possible
using general-purpose resources.

5.2.2 Related Work

There are a number of approaches to derive syntactic categories. All
of them employ a syntactic version of Harris’ distributional hypothe-
sis (Harris, 1968): words of similar parts of speech can be observed
in the same syntactic contexts. Measuring to what extent two words
appear in similar contexts measures their similarity (cf. Miller and
Charles, 1991). As function words form the syntactic skeleton of
a language and almost exclusively contribute to the most frequent
words in a corpus, contexts in that sense are often restricted to the
most frequent words. The words used to describe syntactic contexts
are further called feature words. Target words, as opposed to this, are
the words that are to be grouped into syntactic clusters. Note that
usually, the feature words form a subset of the target words.

The general methodology (Finch and Chater, 1992; Schütze, 1993,
1995; Gauch and Futrelle, 1994; Clark, 2000; Rapp, 2005) for inducing
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... COMMA sagte der Sprecher bei der Sitzung FULLSTOP

... COMMA rief der Vorsitzende in der Sitzung FULLSTOP

... COMMA warf in die Tasche aus der Ecke FULLSTOP

Features: der(1), die(2), bei(3), in(4), FULLSTOP (5), COMMA (6)

position -2 -1 +1 +2
target/feature 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2
sagte 1 1
rief 1 1
warf 1 1 1
Sprecher 1 1 1
Vorsitzende 1 1 1
Tasche 1 1 1
Sitzung 1 1 2 2
Ecke 1 1

Figure 5.4: Corpus and context vectors for 6 feature words and a context
window of size 4. The feature vectors of different positions are
concatenated

word class information can be outlined as follows:

1. Collect global context vectors of target words by counting how
often feature words appear in neighbouring positions.

2. Apply a clustering algorithm on these vectors to obtain word
classes

Throughout, feature words are the 150-250 words with the highest
frequency. Some authors employ a much larger number of features
and reduce the dimensions of the resulting matrix using Singular
Value Decomposition (Schütze, 1993; Rapp, 2005). The choice of high
frequency words as features is motivated by Zipf’s law: these few
stop words constitute the bulk of tokens in a corpus. Pruning context
features to these allows efficient implementations without consider-
ably losing on coverage. Contexts are the feature words appearing in
the immediate neighbourhood of a word. The word’s global context
is the sum of all its contexts. Figure 5.4 illustrates the collection of
contexts for a German toy example.

As outlined in Chapter 4, clustering consists of a similarity mea-
sure and a clustering algorithm. Finch and Chater (1992) use the
Spearman Rank Correlation Coefficient and a hierarchical cluster-
ing, Schütze (1993, 1995) uses the cosine between vector angles and
Buckshot clustering, Gauch and Futrelle (1994) use cosine on Mu-
tual Information vectors for hierarchical agglomerative clustering
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5 Structure Discovery Procedures

and Clark (2000) applies Kullback-Leibler divergence in his CDC al-
gorithm.

An extension to this generic scheme is presented in (Clark, 2003),
where morphological information is used for determining the word
class of rare words. Freitag (2004a) does not sum up the contexts of
each word in a context vector, but uses the most frequent instances
of four-word windows in a co-clustering algorithm (Dhillon et al.,
2003): rows and columns (here words and contexts) are clustered si-
multaneously. Two-step clustering is undertaken by Schütze (1993)):
clusters from the first step are used as features in the second step.

The number of target words in the clustering differ from 1,000
target words in a 200,000 token corpus (Gauch and Futrelle, 1994)
over 5,000 target words (Finch and Chater, 1992; Freitag, 2004a) to all
47,025 words in the Brown Corpus in (Schütze, 1995). Clark (2000)
uses 12 million tokens as input; Finch and Chater (1992) operate on
40 million tokens.

Evaluation methodologies differ considerably amongst the papers
discussed here. Finch and Chater (1992) inspect their clusters man-
ually, Rapp (2005) performs flawlessly in sorting 50 medium fre-
quency words into nouns, verbs and adjectives. Schütze (1995)
presents precision and recall figures for a reduced tagset, excluding
rare and non-English-word tags from the evaluation. More recent
approaches (Clark, 2000, 2003; Freitag, 2004a) employ information-
theoretic measures, see Section 5.2.8. Regarding syntactic ambiguity,
most approaches do not deal with this issue while clustering, but try
to resolve ambiguities at the later tagging stage.

As the virtue of unsupervised POS tagging lies in its possible ap-
plication to all natural languages or domain-specific subsets, it is sur-
prising that in most previous works, only experiments with English
are reported. An exception is (Clark, 2003), who additionally uses
languages of the Slavonic, Finno-Ugric and Romance families.

A severe problem with most clustering algorithms is that they are
parameterised by the number of clusters. As there are as many dif-
ferent word class schemes as tagsets, and the exact amount of word
classes is not agreed upon intra- and interlingually, having to specify
the number of desired clusters a-priori is clearly a drawback. In that
way, the clustering algorithm is forced to split coherent clusters or
to join incompatible sub-clusters. In contrast, unsupervised part-of-
speech induction means the induction of the tagset, which implies
finding the number of classes in an unguided way.

Another alternative which operates on a predefined tagset is pre-
sented by Haghighi and Klein (2006): in this semi-supervised frame-
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work, only three words per tag have to be provided to induce a POS-
tagger for English with 80% accuracy. The amount of data the au-
thors use in their experiments is rather small (8,000 sentences), but
their computationally expensive methods – gradient-based search to
optimise Markov Random Field parameters – does not allow for sub-
stantially more input data.

5.2.3 Method

What follows is the description of the construction of the unsuper-
vised POS-tagger from scratch. Input to the system is a consider-
able amount of unlabelled, tokenised monolingual text without any
POS information. In a first stage, Chinese Whispers is applied to
distributional similarity data, which groups a subset of the most fre-
quent 10,000 words of a corpus into several hundred clusters (tagset
1). Second, similarity scores on neighbouring co-occurrence profiles
are used to obtain again several hundred clusters of medium- and
low frequency words (tagset 2). The combination of both partitions
yields sets of word forms belonging to the same induced syntactic
category. To gain on text coverage, ambiguous high-frequency words
that were discarded for tagset 1 are added to the lexicon. Finally, a
Viterbi trigram tagger is trained with this lexicon and augmented
with an affix classifier for unknown words.

Figure 5.5 depicts the process of unsupervised POS-tagging from
unlabelled to fully labelled text. The details of the method will be
outlined in the following sections.

The method employed here follows the coarse methodology as de-
scribed in the previous subsection, but differs from other works in
several respects. Although four-word context windows and the top
frequency words as features are used (as in Schütze, 1995), the co-
sine similarity values between the vectors of target words are trans-
formed into a graph representation in order to be able to cluster them
with CW. Additionally, a method to identify and incorporate POS-
ambiguous words as well as low-frequency words into the lexicon is
provided.

5.2.4 Tagset 1: High and Medium Frequency Words

Four steps are executed in order to obtain tagset 1 for high- and
medium frequency words from a text corpus.

1. Determine 10,000 target and 200 feature words from frequency
counts

127



5 Structure Discovery Procedures

Unlabelled Text

Distributional Vectors NB-co-occurrences

high frequency words medium frequency words

Graph 1 Graph 2

Tagset
1

Maxtag Lexicon

Partially Labelled Text

Fully Labelled Text

Trigram Viterbi Tagger

Chinese Whispers 
Graph Clustering

Tagset
2 

Figure 5.5: Diagram of the process of unsupervised POS tagging, from un-
labelled over partially labelled to fully labelled text
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Figure 5.6: Graph for the data given in Figure 5.4 and its partition into
nouns and verbs

2. Collect context statistics and construct graph

3. Apply Chinese Whispers on graph.

4. Add the feature words not present in the partition as one-
member clusters.

The graph construction in step 2 is conducted by adding an edge be-
tween two words a and b with weight4 w = 1/(1 − cos(−→a ,

−→
b )),

computed using the feature vectors −→a and
−→
b (cf. Figure 5.4) of

words a and b. The edge is only drawn if w exceeds a similarity
threshold s. The latter influences the number of words that actu-
ally end up in the graph and get clustered. It might be desired to
cluster fewer words with higher confidence as opposed to running
the risk of joining two unrelated clusters because of too many am-
biguous words that connect them. After step 3, there is already a
partition of a subset of target words that can be perceived as tagset.
Figure 5.6 shows the weighted graph and its CW-partition for the ex-
ample given in Figure 5.4. The number of target words is limited by
computational considerations: since the feature vectors have to be
compared in a pair-wise fashion, a considerably higher number of
target words results in long run times. The number of feature words
was examined in preliminary experiments, showing only minor dif-
ferences with respect to cluster quality in the range of 100–300.

