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Abstract: This work presents an unsupervised solution to language 
identification. The method sorts multilingual text corpora on the basis of 
sentences into the different languages that are contained and makes no 
assumptions on the number or size of the monolingual fractions. Evaluation on 
7-lingual corpora and bilingual corpora show that the quality of classification is 
comparable to supervised approaches and works almost error-free from 100 
sentences per language on.   

1 Introduction 

With a growing need for text corpora of various languages in mind, we address the 
question of how to build monolingual corpora from multilingual sources without 
providing training data for the different languages.  

According to [Pantel et al. 2004], shallow methods of text processing can yield 
comparable results to deep methods when allowing them to operate on large corpora. 
The larger the corpus, however, the more difficult it is to ensure sufficient quality. 
Most approaches in Computational Linguistics work on monolingual resources and 
will be disturbed or even fail if a considerable amount of ‘dirt’ (sublanguages or 
different languages) are contained. Viewing the Internet as the world’s largest text 
corpus, it is difficult to extract monolingual parts of it, even when restricting 
downloading to country domains or some domain servers. 

While some languages can be identified easily due to their unique coding ranges in 
ASCII or UNICODE (like Greek, Thai, Korean, Japanese and Chinese), the main 
difficulty arises in the discrimination of languages that use the same coding and some 
common words, as most of the European languages do. 

In the past, a variety of tools have been developed to classify text with respect to 
its language. The most popular system, the TextCat Language Guesser as described in 
[Cavnar & Trenkle 1994], makes use of the language-specific letter N-gram 
distribution and can determine 69 different natural languages. According to [Dunning 
1994], letter trigrams can identify the language almost error-freely from a text-length 
of 500 bytes on. Other language identification approaches use short words and 
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common words as features, e.g. [Johnson 1993], or combine both approaches (cf. 
[Schulze 2000]). For a comparison, see [Grefenstette 1995]. 

All these approaches work in a supervised way: given a sample of each language, 
the model parameters are estimated and texts are classified according to their 
similarity to the training texts. But supervised training has a major drawback: The 
language identifier will fail on languages that are not contained in its training and, 
even worse, it will mostly have no clue about that and assign some arbitrary 
language1. 

This work proposes a method that operates on words as features and finds the 
number of languages as well as the sentences that belong to each language in a fully 
unsupervised way. Of course, the method is not able to tell the names of the involved 
languages, but rather groups sentences of similar languages together.  

2 Methodological Approach 

In this section we describe our methodology. With the use of co-occurrence statistics 
we construct weighted lexeme graphs built from words as nodes and their associations 
as edges. A graph algorithm determines sub-graphs with high connectivity (clusters) 
and assigns class labels to each word. Under the assumption that two words of the 
same language exhibit more frequent co-occurrence than word pairs of different 
languages, the graph algorithm will find one cluster for each language. The words in 
the clusters serve as features to identify the languages of the text collection by using a 
sentence-based language identifier.  

2.1 Sentence-based Co-occurrence Graphs 

The joint occurrence of two or more words within a well-defined unit of information 
(sentence, document or word window) is called a co-occurrence. For the selection of 
significant co-occurrences, an adequate measure has to be defined: Our significance 
measure is based on the Poisson distribution: Given two words A, B, each occurring a, 
b times in sentences, and k times together, we calculate the significance sig(A, B) of 
their occurrence in a sentence as follows:  
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Roughly speaking, this significance measure is the negative logarithm of the 
probability for seeing at least k joint occurrences if A and B would be statistically 
independent.  
                                                           
1 e.g. TextCat (http://odur.let.rug.nl/~vannoord/TextCat/Demo/) assigns “Nepali” to texts like 

“xx xxx x xxx …” and “Persian” to “öö ö öö ööö …” 
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If the significance value is above a certain threshold (we use 0.4), the co-occurrence 
of A and B is considered significant. How significant co-occurrences can serve as a 
data basis for a variety of applications is described in [Biemann et al. 2004a] and 
[Biemann et al. 2004b]. 

The entirety of all words having significant co-occurrences can be viewed as nodes 
in a graph. An edge between two words exists, if their co-occurrence is significant in 
the text, and the weight of the edge is given by the significance value.  

Figure 1 shows the co-occurrence graph calculated from the text of this paper from 
section 1 until the significance measure formula. For texts that short, significant co-
occurrences do not reflect semantic relations as they do in large corpora (see 
[Quasthoff & Wolff 2002]). 

 

 
Figure 1: Co-occurrence graph for the beginning of this document. The visualization 
software positions associated words close to each other. Note the cluster containing 

two, times, A and B. Edge weight is not reflected in the visualization.  
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The structure of co-occurrence graphs can be characterized by the small-world 
property: a high clustering coefficient paired with short path lengths between nodes 
and a number of scale-free properties  (cf. [Ferrer-i-Cancho & Sole 2001], [Barabási 
et al. 2000].) As a consequence, there exist sub-graphs that are almost completely 
connected (clusters), and some hubs (nodes with a high connection degree) that 
connect those clusters with each other. 

