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Abstract. We describe how a feature-based semantic lexicon can be automatically
extended using large, unstructured text corpora. Experiments are carried out using
the lexicon HaGenLex and the Wortschatz corpus. The semantic classes of nouns
are determined via the adjectives that modify them. It turns out to be reasonable to
combine several classifiers for single attributes into one for complex semantic classes.
The method is evaluated thoroughly and possible improvements are discussed.

1 Introduction

Natural language processing systems for text retrieval and question answering
that go beyond mere statistical pattern matching require the semantic analy-
sis of large collections of text. In particular, such systems rely on a reasonably
large computational lexicon that provides not only morphosyntactic but also
semantic information about lexical units. While building a high quality se-
mantic lexicon might presumably not be possible without manually created
lexical entries, there is no doubt that, especially in the case of nouns, auto-
matic classification methods have to be exploited for reasons of quantity and
coverage. This paper describes how an automatic semantic classification us-
ing co-occurrence statistics on very large text corpora can successfully extend
a manually created semantic lexicon.

2 Resources

2.1 The computational lexicon HaGenLex

The lexicon used for our experiments is the semantically based computational
lexicon HaGenLex (Hartrumpf et al. 2003). HaGenLex is a domain indepen-
dent lexicon for German that currently comprises about 25,000 lexical entries,
roughly half of which are nouns. All HaGenLex entries are semantically an-
notated, where the semantic description is based on the MultiNet paradigm,
a knowledge representation formalism developed for the representation of
natural language semantics (Helbig 2001).
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MultiNet provides classificatory as well as relational means of represen-
tation. The experiments reported here are restricted to the classification of
nouns with respect to their ontological sort and semantic features. MultiNet
defines a hierarchy of 45 ontological sorts like d (discrete object) and abs
(situational object), of which 17 apply to nouns (cf. Figure 4). In addition,
nouns are classified with respect to 16 binary semantic features like human
and movable (cf. Figure 3). These feature and sorts are not independent
of each other; e.g., human+ implies animate+, artificial−, and discrete
object. In order to exclude inconsistent choices, all possible combinations are
explicitly combined into (complex) semantic classes, on which a natural spe-
cialization hierarchy is defined. In total, there are 50 semantic classes, of
which the most frequent 22 in our training data are listed in Figure 5.

2.2 The German corpus ‘Projekt Deutscher Wortschatz’

Our text resource is the German main corpus of the ‘Projekt Deutscher
Wortschatz’ (35 million sentences, 500 million tokens).1 By calculating sta-
tistically significant neighboring co-occurrences (Biemann et al. 2004) and
part-of-speech filtering, pairs of adjectives and nouns are determined that
typically co-occur next to each other. If two words A and B are in subse-
quent position in a corpus, then A is called the left neighbor of B and B the
right neighbor of A. To determine pairs of statistically significant neighbors,
a significance measure is applied that indicates the amount of “surprise” of
seeing frequent co-occurrences of A and B under the assumption of indepen-
dence – the larger the significance value, the less is the probability that they
co-occurred just by chance. If this measure exceeds a certain threshold, we
call A a (left) neighboring co-occurrent of B and define the (left) neighboring
profile of B as the set of all (left) neighboring co-occurrents.

Our method for classifying nouns is based on the Distributional Hypothesis
(Harris 1968), which implies that semantic similarity is a function over global
contexts (cf. Miller and Charles 1991). Concretely, we try to classify nouns
by considering their modifying adjectives. The set of modifying adjectives for
a given noun is here approximated by the statistical adjective profile of the
noun, which is defined as the set of adjectives in the left neighboring profile of
the noun. (Correspondingly, the noun profile of an adjective is the set of nouns
in its right neighboring profile.) These profiles contain lemmatized words and
consist of the union of the full form profiles. From our corpus we extracted
over 160,000 nouns that co-occur with one or more of 23,400 adjectives (where
half of the nouns have only one adjective in their profile). It has turned out
that taking into account the actual significance values has no impact on the
classification results; what is important is merely that adjective-noun pairs
show up multiple times and typically in the corpus.

1 See www.wortschatz.uni-leipzig.de.
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3 Method

3.1 Constructing a classifier for single attributes

For every relevant semantic attribute of nouns, a classifier is constructed
in the following way: For every adjective that modifies at least one noun
from the training set, a profile is calculated stating the proportion how often
this adjective favors which class (class probabilities). The classifier is not
limited in the number of classes. Unclassified nouns are then classified on
the basis of their adjective profiles; this change between profile calculation
and classification of new nouns is iterated in an EM-bootstrapping style (cf.
Dempster et al. 1977) until no more nouns can be classified.