As noted e.g. in (Schütze, 1995)), the clusters are motivated syn-
tactically as well as semantically and several clusters per open word
class can be observed. The distinctions are normally finer-grained
than existing tagsets, as Figure 5.7 illustrates.

Since the feature words form the bulk of tokens in the corpus, it is
clearly desired to make sure that they appear in the tagset, although

4cosine similarity is a standard measure for POS induction, however, other measures
would be possible
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Figure 5.7: Fine-grained distinctions: female and male first names from
German corpus. The figure shows only a local neighbourhood
of the graph for tagset 1

they might end up in clusters with only one element. This might
even be desired, e.g. for English ’not’, which usually has its own
POS-tag in linguistic tagsets. This is done in step 4, where assigning
separate word classes for high frequency words is considered to be
a more robust choice than trying to disambiguate them while tag-
ging. Starting from this, it is possible to map all words contained in
a cluster onto one feature and iterate this process, replacing feature
words by the clusters obtained (cf. Schütze, 1993). In that way, higher
counts in the feature vectors are obtained, which could provide a bet-
ter basis for similarity statistics. Preliminary experiments showed,
however, that only marginal improvements could be reached, as text
coverage is not substantially increased.

Table 5.3 shows as illustration a selection of clusters for the BNC.
Several clusters for nouns can be observed. Evaluating lexical
clusters against a gold standard may lead to inconclusive results,
because the granularities of the gold standard and the clusters
usually differ, e.g. English singular and plural nouns end up in one
cluster, but first and last names are distinguished. The evaluation
scores are largely depending on the tagset used for gold standard.
Here, an information-theoretic measure is employed that allows an
intuitive interpretation: Entropy precision (EP) measures the extent
to which the gold standard classification is reconstructable from
the clustering result. EP directly relates to the precision measure
in information retrieval. Its counterpart, recall as the number of
retrieved vs. the total number of instances relates to the coverage on
target words as reached by the clustering algorithm. For the gold
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standard, each word gets assigned its most frequent tag, ignoring
POS-ambiguities. Despite all these disadvantages, EP provides a
means to relatively compare the quality of partitions for varying
thresholds s.

Definition Entropy Precision (EP): Let G = G1, ...Gm be the gold
standard classification and C = C1, ...Cp be the clustering result.
Then, EP is computed as follows:

EP(C, G) =
MCG

IG

with mutual information MXY between X and Y

MXY = ∑
xy

P(x, y)ln
P(x, y)

P(x)P(y)

and IX entropy of X.

IX = −∑
x

P(x)lnP(x)

A maximal EP of 1 is reached by a trivial clustering of singleton
clusters. This does not impose a severe problem, considering the
typical cluster size distribution as depicted in Figure 5.8. Neverthe-
less, optimising EP promotes a large number of small clusters, which
is why the number of clusters has to be provided along with the EP
figures to give an impression of the result’s quality. A minimal EP of
0 indicates statistical independence of C and G.

For evaluation of tagset 1, three corpora of different languages
were chosen: 10 million sentences of German tagged with 52 tags
using TreeTagger (Schmid, 1994), the 6 million sentences of BNC for
English, pretagged semi-automatically with the CLAWS tagset of 84
tags (Garside et al., 1987) and 1 million sentences from a Norwegian
web corpus tagged with the Oslo-Bergen tagger (Hagen et al., 2000),
using a simplified tagset of 66 tags. Figure 5.9 gives the EP results
for varying numbers of target words included in the partition and
the number of clusters.

From Figure 5.9 it is possible to observe that EP remains stable
for a wide range of target word coverage between about 2,000-9,000
words. The number of parts is maximal for the medium range of cov-
erage: at higher coverage, POS-ambiguous words that are related to
several clusters serve as bridges. If too many links are established
between two clusters, CW will collapse both into one cluster, possi-
bly at cost of EP. At lower coverage, many classes are left out. This
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rank size gold standard description sample words
tags (count)

1 662 NN1(588),
NN2(44)

Singular
Nouns

day, government, world, sys-
tem, company, house, family

2 401 NN1(311),
NN2(86)

Singular
Nouns

part, end, state, development,
members, question, policy, ...

3 292 NN2(284),
NN1(7)

Plural Nouns men, services, groups, compa-
nies, systems, schools, ...

4 254 NP0(252),
NN1(2)

First Names John, David, Peter, Paul,
George, James, Michael, ...

5 247 AJ0(233),
NN1(9)

Adjectives social, political, real, economic,
national, human, private, ...

6 220 NN1(148),
NN2(63)

Singular and
Plural Nouns

business, water, service, staff,
land, training, management, ...

7 209 VVI(209) Verbs get, make, take, give, keep,
provide, play, move, leave, ...

8 195 AJ0(118),
NN1(25)

Adjectives
(country)

British, police, New, European,
individual, National, ...

9 110 NP0(109),
NN1(1)

Last names Smith, Jones, Brown, Wilson,
Lewis, Taylor, Williams, ...

10 92 AJ0(89),
CRD(1)

Adjectives
(size/quality)

new, good, little, few, small,
great, large, major, big, special

11 73 AJ0(73) Adjectives
(animate)

heavy, beautiful, quiet, soft,
bright, charming, cruel, ...

12 67 NN2(67) Plural Nouns problems, conditions, costs, is-
sues, activities, lines, ...

12 67 NP0(66),
NN1(1)

Countries England, Scotland, France,
Germany, America, Ireland, ...

16 57 NP0(57) Cities Oxford, Edinburgh, Liverpool,
Manchester, Leeds, Glasgow, ...

22 39 AV0(39) Sentence
Beginning

Well, However, Thus, Indeed,
Also, Finally, Nevertheless, ...

25 30 NN2(30) Plural Profes-
sions

teachers, managers, farmers,
governments, employers, ...

34 17 CRD(17) Numbers three, four, five, six, ten, eight,
seven, nine, twelve, fifteen, ...

65 6 NP0(6) Titles Mr, Mrs, Dr, Miss, Aunt, Ms
217 2 AT0(2) Indefinite a, an

determiner
217 2 NP0(2) location 1st Saudi, Sri
217 2 VVZ, VVD to wear wore, wears
217 2 VVZ, VVD to insist insisted, insists

Table 5.3: Selected clusters from the BNC clustering for setting s such that
the partition contains 5,000 words. In total, 464 clusters are ob-
tained. EP for this partition is 0.8276. Gold standard tags have
been gathered from the BNC

133



5 Structure Discovery Procedures

evaluation indicates the language-independence of the method, as
results are qualitatively similar for all languages tested.

As indicated above, lexicon size for tagset 1 is limited by the com-
putational complexity of step 2, which is time-quadratic in the num-
ber of target words. Due to the non-sparseness of context vectors of
high-frequency words there is not much room for optimisation. In
order to add words with lower frequencies, another strategy is pur-
sued.

5.2.5 Tagset 2: Medium and Low Frequency Words

As noted in (Dunning, 1993), log likelihood statistics capture word
bigram regularities. Given a word, its neighbouring co-occurrences
as ranked by their log likelihood ratio are the typical immediate
contexts of the word. Regarding the highest ranked neighbours as
the profile of the word, it is possible to assign similarity scores be-
tween two words A and B according to how many neighbours they
share, i.e. to what extent the profiles of A and B overlap. The hypo-
thesis here is that words sharing many neighbours should usually
be observed with the same part-of-speech. For the acquisition of
word classes in tagset 2, the second-order graph on neighbouring
co-occurrences is used, cf Section 3.2.2. To set up the graph, a co-
occurrence calculation is performed which yields word pairs based
on their significant co-occurrence as immediate neighbours. Here,
all word pairs exceeding a log likelihood threshold of 1.00 (corre-
sponding to a positive correlation, yet the outcome is robust in a
wide threshold range) enter this bipartite graph. Note that if simi-
lar words occur in both parts, they form two distinct vertices. Only
words with a frequency rank higher than 2,000 are taken into ac-
count: as preliminary experiments revealed, high-frequency words
of closed word classes spread over the clusters, resulting in deterio-
rated tagging performance later, so they are excluded in this step.