When calculating co-occurrence graphs for multilingual corpora, one cluster for 
each language can be expected (that has in itself again the small world property), 
while frequent words belonging to different languages serve as hubs. 

2.2 Finding Clusters in Co-occurrence Graphs 

In the following we describe a graph algorithm called Chinese Whispers2, which finds 
clusters in (co-occurrence) graphs by assigning class labels for each cluster. The name 
is motivated by the children’s game where a message is passed by whispering 
amongst several children, transforming the message into something funny.  In this 
case, the nodes of the graph whisper their label to each other, until every node agrees 
with its adjacent nodes on some label.  

Figure 2 gives an outline of the algorithm: 
 

Assign different labels to every node in the graph; 

For iteration i from 1 to total_iterations { 

 mutation_rate= 1/ (i^2); 

 For each word w in the graph { 

  label of w = highest ranked label in  
                            neighbourhood of w; 

  with probability mutation_rate:  
                label of w = new class label; 

 } 

} 

Figure 2: Outline of the Chinese Whispers algorithm, which finds monolingual 
clusters in co-occurrence graphs of multilingual corpora 

 
The algorithm begins by assigning different class labels to all words in the graph. 

In the main loop, the class labels are subject to change: Every word inherits the 
highest ranked class label in its neighbourhood, which consists of all nodes that are 
connected to the word in question. Ranking is done using the weights of the edges 

                                                           
2 Thanks goes to Vincenzo Moscati for the name of the algorithm. 
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that are given by the significance value of the co-occurrence: For each class label in 
the neighbourhood, the sum of the weights of the edges to the word in question is 
taken as score for ranking. Figure 3 illustrates the change of a class label. Note that all 
changes are not immediately applied, but take effect in the next iteration.  

Figure 3: The class label of word A changes from L1 to L3 due to the following 
scores in the neighbourhood: L3:9, L4:8 and L2:5. 

 
With increasing iterations, clusters become self-preserving: If a strongly connected 

cluster happens to be homogenious with respect to class labels, it will never be 
infected by a few connections from other clusters.  

To avoid premature convergence and scenarios, where several clusters end up with 
the same class labels due to strong influence of hubs, a mutation step is included that 
assigns new class labels with decreasing probability dependent on the iteration. In 
principle, the algorithm works without mutation on large graphs as well but its 
performance decreases on small graphs. Although random influence is introduced, 
only a very small part of the nodes are labeled differently in different runs on the 
same graph.  

The number of total iterations was set to 20 for all experiments, because after 20 
iterations the changes in the class labels were only minimal, even in graphs of 1 
million nodes and more. 

2.3 Sentence-based Language Identification 

For sentence-based language identification we use a tool called “LanI“ („Language 
Identifier“) which we developed with the aim to cleanse the sentences and corpora 
downloaded from the WWW from alien material like source code, sublanguages, 
foreign languages and so on as described above. LanI was written in Python. Here 
sentence-based means that LanI returns acceptable results on strings containing at 
least four or five words. Thereby only statistical data are used, so no semantic or 
syntactic information is utilized and the well-formedness of sentences is not essential. 
By designing LanI we assumed, that the probability for a sentence to belong to a 
given language is computable with the knowledge of the relative frequency of the 
words of the given sentence in different languages. Considering Zipf's Law [Zipf 
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1929],  LanI gets by with the 250 to 10,000 high-frequency words of given languages. 
So a word that only appears in one language L (accordingly in one language-
wordlist), of course increases the probability for a given sentence to be written in that 
language L. Needless to say, word lists are not disjoint, for example in borrowings 
like the English “kindergarten“ and German “Kindergarten“ or like “[to] die“ in 
English and “die“ (an article) in German. If so, the relative frequency for in both 
languages matters. For example: the relative frequency for “die“ in English is approx. 
0.0000367 (0.004% of all words in written English) but around 0.029 (2.9%) in 
German. Thus, a sentence with “die“ contributes more for German (and for English 
only a little bit).   

For the relative frequency for words in different languages we used corpora 
collected in “Projekt Deutscher Wortschatz“, http://wortschatz.uni-leipzig.de/). The 
relative frequencies are regarded as word probabilities PL(w) for every word w in 
language L.  

After normalisation and smoothing (to avoid multiplication with zero, every word 
not occurring in a wordlist but in another, gets a very small fixed value) we compute 
the sentence-probability by multiplying the relative probability of each word. For a 
sentence S we compute for every language L: 

)(...)()()( 21 sLLLL wPwPwPSP ⋅⋅⋅=  
The result of this is, that we have a probability for every language and now we can 

easily select the best language. Does the winning language have a likelihood (at least) 
as twice as large than the second best language, the language for the given sentence is 
determined.  If only ten percent or less of the words of a sentence contained in the 
wordlists, the calculation will be discarded and LanI reports “unknown”. 