Initialize adjective and noun profiles;

Initialize the training set;

As long as new nouns get classified:

Calculate adjective class probabilities;

For each unclassified noun n:

Multiply class probabilities class-wise;

Assign class with highest probability to noun n;

Fig. 1. Bootstrapping algorithm for assigning semantic attributes to nouns

Figure 1 gives an overview of the algorithm. In the outer loop, class prob-
abilities are assigned to each adjective that indicate how often this adjective
can be found in adjective profiles of nouns of the respective class, i.e., how
strong this adjective votes for which class. The probability is calculated from
the frequency distribution per class, divided by the total number of nouns
per class and normalized in sum to one. Division by the total number of
nouns per class is motivated by distributing the same probability mass for
all classes and has turned out to be crucial when dealing with skewed class
distributions. Because the number of classified nouns increases in every it-
eration step, the class probabilities per adjective have to be re-calculated in
each iteration.

Within the inner loop, the algorithm tries to assign classes to nouns that
have not been classified in the previous steps: the class probabilities of the
adjectives occurring in the respective adjective profile are multiplied class-
wise. Only adjectives occurring in at least one adjective profile of an already
classified noun are taken into consideration. The class with the highest value
is then assigned to the noun. To increase classificatory precision, one can
introduce a threshold α for the minimal number of adjectives in the adjective
profile of a noun. The experiments described in Section 4 make use of such a
threshold.
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3.2 Combining attribute classifications

The overall goal is to classify nouns with respect to the (complex) seman-
tic classes introduced in Section 2.1. In principle, such a classifier could be
constructed along the lines of Section 3.1. However, first experiments in that
direction have led to a rather unsatisfying precision (tradeoff between 60%
precision at 45% recall and 76% precision at only 2.8% recall). The method
described here, in contrast, uses separate classifiers for each semantic feature
and each ontological sort and combines their results as follows:

(1) Determine all complex semantic classes that are compatible with all re-
sults of the individual classifiers.

(2) From the results of (1) select those classes that are minimal with respect
to the specialization relation on the set of complex semantic classes.

(3) If the set determined in (2) contains exactly one element, then take this
as the result class, otherwise refuse a classification.

The classifier is weak in the sense that it does not always assign a class (which
is already the case for the individual classifiers).

The results presented in Section 4.2 are based on the combination method
just described. In order to improve the recall, the following two modifications
suggest themselves for future experiments: If the set determined in step (2)
contains more than one element, select the most specialized semantic class
that is more general than all elements in the set. If no class can be found
by step (1) then ignore the results of the most unreliable single classifiers
step-by-step until a compatible class is found and proceed with (2).

4 Evaluation

For evaluation, we used 10-fold cross validation on a set of 6045 HaGenLex
nouns in all experiments. In the preselection of the training set, care was taken
to exclude polysemous nouns. The precision (number of correct classifications
divided by number of total classifications) was calculated on the basis of the
unification of the test sets, although in all experiments a much larger number
of nouns could be classified. The threshold α for the minimum number of
adjectives in the adjective profile of a noun was varied from 2 to 20, which
led to different numbers of total classifications, as shown in Figure 2.

For all further experiments, we (arbitrarily) fixed the minimum number of
classifying adjectives to five, which lead to a classification of over 31,000 nouns
in all experiments. Since for only 5133 nouns from the HaGenLex training set
more than four co-occurring adjectives could have been extracted from the
corpus, the a priori upper bound on the recall (number of correctly classified
divided by number of total items) is 84.9%.

Section 4.1 discusses the results for the individual classifiers for semantic
features and ontological sorts, Section 4.2 presents the results for the com-
bined classifier for complex semantic classes.
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Fig. 2. Minimal adjective number α vs. corpus coverage and classifier precision

4.1 Assignment of semantic features and ontological sorts

As mentioned in Section 3, a separate binary classifier was constructed for
all 16 features. Figure 3 shows the distribution in the training data for the
semantic features and the fraction of the smaller class (bias). It can be seen
that the classifiers are able to assign the right features to the test nouns
if their bias is not smaller than 0.05. In the other cases we observe a high
total precision per feature (method, instit, mental, info, animal and ge-
ogr) which was more or less obtained by always assigning the more frequent
attribute. The less frequent +-attribute is recognized poorly in these cases.
The overall precision is 93.8% (87.6% for +-attributes), overall recall is 75.8%
(76.9% for +-attributes).

As for the ontological sorts, we constructed for each of the 17 sorts a bi-
nary training set that contains words where the sort is present (attribute +)
or absent (attribute −). Nouns not specified with respect to the respective
sort were excluded from the training set. Figure 4 shows a similar picture as
Figure 3: sorts having a bias over 0.1 can be differentiated well or even very
well, less frequent sorts lead to problems. Notice that for the sorts ab and o,
the attribute − was taken into consideration in the diagram in Figure 4, be-
cause this was the less frequent attribute. Overall precision is 93.3% (90.35%
for attribute +) at an overall recall of 79.2% (76.3% for attribute +).