This graph is transformed into a second-order graph by comparing
the number of common right and left neighbours for two words. The
similarity (edge weight) between two words is the sum the number
of common neighbours on both sides. Figure 5.10 depicts the sig-
nificant neighbouring graph, the second-order graph derived from
it, and its CW-partition. The word-class-ambiguous word ’drink’
(to drink the drink) is responsible for all inter-cluster edges. In the
example provided in Figure 5.10, three clusters are obtained that
correspond to different parts-of-speech. For computing the similar-
ities based on the significant neighbour-based word co-occurrence
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Figure 5.10: Left: Bi-partite neighbouring co-occurrence graph. Right:
second-order graph on neighbouring co-occurrences clustered
with CW

graphs for both directions, at maximum the 150 most significant co-
occurrences per word are considered, which regulates the density of
ther graph and leads to improvements in run-time.

To test this on a large scale, the second-order similarity graph for
the BNC was computed, excluding the most frequent 2,000 words
and drawing edges between words only if they shared at least four
left and four right common neighbours. The clusters are checked
against a lexicon that contains the most frequent tag for each word
in the BNC. The largest clusters are presented in Table 5.4, together
with the predominant tags in the BNC.

In total, CW produced 282 clusters, of which 26 exceed a size of
100. The weighted average of cluster purity (i.e. the number of pre-
dominant tags divided by cluster size) was measured at 88.8%, which
exceeds significantly the precision of 53% on word type as reported
by Schütze (1995).

Again, several hundred clusters, mostly of open word classes are
obtained. For computing tagset 2, an efficient algorithm like CW is
crucial: the graphs as used for the experiments consist typically of
10,000 to 100,000 vertices and about 100,000 to 1 million edges.
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size tags(count) sample words
18432 NN(17120),

AJ(631)
secret, officials, transport, unemploy-
ment, farm, county, wood, procedure,
grounds, ...

4916 AJ(4208), V(343) busy, grey, tiny, thin, sufficient, attractive,
vital, ...

4192 V(3784), AJ(286) filled, revealed, experienced, learned,
pushed, occurred, ...

3515 NP(3198),
NN(255)

White, Green, Jones, Hill, Brown, Lee,
Lewis, Young, ...

2211 NP(1980),
NN(174)

Ian, Alan, Martin, Tony, Prince, Chris,
Brian, Harry, Andrew, Christ, Steve, ...

1855 NP(1670),
NN(148)

Central, Leeds, Manchester, Australia,
Yorkshire, Belfast, Glasgow, Middles-
brough, ...

Table 5.4: The largest clusters of tagset 2 for the BNC

5.2.6 Combination of Tagsets 1 and 2

Now, there are two tagsets of two different, yet overlapping fre-
quency bands. A large portion of these 8,000 words in the overlap-
ping region is present in both tagsets. Again, a graph is constructed,
containing the clusters of both tagsets as vertices; weights of edges
represent the number of common elements, if at least two elements
are shared. Notice that the graph is bipartite.

And again, CW is used to cluster this graph of clusters. This re-
sults in fewer clusters than before for the following reason: while
the granularities of tagsets 1 and 2 are both high, they capture dif-
ferent aspects as they are obtained from different sources. Vertices
of large clusters (which usually consist of open word classes) have
many edges to the other partition’s vertices, which in turn connect to
yet other clusters of the same word class. Eventually, these clusters
can be grouped into one.

Clusters that are not included in the graph of clusters are treated
differently, depending on their origin: clusters of tagset 1 are added
to the result, as they are believed to contain important closed word
class groups. Dropouts from tagset 2 are simply left out, as they
mostly consist of small, yet semantically motivated word sets. The
total loss of words by disregarding these many, but small clusters
did never exceed 10% in any experiment. Figure 5.11 illustrates this
combination process.

Conducting this combination yields about 300–600 clusters that
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Figure 5.11: Combination process: tagsets 1 and 2 are related via the num-
ber of common elements in their respective clusters. Shades
symbolise the outcome of Chinese Whispers on this graph of
clusters. Clusters marked with x are not included in the result-
ing graph of clusters

will be further used as a lexicon for tagging. As opposed to the obser-
vations made in (Schütze, 1995), only a handful of clusters are found
per open word class, of which most distinctions are syntactically mo-
tivated, e.g. adjectives with different case markers. For unsupervised
POS tagging, the aim is to arrive at a low number of clusters to mimic
the supervised counterparts. A more rigid method to arrive at yet
less clusters would be to leave out classes of low corpus frequency.

5.2.7 Setting up the Tagger

Lexicon Construction

From the merged tagsets, a lexicon is constructed that contains one
possible tag (the cluster ID) per word. To increase text coverage, it
is possible to include those words that dropped out in the distribu-
tional step for tagset 1 into the lexicon. It is assumed that some of
these words could not be assigned to any cluster because of ambi-
guity. From a graph with a lower similarity threshold s (here: such
that the graph contains 9,500 target words), neighbourhoods of these
words are obtained one at a time. This is comparable to the method-
ology in (Ertöz et al., 2002), where only some vertices are used for
clustering and the rest is assimilated. Here, the added target words
are not assigned to only one cluster: the tags of their neighbours – if
known – provide a distribution of possible tags for these words. Fig-
ure 5.12 gives an example: the name ’Miles’ (frequency rank 8,297 in
the BNC) is rated 65% as belonging to a first name cluster and 35%
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Figure 1: POS-disambiguation for "Miles" as first and last name. Note that 

most of the last names are ambiguous themselves, causing “Miles” to be 

similar to them. 
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leads to superior results in the supervised setting, this ‘direct’ lexicon 

probability is used here. 

 

Figure 5.12: POS-disambiguation in the BNC for ’Miles’ as first and last
name. Note that most of the last names are ambiguous them-
selves, causing ’Miles’ to be similar to them

as last name.

Constructing the Tagger

Unlike in supervised scenarios, the task is not to train a tagger model
from a small corpus of hand-tagged data, but from the clusters of
derived syntactic categories and a large, yet unlabelled corpus. This
realises a class-based N-gram model (Brown et al., 1992).

Here, a simple trigram Viterbi model without re-estimation tech-
niques (such as Baum-Welch) is employed in order not to blur the
quality of lexicon construction and to speed up processing. Adapt-
ing a previous standard POS-tagging framework (cf. Charniak et al.,
1993), the probability of the joint occurrence of tokens ti and cate-
gories ci for a sequence of length n is maximised:

P(T, C) =
n

∏
i=1

P(ci|ci−1, ci−2)P(ci|ti)

The transition probability P(ci|ci−1, ci−2) is estimated from word
trigrams in the corpus whose elements are all present in the lexicon.
The last term of the product, namely P(ci|ti), is dependent on the
lexicon. If the lexicon does not contain ti, then ci only depends on
neighbouring categories, i.e. P(ci|ti) = 1. Words like these are called
out-of-vocabulary (OOV) words.

Although Charniak et al. (1993) report that using P(ti|ci) for the
last term leads to superior results in the supervised setting, this ’di-

138



5.2 Unsupervised Part-of-Speech Tagging

rect’ lexicon probability is used here. The experiments in (Charniak
et al., 1993) were carried out for small, labelled corpora in a super-
vised setting. The main advantage of the current standard model,
better smoothing capability, is not an issue when using much larger
corpora, as conducted here. For an efficient implementation, beam
search (cf. (Brants, 2000) in a tagging context) is employed to keep
only the 5 most probable states per token position. The beam width
of 5 is a safe choice, as preliminary experiments showed that already
a beam width of 3 produces practically equal tagging results com-
pared to using all states.

Morphological Extension

The main performance flaw of supervised POS taggers originates
from OOV words. Morphologically motivated add-ons are used e.g.
in (Clark, 2003; Freitag, 2004a) to guess a more appropriate cate-
gory distribution based on a word’s suffix or its capitalisation. Here,
Compact Patricia Trie classifiers (CPT, (see Knuth, 1998)) trained on
prefixes and suffixes are employed. For OOV words, the category-
wise product of both classifier’s distributions serve as probabilities
P(ci|ti): Let w = ab = cd be a word, a be the longest common prefix
of w and any lexicon word, and d be the longest common suffix of w
and any lexicon words. Then

P(ci|w) =
|{u|u = ax ∧ class(u) = ci}|

|{u|u = ax}| · |{v|v = yd ∧ class(v) = ci}|
|{v|v = yd}| .