 
However, for the algorithm described in this paper we modify the approach a little: 

for every word in each wordlist the probability is set to a given constant value, thus 
there is no attempt to use distribution information. For each cluster we got, the word 
lists consist of the items of each of it. Because every word in the graph is assigned to 
at most one cluster by the graph algorithm, there are no words contributing to the 
assignment of two or more languages.  

3 Experiments and Evaluation 

In order to evaluate our approach, we applied the method to two different settings. A 
corpus compiled from equal fractions of seven European languages served to 
determine the lower threshold of how many sentences of each language should be at 
least contained to make the method work. To find out, how much the amount of 
monolingual material can differ in biased corpora, experiments on bilingual corpora 
with different size factors between the two contained languages were performed.  

We used the standard Information Retrieval measures for evaluation: Precision (P), 
which is the number of true positives divided by the sum of true positives and false 
positives, and recall (R), which is calculated by dividing the number of true positives 
through the number of total target items. For some experiments, we provide the 
harmonic mean of P and R, the F-value (F), which is given by (2PR)/(P+R). 
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In all experiments, clusters were assumed to represent languages if they contained 
at least 1.8% of all words in the co-occurrence graph. All smaller clusters were 
regarded as noise. This value was determined empirically by observations on 
monolingual corpora.  

3.1 Multilingual Test Corpora 

From a sample of 100’000 sentences each of the languages Dutch, Estonian, English, 
French, German, Icelandic and Italian we compiled multilingual corpora that 
contained 100, 200, 500, 1’000, 5’000, 10’000, 50’000 and 100’000 sentences of each 
language and performed the calculation of co-occurrences. Smaller versions are 
completely contained in larger versions, average sentence length is 127 characters. 
Figure 4 illustrates the number of nodes and edges in the co-occurrence graphs for 
each 7-lingual corpus. 
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Figure 4: The sizes of co-occurrence graphs dependent on corpus size.  

Both axes in logarithmic scale. 
 
After applying the graph algorithm, all experiments resulted in seven large clusters 

of words that ended up with the same class label, as well as many very small clusters 
that never exceeded 1.7% of the total number of nodes in the graph.  Figure A1 and 
A2 in the appendix illustrate the effect of the graph algorithm on the co-occurrence 
graph of the smallest 7-lingual corpus.  

Precision and Recall varied slightly for the different languages. Whereas English 
was the easiest language to identify (Precision > 99.9%, Recall > 98.1% for all 
experiments), Estonian was the most difficult (Precision > 99.3% for all experiments, 
Recall 86.7% for 100 sentences, 92.7% for 200 sentences and > 93.7 for all other  
experiments). All other languages were classified close to the quality of English.  

Figure 5 presents the overall results from the 7-lingual corpora experiments. 
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Size Prec Rec Fval 
100 1 0.9714 0.9855 

200 0.9969 0.9657 0.9810 

500 0.9997 0.9684 0.9838 

1K 0.9927 0.9828 0.9877 

5K 0.9985 0.9859 0.9922 

10K 0.9985 0.9865 0.9924 

50K 0.9979 0.9889 0.9922 

100K 0.9978 0.9922 0.9950 

 
 
 

Figure 5: Results for 7-lingual corpora of different sizes.  
 
For error analysis, we looked at the reasons for low recall in small corpora and 

checked misclassified items. The main recall flaw was caused by the Estonian parts, 
which is rooted in the nature of the Estonian corpus. Whereas the other monolingual 
fractions are taken from newswire sources, our Estonian originates from legal texts. A 
fraction of about 3% consists of ‘sentences’ indicating dates or law paragraph ciphers, 
like “10.12.96 jõust.01.01.97 - RT I 1996 , 89 , 1590.”  Other unclassified sentences in 
all languages were mostly enumerations of sport teams or short headlines. 

The few misclassified sentences mainly contained proper names, in many cases 
company names that were usually classified as English.  In some cases, the language 
identifier picked the wrong language for bilingual sentences, like French for “Frönsku 
orðin "cinéma vérité" þýða "kvikmyndasannleikur".” in the Icelandic section. 

Experiments with fewer than 100 sentences for each of the seven languages 
resulted in more than seven (mostly about eleven) clusters that could not group the 
sentences of one language together via the language identifier. The significant co-
occurrences were too small in numbers and too noisy in quality.   