CPTs do not only serve as a substitute lexicon component, they also
handle capitalisation, camelCase and suffix endings without having
to define features explicitly or setting length or maximal number
thresholds (as in (Freitag, 2004a) for suffixes). A similar technique is
employed by Cucerzan and Yarowsky (1999) in the context of named
entity recognition. My implementation of CPTs is further used in
supervised settings by Witschel and Biemann (2005) for compound
splitting and in (Eiken et al., 2006) for base form reduction, where it
is described in more detail.

5.2.8 Direct Evaluation of Tagging

Adopting the methodology of Freitag (2004a), the cluster-conditional
tag perplexity PP as the average amount of uncertainty to predict the
tags of a POS-tagged corpus, given the tagging with classes from the
unsupervised method is measured: for the same corpus tagged with
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language sent. tokens tagger nr.tags 200 cov. 10K cov.
English 6M 100M BNC 84 55% 90%
Finnish 3M 43M Connexor5 31 30% 60%
German 10M 177M (Schmid, 1994) 54 49% 78%

Table 5.5: Characteristics of corpora for POS induction evaluation: number
of sentences, number of tokens, tagger and tagset size, corpus
coverage of top 200 and 10,000 words

two methods, the measure indicates how well one tagging can be
reproduced from the other. Let

Ix = −∑
x

P(x)lnP(x)

be the entropy of a random variable X and

MXY = ∑
xy

P(x, y)ln
P(x, y)

P(x)P(y)

be the mutual information between two random variables X and
Y. Then the cluster-conditional tag perplexity for a gold-standard
tagging T and a tagging resulting from clusters C is computed as

PP = exp(IT|C) = exp(IT − MTC).

Minimum PP is 1.0, connoting a perfect congruence with gold stan-
dard tags. Below, PP on lexicon words and OOV words is reported
separately. The objective is to minimise the total PP.

Unsupervised POS-tagging is meant for yet untagged text, so a sys-
tem should be robustly performing on a variety of typologically dif-
ferent languages. For evaluating tagging performance, three corpora
are chosen: the BNC for English, a 10 million sentences newspaper
corpus from LCC for German, and 3 million sentences from LCC’s
Finnish web corpus. Table 5.5 summarises some characteristics.

Since a high text coverage is reached with only a few words in En-
glish, a strategy that assigns only the most frequent words to sensi-
ble clusters already ensures satisfactory performance. In the Finnish
case, a high OOV rate can be expected, hampering performance of
strategies that cannot cope well with low frequency or unseen words.

To put the results in perspective, the following baselines on ran-
dom samples of the same 1,000 randomly chosen sentences used for
evaluation were computed:

• 1: the trivial top clustering: all words are in the same cluster
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language English Finnish German
baseline 1 200 400 1 200 400 1 200 400
PP 29 3.6 3.1 20 6.1 5.3 19 3.4 2.9

Table 5.6: Baselines for various tagset sizes

• 200: the most frequent 199 words form clusters of their own; all
the rest is put into one cluster.

• 400: same as 200, but with 399 most frequent words

Table 5.6 summarises the baselines in terms of PP.

In�uence of System Components

The quality of the resulting taggers for combinations of several sub-
steps is measured using:

• O: tagset 1

• M: the CPT morphology extension

• T: merged tagsets 1 and 2

• A: adding ambiguous words to the lexicon

Figure 5.13 illustrates the influence of the similarity threshold s for
O, O+M and O+M+A for German – for other languages, results look
qualitatively similar. Varying s influences coverage on the 10,000 tar-
get words. When clustering on very few words, tagging performance
on these words reaches a PP as low as 1.25 but the high OOV rate
impairs the total performance. Clustering too many words results in
deterioration of results – most words end up in one big part. In the
medium ranges, higher coverage and lower known PP compensate
each other, optimal total PPs were observed at target word coverages
of 4,000-8,000. The system’s performance is stable with respect to
changing thresholds, as long as it is set in reasonable ranges. Adding
ambiguous words results in a worse performance on lexicon words,
yet improves overall performance, especially for high thresholds.

For all further experiments, the threshold s was fixed in a way that
tagset 1 consisted of 5,000 words, so only half of the top 10,000 words
are considered unambiguous. At this value, the best performance
throughout all corpora tested was achieved.

Overall results are presented in Table 5.7. The combined strategy
T+M+A reaches the lowest PP for all languages. The morphology
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Figure 5.13: Influence of threshold s on tagger performance: cluster-
conditional tag perplexity PP as a function of target word cov-
erage for tagset 1

lang words O O+M O+M+A T+M T+M+A
EN total 2.66 2.43 2.08 2.27 2.05

lex 1.25 1.51 1.58 1.83
OOV 6.74 6.70 5.82 9.89 7.64

OOV% 28.07 14.25 14.98 4.62
tags 619 345

FI total 4.91 3.96 3.79 3.36 3.22
lex 1.60 2.04 1.99 2.29

OOV 8.58 7.90 7.05 7.54 6.94
OOV% 47.52 36.31 32.01 23.80

tags 625 466
GER total 2.53 2.18 1.98 1.84 1.79

lex 1.32 1.43 1.51 1.57
OOV 3.71 3.12 2.73 2.97 2.57

OOV% 31.34 23.60 19.12 13.80
tags 781 440

Table 5.7: Results in PP for English, Finnish, German. OOV% is the fraction
of non-lexicon words in terms of tokens
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Word cluster ID cluster members (size)
I 166 I (1)
saw 2 past tense verbs (3818)
the 73 a, an, the (3)
man 1 nouns (17418)
with 13 prepositions (143)
a 73 a, an, the (3)
saw 1 nouns (17418)
. 116 . ! ? (3)

Table 5.8: Tagging example

extension (M) always improves the OOV scores. Adding ambigu-
ous words (A) hurts the lexicon performance, but largely reduces the
OOV rate, which in turn leads to better overall performance. Com-
bining both partitions (T) does not always decrease the total PP a lot,
but lowers the number of tags significantly.

Finnish figures are generally worse than for the other languages,
consistent with higher baselines. Differences between languages are
most obvious when comparing O+M+A and T+M: whereas for En-
glish it pays off much more to add ambiguous words than to merge
the two partitions, it is the other way around in the German and
Finnish experiments.

To sum up the discussion of results: all introduced steps improve
the performance, yet their influence’s strength varies. As a sample of
the system’s output, consider the example in Table 5.8 that has been
tagged by the English T+M+A model: as in the example above, ’saw’
is disambiguated correctly. Further, the determiner cluster is com-
plete; unfortunately, the pronoun ’I’ constitutes a singleton cluster.

The results can be compared to (Freitag, 2004a); most other work
uses different evaluation techniques that are only indirectly measur-
ing what is tried to optimise here. Unfortunately, Freitag (2004a)
does not provide a total PP score for his 200 tags. He experiments
with a hand-tagged, clean English corpus that is not free (the Penn
Treebank) and is therefore not an option here. Freitag reports a PP
for known words of 1.57 for the top 5,000 words (91% corpus cover-
age, baseline 1 at 23.6), a PP for unknown words without morpho-
logical extension of 4.8. Using morphological features the unknown
PP score is lowered to 4.0. When augmenting the lexicon with low
frequency words via their distributional characteristics, a PP as low
as 2.9 is obtained for the remaining 9% of tokens. His methodol-
ogy, however, does not allow for class ambiguity in the lexicon, the
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low number of OOV words is handled by a Hidden Markov Model
trained with Baum-Welch-Reestimation. It is hard to relate results to
(Clark, 2003): there, much smaller corpora and smaller tagsets are
used, resulting in worse performance. Notice that Clark reports con-
ditional entropy and not perplexity. His method is computationally
much more expensive than the approach discussed here. For that
reason, it does not scale to much larger corpora.

In�uence of Parameters

A number of parameters for the process of unsupervised POS tag-
ging were introduced at the points where they arised. Now, all pa-
rameters are listed for recapitulating the possibilities to fine-tune the
method. Table 5.9 gives the parameters, a short explanation, and the
default setting used in all experiments.

Their influence and interplay is outlined as follows. FEAT did
not show to have a large influence in ranges 100–300. It might be
adviseable to use higher values for languages with low Zipfian ex-
ponents (such as Finnish) to gain higher text coverage for building
tagset 1. When processing small corpora, TARG should not be too
high, because a low corpus frequency for target words results in
unreliable context statistics. The parameter CWTARG must be set
smaller than TARG, Figure 5.13 indicates that 40%–80% of TARG is
a sensible range. Higher settings result in more words that can over-
lap for combining the two tagsets.

NB_SIG and NB_THRESH go hand in hand to regulate the den-
sity of the graph for tagset 2: Lower significance thresholds lead to
more edges in the neighbouring co-occurrence graph, higher values
for NB_THRESH prune edges in the graph for tagset 2. The max-
imum number of neighbouring co-occurrences per word NB_MAX
influences the density of the graph for tagset 2, lower settings result
in less edges per word. All experiments were carried out with the
default value, however, higher values lead to more coarse-grained
tagsets that e.g. join common and proper nouns. Different settings
could prove advantageous for different applications, but no experi-
ments were conducted to measure to what extent.

BEHEAD should be set in a way that stop words are excluded
from tagset 2, but considerably lower than TARG, to enable suffi-
cient overlap between the two tagsets. Less than a value of 2 for
CONF_OVERLAP can result in spurious combinations in the graph
of clusters, higher values reduce the lexicon size since clusters from
tagset 2 are more likely to be excluded.
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Parameter Default Explanation
FEAT 200 Number of feature words for tagset 1 sim-

ilarities
TARG 10,000 Number of target words for tagset 1 sim-

ilarities
CWTARG 5000 Number of words that are clustered for

tagset 1 amongst TARG words, by apply-
ing an appropriate similarity threshold s
on the graph

TOPADD 9500 Number of words that are considered for
adding ambiguous words amonst TARG
words, by applying an appropriate simi-
larity threshold s on the graph

NB_SIG 1.00 Significance threshold for neighbour-
based co-occurrences

NB_THRESH 2 Minimum number of common
neighbour-based co-occurrences per
side for constituting an edge in the graph
for tagset 2

NB_MAX 150 Maximum neighbouring co-occurrences
per word to consider for the second-order
graph of tagset 2

CONF_OVERLAP 2 Minimum number of common words for
connecting partitions in the graph of clus-
ters to merge tagset 1 and 2

BEHEAD 2000 Minimum rank of words to enter the
graph for tagset 2

SING_ADD 200 Maximum frequency rank of words to
add as singletons, if not already con-
tained in the combined tagset.

Table 5.9: Parameters, default settings and explanation
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Figure 5.14: PP, OOV rate and lexicon size vs. corpus size for German

Adding more singletons amongst the SING_ADD most frequent
words increases the number of tags, but also the number of trigrams
available for training the Viterbi tagger.

A sensible extension would be to limit the total number of tags
by excluding thse clusters from the combined tagset that have the
lowest corpus frequency, i.e. the sum of frequencies of the lexicon
words constituting this tag.

In�uence of Corpus Size

Having determined a generic setting for the interplay of the differ-
ent system components (M+T+A), the influence of corpus size on the
cluster-conditional tag perplexity PP shall be examined now. For this
purpose, taggers were induced from German corpora of varying size
from 100,000 sentences up to 40 million sentences, taken from LCC.
Evaluation was carried out by measuring PP between the resulting
taggers and the hand-tagged German NEGRA corpus (Brants et al.,
1997), testing on all 20,000 sentences of NEGRA. The evaluation cor-
pus was not part of the corpora used for tagger induction. Figure
5.14 provides total PP, the OOV rate and the lexicon size, dependent
on corpus size.

Not surprisingly, the more corpus is provided for tagger induction,
the better performance levels are reached in terms of PP. The more
data provided, the more reliable the statistics for tagset 1, which
is reflected in tremendous PP improvement from using 100,000 to
1,000,000 sentences. In this range, tagset 2 is almost empty and does
not contribute to the lexicon size, which is mirrored in a constant
OOV rate for this range. Above 1 million sentences, the size of tagset
2 increases, resulting in lower PP and OOV rates. The lexicon size
explodes to some 100,000 entries for a corpus size of 40 million sen-
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tences. Summarising the results obtained by training the unsuper-
vised POS tagger on corpora of various sizes, there always seems to
be room for improvements by simply adding more data. However,
improvements beyond 10 million sentences are small in terms of PP.

The interpretation of the PP measure is difficult, as it largely de-
pends on the gold standard. While it is possible to relatively compare
the performance of different components of a system or different sys-
tems along these lines, it only gives a poor impression on the utility
of the unsupervised tagger’s output. Therefore, several application-
based evaluations are undertaken in the following section.

5.2.9 Application-based Evaluation

POS taggers are a standard component in any applied NLP system,
and their utility is hardly questioned at all. In this section, a number
of NLP tasks are viewed as machine learning problems: the POS tag-
ger component provides some of the features that are used to learn a
function that assigns a label to unseen examples, characterised by the
same set of features as the examples used for training. In this setting,
it is straightforward to evaluate the contribution of POS taggers – be
they supervised or unsupervised – by providing the different POS
tagging annotations to the learning algorithm or not.

Having advanced machine learning algorithms at hand that auto-
matically perform feature weighting and selection, the standard ap-
proach to NLP systems is to provide all possible features and to leave
the choice to the learning algorithm.

The task-performing systems for application-based evaluation
were chosen to cover a wide range of machine learning paradigms:
Markov chains in a POS tagging system, kernel methods in a
word sense disambiguation (WSD) system and Conditional Random
Fields (CRFs, (see Lafferty et al., 2001)) for named entity recognition
(NER) and chunking. The WSD and CRF experiments were con-
ducted by Claudio Giuliano and Alfio Gliozzo, who are both co-
authors of (Biemann et al., 2007), where the results of this section
have been published.

All evaluation results are compared in a pair-wise fashion using
the approximate randomisation procedure of Noreen (1989) as sig-
nificance test, for which p-values as error probabilities are given, i.e.
a significant difference with p<0.01 means that the test is more than
99% sure that the difference has not been caused by chance.
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Unsupervised POS for Supervised POS

The Viterbi tagger described in Section 5.2.7 is a very simple trigram
tagger that does not use parameter re-estimation or smoothing tech-
niques. It is designed for a large amount of training data as present
in the unsupervised setting, rather than for small training sets in the
supervised case. For training, the frequency of tag trigrams and the
number of times each word occurs with each tag are counted and
directly transformed into (transition) probabilities by normalisation.

In the unsupervised case, the transition probabilities
P(ci|ci−1, ci−2) are only estimated from trigrams where all three
tags are present, whereas in the supervised case, tags are provided
for all tokens in the training corpus. The probability P(ci|ti) is
obtained from the tagger’s lexicon and equals 1 if ti is not contained.

For the inclusion of unsupervised tags, another factor P(ci|ui) is
introduced that accounts for the fraction of times the supervised tag
ci was found together with the unsupervised tag ui in the training
text:

Punsupos(T, C) =
n

∏
i=1

P(ci|ci−1, ci−2)P(ci|ti)P(ci|ui)

Notice that only the unsupervised tag at the same position influ-
ences the goal category in this simple extension. Using surrounding
unsupervised tags would be possible, but has not been carried out
here. More elaborate strategies, like morphological components as
in the unsupervised setting (also cf. Brants, 2000)) or the utilisation
of a more up-to-date tagger model, are not considered for the super-
vised tagger. The objective is to examine the influence of unsuper-
vised tags, not to construct a state of the art POS tagger. Ushioda
(1996) describes a somewhat related strategy, where a hierarchical
clustering of words is used for improvement of a decision-tree-based
tagger.

Training sets of varying sizes are selected randomly from the
20,000 sentences of NEGRA corpus, the respective remainders are
used for evaluation. The performance of the plain Viterbi tagger is
compared with the performance of the tagger using unsupervised
tags. These are obtained by tagging the NEGRA corpus with the
tagger model induced on 40 million sentences from the Wortschatz
project as evaluated in Figure 5.14, Section 5.2.8. Results are reported
in tagging accuracy (number of correctly assigned tags divided by to-
tal number of tokens), averaged over three different splits per train-
ing size each. Figure 5.15 shows the learning curve.

Results indicate that supervised tagging can clearly benefit from
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Figure 5.15: Learning curve for supervised POS tagging with and without
using unsupervised POS tags (accuracy). Differences between
the two models are significant with p<0.01 for all percentages
of training

unsupervised tags: already at 20% training with unsupervised tags,
the performance on 90% training without the unsupervised exten-
sion is surpassed. At 90% training, error rate reduction is 27.8%, in-
dicating that the unsupervised tagger grasps very well the linguisti-
cally motivated syntactic categories and provides a valuable feature
to either reduce the size of the required annotated training corpus or
to improve overall accuracy. Despite its simplicity, the unsupervised
extension comes close to the performance of (Brants, 2000), who re-
ports an accuracy of 0.967 at 90% training on the same corpus.