3.2 Bilingual Corpora 

While the experiments in the previous section focussed on equal fractions of many 
languages, we now describe how the method behaves on bilingual corpora with 
monolingual fractions of differing sizes.  This setting is somewhat more realistic 
when identifying languages in web data, for a domain usually provides most of its 
content in one language and translates only a few parts. In order to examine the 
minimum size of ‘dirt’ language our method can notice, we performed experiments 
with biased mixtures of Estonian and English, German and Dutch, Italian and French. 
The first language contributed the main part comprising of 100’000 sentences, the 
amount of the second language was varied from 100, 200, 500, 1’000, and in the 
English-Estonian case 5’000 and 10’000 sentences. It turns out that a second language 
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is identified if it contributes 500 or more sentences. Figure 6 depicts the results for the 
English-Estonian mixture. 

 
 

Eng. 
sent. 

Eng 
P 

Eng 
R 

Est 
P 

Est 
R 

100 0 0 1 0.9678 

200 0 0 1 0.9674 

500 1 0.9982 0.9996 0.9664 

1K 1 1 0.9994 0.9674 

5K 1 0.9996 0.9989 0.9674 

10K 1 0.9991 0.9989 0.9674 

 
 
 

Figure 6: Results for different noise levels of English in a 100’000-sentence 
Estonian corpus. Estonian recall is not depicted for scaling reasons. 

 
The low recall on Estonian was caused by the same reasons as mentioned in the 

previous section. As we expected, languages from as different families as English and 
Estonian are very well separable, at least if the size factor is below 200. For less than 
500 English sentences, the cluster for English became too small to distinguish it from 
other small Estonian clusters. Nevertheless, 80% of the English sentences were 
classified as unknown. 

More difficulties were to be expected dealing with language of the same family, 
like the two Germanic languages German and Dutch. Figure 7 presents the results: 

 
Dut.. 
sent. 100 200 500 1000 

Dut. 
P 

0 0 0.9980 0.9940 

Dut. 
R 0 0 0.9880 0.9901 

Ger. 
P 

1 1 0.9999 0.9999 

Ger. 
R 0.9990 0.9990 0.9989 0.9989 

Total 
P 0.9997 0.9993 0.9999 0.9999 

Total 
R 0.9979 0.9969 0.9989 0.9988 

 
Figure 7: Results for Dutch noise in a 100’000-sentence German corpus. 

 
In the two experiments where Dutch could not be identified, 66% of the Dutch 

sentences were regarded unknown, one third was classified as German.  
Two languages that have even more common words were examined in the same 

setting: the Romanic languages Italian and French, see figure 8. Results differ slightly 
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from the other language pairs: already at 500 sentences of French, figures are 
decreasing. The similarity of these two languages is also reflected in that about 60% 
of French sentences were considered to be Italian in the two small-fraction 
experiments.  

 
Figure 8: Results for French noise in a 100’000-sentence Italian corpus. 

 
Experiments show that similar languages are only slightly more difficult to 

separate than languages of different families, as long as the bias towards the main 
language in the corpus is not larger than 200.  

In further experiments, no language pairs were found that could not be separated 
under the conditions described. Even German dialects could be identified in large 
German corpora. 

4 Conclusion and Further Work 

The main contribution of our work is that we show that unsupervised language 
identification is possible and works with the same high accuracy as the well-known 
supervised approaches mentioned in the introduction. The only requirement on the 
language data is the possibility to recognise word boundaries (which even might be 
replaced by using chunks of fixed length for e.g. Chinese) and sentences (which also 
might be replaced by using chunks of e.g. 20 words) for the calculation of significant 
co-occurrences. The method is robust with respect to the number and the mass 
distribution of the involved languages and produces reliable results from 100 
sentences per language on.  

When sorting document collections by splitting the documents into sentences, 
applying our approach and assigning the majority of sentence-languages to the 
document, there should be virtually no errors.  

In further work, we will examine how the method performs on other document 
classification tasks, like identification of web genres (cf. [Rehm 2002]) or text 
classification on standard resources like [Reuters 2000]. For this, we will have to 
modify the graph algorithm in order to find small clusters that reflect genre-specific 
wording.  

Fre. 
sent. 100 200 500 1000 

Fre. 
P 0 0 0.9710 0.9910 

Fre. 
R 

0 0 0.9380 0.9767 

Ita. 
P 

1 1 1 0.9999 

Ita. 
R 

0.9983 0.9983 0.9983 0.9982 

Total 
P 0.9972 0.9988 0.9999 0.9999 

Total 
R 0.9973 0.9962 0.9980 0.9980 
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Appendix: Figures 
 

 
Figure A1: The co-occurrence graph of the 7-lingual corpus with 100 sentences 

per language, coloured according to the class labels. Black nodes in the right upper 
corner do not belong to one of the seven large clusters obtained by Chinese Whispers.  

 

 
Figure A2: Lexicalized version of figure A1. The regions of Dutch, English, 

Estonian, French, German, Icelandic and Italian are clearly visible. 