Unsupervised POS for Word Sense Disambiguation

The task in word sense disambiguation (WSD) is to assign the correct
word sense to ambiguous words in a text based on the context. The
senses are provided by a sense inventory (usually WordNet, (Miller
et al., 1990)). Supervised WSD is trained on examples where the cor-
rect sense is provided manually, and tested by comparing the sys-
tem’s outcome on held-out examples.

In the WSD literature, many algorithms have been proposed, char-
acterised by different feature sets and classification algorithms. The
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5 Structure Discovery Procedures

state of the art supervised WSD methodology, reporting the best re-
sults in most of the Senseval-3 lexical sample tasks (Mihalcea et al.,
2004b) in different languages, is based on a combination of syntag-
matic and domain kernels (Gliozzo, 2005) in a Support Vector Ma-
chine classification framework.

A great advantage of this methodology is that all its pre-processing
steps are also unsupervised and knowledge-free and therefore com-
ply to the SD paradigm. It has been shown here that the only
language-dependent component in the system of Gliozzo et al. (2005)
– a supervised POS tagger – can safely be replaced by the unsuper-
vised POS tagger.

Kernel WSD basically encompasses two different aspects of sim-
ilarity: domain aspects, mainly related to the topic (i.e. the global
context) of the texts in which the word occurs, and syntagmatic as-
pects, concerning the lexical-syntactic pattern in the local contexts.
Domain aspects are captured by the domain kernel, while syntag-
matic aspects are taken into account by the syntagmatic kernel.

The domain kernel handles domain aspects of similarity among
two texts based on the Domain Model as introduced in (Gliozzo,
2005), which is a soft clustering of terms reflecting semantic domains.
On the other hand, syntagmatic aspects are probably the most impor-
tant evidence while recognising sense similarity. In general, the strat-
egy adapted to model syntagmatic relations in WSD is to provide bi-
grams and trigrams of collocated words as features to describe local
contexts (Yarowsky, 1994). The main drawback of this approach is
that non-contiguous or shifted collocations cannot be identified, de-
creasing the generalisation power of the learning algorithm.

The syntagmatic kernel allows estimating the number of common
non-continuous subsequences of lemmas (i.e. collocations) between
two examples, in order to capture syntagmatic similarity. Analo-
gously, the POS Kernel is defined to operate on sequences of parts-
of-speech. The syntagmatic kernel is given by a linear combination
of the collocation kernel and the POS kernel.

The modularity of the kernel approach makes it possible to eas-
ily compare systems with different configurations by testing various
kernel combinations. To examine the influence of POS tags, two com-
parative experiments were undertaken. The first experiment uses
only the POS kernel, i.e. the POS labels are the only feature visible
to the learning and classification algorithm. In a second experiment,
the full system as in (Gliozzo et al., 2005) is tested against replacing
the original POS kernel with the unsupervised POS kernel and omit-
ting the POS kernel completely. Table 5.10 summarises the results in
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5.2 Unsupervised Part-of-Speech Tagging

System only POS full
no POS N/A 0.717
supervised POS 0.629 0.733
unsupervised POS 0.633 0.735

Table 5.10: Comparative evaluation on Senseval scores for WSD. All differ-
ences are not significant at p<0.1

terms of Senseval scores for WSD, tested on the lexical sample task
for English. The unsupervised POS annotation was created using the
BNC tagger model, see Section 5.2.8.

Results show that POS information is generally contributing to a
very small extent to WSD accuracy in the full WSD system. Us-
ing the unsupervised POS tagger results in a slight performance in-
crease, improving over the state of the art results in this task, that
have been previously achieved with the same system using super-
vised POS tags. In conclusion, supervised tagging can safely be ex-
changed in kernel WSD with the unsupervised variant. Replacing
the only pre-processing step that is dependent on manual resources
in the system of Gliozzo et al. (2005), state of the art supervised WSD
is proven to not being dependent on any linguistic pre-processing at
all.

Unsupervised POS for NER and Chunking

Named entity recognition (NER) is the task of finding and classifying
named entities, such as persons, organisations and locations. Chunk-
ing is concerned with shallow syntactic annotation; here, words in
a text are labelled as being syntactically correlated, e.g. in noun
phrases, verb phrases and prepositional phrases. For performing
NER and chunking, these applications are perceived as a tagging
task: in each case, labels from a training set are learned and applied
to unseen examples. In the NER task, these labels mark named en-
tities and non-named entities, in the chunking task, the respective
phrases or chunks are labelled.

For both tasks, the MALLET tagger (McCallum, 2002) is trained. It
is based on first-order Conditional Random Fields (CRFs), which de-
fine a conditional probability distribution over label sequences given
a particular observation sequence. The flexibility of CRFs to include
arbitrary, non-independent features makes it easy to supply either
standard POS tags, unsupervised POS tags or no POS tags to the sys-
tem without changing its overall architecture.
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5 Structure Discovery Procedures

Category PER ORG LOC MISC ALL
no POS 0.8084 0.7445 0.8151 0.7462 0.7781
supervised POS 0.8154 0.7418 0.8156 0.7660 0.7857
unsupervised POS 0.8083 0.7357 0.8326 0.7527 0.7817

Table 5.11: Comparative evaluation of NER on the Dutch CoNLL-2002 data-
set in terms of F1 for PERson, ORGanisation, LOCation, MISC-
ellaneous, ALL. No differences are significant with p<0.1

The tagger operates on a different set of features for the two tasks.
In the NER system, the following features are accessible, time-shifted
by -2, -1, 0, 1, 2:

• the word itself

• its POS-tag

• Orthographic predicates

• Character bigram and trigram predicates

In the case of chunking, features are only time-shifted by -1, 0, 1 and
consist only of:

• Word itself

• POS-tag

This simple feature set for chunking was chosen to obtain a means
of almost direct comparison of the different POS schemes without
blurring results by other features or system components. Per system,
three experiments were carried out, using standard POS features, un-
supervised POS features and no POS features.

To evaluate the performance on NER, the methodology as pro-
posed by the providers of the CoNLL-2002 (Roth and van den Bosch,
2002) dataset is adopted: for all settings, the difference in perfor-
mance in terms of the F16 measure is reported. Here, the Dutch data-
set is employed, the unsupervised POS tagger is induced on the 70
million token Dutch CLEF corpus (see Peters, 2006). Table 5.11 sum-
marises the results of this experiment for selected categories using
the full training set for training and evaluating on the test data.

The scores in Table 5.11 indicate that POS information is hardly
contributing anything to the system’s performance, be it supervised

6F1 is the harmonic mean of precision P (number of correct divided by number of assigned
labels) and recall R (number of correct divided by number of all labels), F1 = 2PR

P+R (cf.
Van Rijsbergen, 1979)
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5.2 Unsupervised Part-of-Speech Tagging

Figure 5.16: Learning curves in NER task for category LOC and combined
category

or unsupervised. This indicates that the training set is large enough
to compensate for the lack of generalisation when using no POS tags,
in line with e.g. (Banko and Brill, 2001). The situation changes when
taking a closer look on the learning curve, produced by using train
set fractions of differing size. Figure 5.16 shows the learning curves
for the categories LOCATION and the (micro average) F1 evaluated
over all the categories (ALL).

On the LOCATION category, unsupervised POS tags provide a
high generalisation power for a small number of training samples.
This is due to the fact that the induced tagset treats locations as a
different tag; the tagger’s lexicon plays the role of a gazetteer in this
case, comprising 765 lexicon entries for the location tag. On the com-
bination of ALL categories, this effect is smaller, yet the incorporation
of POS information outperforms the system without POS for small
percentages of training.

This disagrees with the findings of Freitag (2004b), where features
produced by distributional clustering were used in a boosting algo-
rithm. Freitag reports improved performance on PERSON and OR-
GANISATION, but not on LOCATION, as compared to not using a
tagger at all.

Experiments on NER reveal that POS information is not making
a difference, as long as the training set is large enough. For small
training sets, usage of unsupervised POS features results in higher
performance than supervised or no POS, which can be attributed to
its finer-grained tagset that directly indicates types of named entities.

For testing performance of the simple chunking system, different
portions of the training set as provided in the English CoNLL-2000
data (see Tjong Kim Sang and Buchholz, 2000) and evaluated on the
provided test set. Performance is reported in Figure 5.17.
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5 Structure Discovery Procedures

Figure 5.17: Learning curve for the chunking task in terms of F1. Perfor-
mance at 100% training is 0.882 (no POS), 0.904 (unsupervised
POS) and 0.930 (supervised POS), respectively

As POS is the only feature that is used here apart from the word
tokens themselves, and chunking reflects syntactic structure, it is
not surprising that providing this feature to the system results in in-
creased performance: both kinds of POS significantly outperform not
using POS (p<0.01). In contrast to the previous systems tested, using
the supervised POS labels resulted in significantly better chunking
(p<0.01) than using the unsupervised labels. This can be attributed
to a smaller tagset for supervised POS, providing more reliable statis-
tics because of less sparseness. Further, both supervised tagging and
chunking aim at reproducing the same perception of syntax, which
does not necessarily fit the distributionally acquired classes of an un-
supervised system. Despite the low number of features, the chunk-
ing system using supervised tags compares well with the best system
in the CoNLL-2000 evaluation (F1=0.9348).

5.2.10 Summary on Unsupervised POS Tagging

An unsupervised POS tagging system was described in detail and
evaluated directly and indirectly on various languages and tasks. In
difference to previous approaches to unsupervised POS tagging, this
method allows for a larger lexicon, where also POS ambiguities are
handled. Further, the discovery of the number of POS categories is
part of the method, rather than chosen beforehand.
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5.3 Word Sense Induction and Disambiguation

Evaluation on typologically different languages demonstrated the
language-independence and robustness of the method. In indirect
evaluation it was shown that for many tasks that use POS as a pre-
processing step, there is no significant difference in results between
using a trained POS tagger or the unsupervised tagger presented
here.

As far as performance in applications is concerned, the manual ef-
forts necessary to construct a POS tagger should rather be invested
in collecting a large basis of text of the target domain or language,
which can be also used for other purposes besides training the unsu-
pervised POS tagger.

A re-implementation of the unsupervised POS tagger system by
Andreas Klaus is available for download7. This implementation uses
the parameter names as given in Table 5.9.

5.3 Word Sense Induction and Disambiguation

To complete this chapter, I will sketch another Structure Discovery
process now. Since time and space for a dissertation is limited, this
procedure will merely be described and exemplified rather than eval-
uated. Nevertheless, its proposed architecture might serve as a start-
ing point for further work.

The problem of word sense ambiguity has occurred already several
times in this work, see Sections 1.1.4, 4.2.5 and 5.2.9. Now, it will be
discussed in more detail.

Major difficulties in automatic language processing are caused by
the fact that many words are ambiguous, i.e. they have different
meanings in different contexts, but are written (or pronounced) in the
same way. While syntactic ambiguities have already been addressed
in the previous section, we now turn to the semantic dimension of
this problem.

When approaching ambiguity in the Structure Discovery frame-
work, two steps towards the automatic labelling of homonymous
words with their senses can be distinguished and correspond to the
two directions in Figure 1.1:

• Word Sense Induction (WSI) (also word sense discrimination) is
the step of identifying the different word senses or usages from
corpus data. This is a clustering task.

7http://wortschatz.uni-leipzig.de/�cbiemann/software/unsupos.html [July 7th,
2007]
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• Word Sense Disambiguation (WSD) assigns the correct sense from
a given set of senses to occurrences of ambiguous words in the
text. This is a tagging task.

Both steps have been previously examined extensively. For WSI
the general methodology (see e.g. Pedersen and Bruce, 1997; Schütze,
1998; Pantel and Lin, 2002; Widdows and Dorow, 2002; Purandare
and Pedersen, 2004; Rapp, 2004; Bordag, 2006) is to cluster the word
co-occurrences of a target word to arrive at sets of co-occurrences
that represent the different senses, with some variety regarding the
context window size, dimensionality reduction techniques and the
order of co-occurrences. WSD has been predominantly performed
using a pre-defined sense inventory like WordNet, see (Agirre and
Edmonds, 2006) and the Senseval competitions (e.g. Mihalcea and
Edmonds, 2004) for an overview. Here, the WordNet sense is ei-
ther assigned using lexical overlap between the dictionary definition
and the actual context, or by training a classifier on the hand-labelled
SemCor corpus8.

A problem with pre-defined word sense inventories is that their
senses often do not match the application domain, and there is no
consensus on the granularity level of senses, even within single sense
inventories. Kilgarriff (1997) states "that word senses are only ever
defined relative to a set of interests. The set of senses defined by a
dictionary may or may not match the set that is relevant for an NLP
application". Taking the dissent among lexicographers and the fuzzi-
ness of the term ’word sense’ into account, Cohn (2003) even consid-
ers the task of WSD as being ill-defined. Therefore, a domain- and
corpus-specific word sense inventory is, besides being the only pos-
sibility when working in SD, also highly desired independent of the
processing paradigm. This is also reflected in the study of Schütze
and Pedersen (1995), one of the rare studies where WSD showed to
have a positive effect on information retrieval when using senses in-
duced from a corpus: most other studies (Voorhees, 1993, inter al.) re-
ported negative effects when applying WSD with a predefined sense
inventory in a search context.

The study of Agirre et al. (2006a) proceeds just in the spirit of SD
to evaluate the contribution of HyperLex graph clustering (Veronis
(2004), see Section 4.1.3) in the following way: from an unannotated
corpus, a sense inventory is induced that is used to assign sense la-
bels for words in a sense-tagged corpus. These are employed to cre-
ate a mapping between the annotated and the induced senses. A
held-out sense-tagged corpus serves as the basis for evaluating the

8available at http://multisemcor.itc.it/semcor.php [June 1st, 2007]
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5.3 Word Sense Induction and Disambiguation

quality of the induced annotation via the mapping and was used to
optimise the parameters of HyperLex. Interestingly, the best results
were obtained with a high granularity of microsenses, rather than
with coarse-grained distinctions that are supported by a broader data
basis per sense. This suggests two things: first, the manually as-
signed senses and the automatically induced senses do not match
well; this is why a finer-grained sense induction produces a more
pure mapping. Second, the data basis for microsenses is sufficently
large to assign them with an accuracy that almost reaches state of
the art performance for unsupervised WSD systems despite the lossy
mapping. When comparing HyperLex to PageRank (Brin and Page,
1998) for selecting root vertices in (Agirre et al., 2006b), very similar
results suggest that the key issue in graph-based WSI is not so much
the clustering algorithm used, but rather the construction of the un-
derlying graphs.

This is also supported by comparing the performance of Chinese
Whispers to the triplet-based WSI graph clustering algorithm of Bor-
dag (2006) as undertaken in (Biemann, 2006b)9: here, the sentence-
based word co-occurrence graphs of 45 test words of different fre-
quency and parts-of-speech are conflated pair-wise in a pseudoword
evaluation fashion (cf. Schütze, 1998). It was measured, to which
extent the clustering method could restore the original word clus-
ters. Since these words were selected to be not ambiguous, a perfect
clustering method would cluster the conflated word co-occurrence
graphs in two clusters corresponding to the original graphs of the
single words.

To quantify the extent to which this succeeds, four measures are
proposed in (Bordag, 2006):

• retrieval Precision (rP) - the percentage of overlap of the found
sense co-occurrences with the original sense co-occurrences.

• retrieval Recall (rR) - the amount of words that have been cor-
rectly retrieved into the correct sense.

• Precision (P) is defined as the number of times the original co-
occurrence sets are properly restored divided by the number of
different sets found. Properly restored here means that rP for
the correct sense is above 60%.

• Recall (R) is defined as the number of senses found divided by
the number of words merged to create the pseudoword. For
this, rR for the correct sense must be above 25%.

9Thanks goes to Stefan Bordag for providing his evaluation framework
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Method mix standard CW (Bordag, 2006)
Measure P R rP rR P R rP rR

samePOS
N 90.0 79.5 94.8 71.3 87.0 86.7 90.9 64.2
V 77.6 67.1 87.3 57.9 78.3 64.3 80.2 55.2
A 92.2 61.9 89.3 71.9 88.6 71.0 88.0 65.4

diffPOS
N/V 81.8 77.3 94.0 62.0 86.6 77.1 90.5 61.9
N/A 89.3 75.1 94.3 70.1 90.9 78.0 90.4 66.8
V/A 83.4 68.9 90.0 61.5 80.9 63.6 82.0 60.9

sameFreq
high 93.7 72.9 95.0 73.8 93.7 78.1 90.3 80.7
med. 80.7 83.8 91.0 55.7 84.5 85.2 89.9 54.6
low 74.1 51.4 72.9 56.2 74.8 49.5 71.0 41.7

diffFreq
h/m 90.0 70.4 96.7 75.4 86.4 79.6 92.7 72.1
h/l 93.1 69.6 97.1 78.3 91.2 67.8 90.9 74.5
m/l 76.2 72.2 87.7 52.4 82.3 74.0 85.3 49.9

Table 5.12: Comparative evaluation of WSI for standard Chinese Whispers
and (Bordag, 2006) on the same dataset in average %. Combi-
nations were conducted for all testwords with the same syntac-
tic class (samePOS) for nouns (N), verbs (V) and adjectives (A),
of different syntactic class (diffPOS), of same frequency range
(sameFreq) and of different frequency ranges (diffFreq). Per cat-
egory, the better figure is marked in bold, if the difference ex-
ceeds 3%

In the experiment, the open neighbourhoods from the significant
word co-occurrence graph (t = 2, s = 15, cf. Section 3.2.1) of the
raw BNC for each target word were merged by twos, and standard
Chinese Whispers was used to cluster these merged graphs. Table
5.12 compares the performance of the CW clustering with the results
of Bordag (2006).

Results in Table 5.12 suggest that both algorithms arrive at about
equal overall performance (P and R). Chinese Whispers cluster-
ing is able to capture the same information as a specialised graph-
clustering algorithm for WSI, given the same input. The slightly
superior performance on rR and rP indicates that CW leaves fewer
words unclustered, which can be advantageous when using the clus-
ters as clues in word sense disambiguation. However, pseudoword
evaluation and the restriction to only a few sample words make it
difficult to draw conclusions about WSD performance from these ex-
periments.

The following suggestions might be worth trying for improving
the performance of unsupervised WSI+WSD:
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• Select and Re-train: When assigning the induced word senses to
tokens in the text, it might be advantageous to only carry out
the assignment on those tokens that can be resolved with high
confidence. These can further be used in a supervised WSD
scenario (e.g. the kernel method described in Section 5.2.9) for
training a model that is able to assign senses to the remaining
tokens.

• Flat Hierarchy of Senses: To arrive at a generic method that com-
bines the advantages of fine- and coarse-grained granularities
of word senses, it is possible to set up a flat hierarchy when in-
ducing the word senses and to disambiguate for each hierarchy
level separately. In an application scenario, machine learning
algorithms with appropriate feature selection mechanisms can
pick the appropriate granularity level for the given task.

To illustrate the latter point, consider Figure 5.18, where the
neighbourhood of ’hip’ in the significant sentence-based word co-
occurrence graph of the BNC (excluding high frequency words) was
clustered with hierarchical agglomerative Chinese Whispers as out-
lined in Section 4.2.7. On the first level, senses are very fine-grained,
whereas on the second level, the two usages of ’hip’ as body part and
in music can be identified.

In the WSD step, attention has to be paid to the fact that the context
words used for overlap computation can themselves be ambiguous.
For this, it might be advisable to disambiguate the graph as outlined
in Section 4.2.5 and to apply a ranking mechanism as in Mihalcea
et al. (2004a) to assign the most probable combination of senses.
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• FIGHT:  The punching hip , be it the leading hip of a front punch or the
trailing hip of a reverse punch , must swivel forwards , so that your
centre-line directly faces the opponent .

• MUSIC: This hybrid mix of reggae and hip hop follows acid jazz , 
Belgian New Beat and acid swing the wholly forgettable contribution of 
Jive Bunny as the sound to set disco feet tapping . 

• DANCER:  Sitting back and taking it all in is another former hip hop
dancer , Moet Lo , who lost his Wall Street messenger job when his 
firm discovered his penchant for the five-finger discount at Polo stores

• HOORAY: Ho , hey , ho hi , ho , hey , ho , hip hop hooray , funky , get
down , a-boogie , get down .

• MEDICINE: We treated orthopaedic screening as a distinct category
because some neonatal deformations (such as congenital dislocation of 
the hip ) represent only a predisposition to congenital abnormality , and 
surgery is avoided by conservative treatment .

• BODYPART-INJURY:  I had a hip replacement operation on my left
side , after which I immediately broke my right leg .

• BODYPART-CLOTHING: At his hip he wore a pistol in an ancient
leather holster .

Figure 5.18: WSI Example of ’hip’ with hierarchical agglomerative CW and
usages. Top: fist level clustering. Bottom left: second-level
clustering. Bottom right: Sample usages from the BNC
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In this dissertation I introduced the Structure Discovery paradigm,
which finds and annotates structure in natural language data using
Structure Discovery processes. Structure is to be understood here
as any kind of annotation that can be automatically introduced into
language data by applying algorithms that employ regularities and
make these explicit. The algorithms operate without any linguistic
information – neither explicitly stated facts about language, nor im-
plicitly encoded knowledge in the form of manual annotations.

The Structure Discovery paradigm was contrasted to the predom-
inant schools of language processing and its adequacy for linguistic
phenomena was motivated. A major contribution of this work is the
definition of a framework for processing language in an unsuper-
vised and knowledge-free way.

Although there has been previous work that can be attributed
to this paradigm, there has not been an attempt to completely de-
scribe it before. The main advantages of telling the machine how
to discover structure in language is the language- and domain-
independence of this approach, which strives at a uniform treatment
by employing language universals and reduces the manual effort of
encoding language-specific knowledge to zero.

When working in Structure Discovery, the first step is to charac-
terise the data that is subject to exploration. At this point, the charac-
teristics are also depending on the representation of the data. Here,
graph representations allow to model statistically gathered informa-
tion about language units in an intuitive way: entities of language
are represented by vertices; edge weights denote the degree of asso-
ciation between entities.

It has been known before that many graphs built on language as
well as on other data exhibit the scale-free Small World property. Af-
ter reviewing random graph models and finding that none of the ex-
isting models are able to reproduce the characteristics found in word
co-occurrence networks, a random text model was presented that
comes closer to what is observed in natural language texts. This is
reached by simulating the generation of words and sentences in two
different modules. Further, the rank-frequency distribution of words
and language unit length distributions of natural language could be
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reproduced. This random text generation model is a another step
towards explaining the mechanisms that point to the origin of lan-
guage by defining simple procedures that produce an output stream
that quantitatively resembles language.

Clustering methods are the only choice to perform the abstractions
and generalisations needed for assigning structure to previously un-
structured text in absence of pre-classified items. A review of cluster-
ing methods in general and graph clustering methods in particular
showed that most previous approaches are not suitable for natural
language data, as they can either not cope with highly skewed dis-
tributions or fail to present tractable solutions for large datasets.

Thus, the Chinese Whispers graph clustering algorithm was devel-
oped and tested on artificial and real datasets. By working in a de-
centralised fashion and only with local information, this randomised
algorithm is as efficient as any method that takes the full graph into
account. This allows the processing of very large graphs, which are
common in language processing when e.g. encoding words as ver-
tices and their similarities as edges. Several possible extensions and
modifications allow adapting the method to special requirements of
datasets. A central advantage of this method is that the number
of clusters is found automatically rather than provided by the user,
which is especially important for language data, where e.g. the num-
ber of word senses or the number of languages in a random web
sample are not known a priori.

In the practical part of this work, two Structure Discovery pro-
cesses were set up and thoroughly evaluated.

A language separation algorithm performs almost perfectly in
sorting a multilingual text corpus into monolingual chunks. The
number and the size distribution of the involved languages are
found by the method itself, which renders prior knowledge obsolete
for this task.

An unsupervised part-of-speech tagger, which induces and pro-
vides annotation with syntactic-semantic word classes, was tested
extensively for a variety of languages against manually annotated
resources and in applications, where the performance gains are sim-
ilar to using a traditional tagger. This makes the manual annotation
of parts-of-speech information superfluous for application-based set-
tings.

A further process for word sense induction and disambiguation
was outlined, which illustrates possible future work in the Structure
Discovery paradigm.

The feasibility of the broad-scale program of this work – the fully
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unsupervised and knowledge-free processing of natural language
text – has been exemplified on various language processing tasks.
It could be demonstrated that in fact Structural Discovery processes
can produce structural information that is useful for natural lan-
guage processing, and are a veritable alternative whenever high
manual efforts are not affordable. The presented methods and al-
gorithms serve only as a starting point – further Structure Discovery
processes might be the topic of future work.

The gain for automatic natural language processing is twofold:
While Structure Discovery provides a cheap and robust way to
rapidly improve the processing for resource-scarce languages and
domains, it also allows insights in the mechanisms of natural lan-
guage per se.
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