It is worthwhile to recall from Section 2.1 that neither the semantic fea-
tures nor the ontological sorts are independent of each other. (The ontological
sorts are even arranged in a tree hierarchy.) Ideally, the individual classifiers
respect these dependencies, which is prerequisite for combining their results
to (complex) semantic classes.
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feature # + − bias

method 6004 12 5992 0.0020

instit 6032 39 5993 0.0065

mental 9008 162 8846 0.0180

info 6015 119 5896 0.0198

animal 5995 143 5852 0.0239

geogr 6015 188 5827 0.0313

thconc 6028 518 5510 0.0859

instru 5932 969 4963 0.1634

human 5995 1313 4682 0.2190

legper 6009 1352 4657 0.2250

animate 6010 1505 4505 0.2504

potag 6015 1664 4351 0.2766

artif 5864 2204 3660 0.3759

axial 5892 2260 3632 0.3836

movable 5827 2345 3482 0.4024

spatial 6033 2910 3123 0.4823
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Fig. 3. Left: distribution of features in the training set; right: total precision and
recall and precision and recall of +-attributes versus bias in training set

sort # + − bias

re 6033 7 6026 0.0012

mo 6033 8 6025 0.0013

oa 6033 39 5994 0.0065

o− 6033 5994 39 0.0065

me 6045 41 6004 0.0068

qn 6045 41 6004 0.0068

ta 6033 107 5926 0.0177

s 6010 224 5786 0.0373

as 6031 363 5668 0.0602

na 6033 411 5622 0.0681

at 6033 450 5583 0.0746

io 6033 664 5369 0.1101

ad 6031 1481 4550 0.2456

abs 6033 1846 4187 0.3060

d 6010 2663 3347 0.4431

co 6033 2910 3123 0.4823

ab− 6033 3082 2951 0.4891
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Fig. 4. Left: Distribution of +/− attributes in training sets; right: precision and
recall in total per sort and for attributes + versus bias in training data.

4.2 Assignment of complex semantic classes

With respect to the task of extending the given semantic lexicon, the most
important point of our approach is the quality of the assignment of complex
semantic classes as described in Section 3.2. Figure 5 lists the cross-validation
results for all complex semantic classes with at least 40 (≈ 0.68%) occurrences
in the training set. For the remaining classes, which comprise about 5.9% of
the training set, Figure 5 presents a collective evaluation (class “rest”).

An obvious thing to notice is the fact that certain semantic classes are
assigned with very good precision whereas others show a rather bad perfor-
mance. A first conclusion could be that certain semantic properties of nouns
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class # prec rec

nonment-dyn-abs-situation 1421 92.25 26.81
human-object 1313 95.05 78.98
prot-theor-concept 516 59.05 12.02
nonoper-attribute 411 0.00 0.00
ax-mov-art-discrete 362 51.94 37.02
nonment-stat-abs-situation 226 48.39 6.64
animal-object 143 100.00 16.08
nonmov-art-discrete 133 57.41 23.31
ment-stat-abs-situation 126 70.00 5.56
nonax-mov-art-discrete 108 40.82 18.52
tem-abstractum 107 97.06 30.84
mov-nonanimate-con-potag 98 73.21 41.84
art-con-geogr 96 55.26 21.88
abs-info 94 35.71 10.64
art-substance 88 65.52 21.59
nat-discrete 88 100.00 25.00
nat-substance 86 64.29 10.47
prot-discrete 73 100.00 53.42
nat-con-geogr 63 80.00 19.05
prot-substance 50 94.44 34.00
mov-art-discrete 45 100.00 31.11
meas-unit 41 100.00 2.44
rest 357 52.17 10.08
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Fig. 5. Precision and recall for complex semantic classes

are reflected by modifying adjectives while others are not. Notice that the
assignment of complex semantic classes does not show the same close cor-
respondence between class size and precision that has been observed in the
previous section on the classification by single attributes.

The overall precision of the assignment of semantic classes is about 82.3%
at a recall of 32.8%. The fairly low recall is due to the fact that the method
of Section 3.2 refuses a classification in case the results of the single attribute
classifiers are not fully consistent with each other. Despite of this low recall,
our approach gives us classification results for about 8500 unknown nouns.
If we relax the minimal number α of co-occurring adjectives from five to
two, the number of newly classified nouns rises even to almost 13,000, with
a reduction of precision of only 0.2%.

5 Conclusion and future work

We have presented a method to automatically extend noun entries of semantic
lexica via modifying adjectives. Given a moderate number of training items,
the approach is able to classify a high number of previously unclassified nouns
at more than 80% overall precision. An evaluation for the different semantic
noun classes shows that certain semantic classes can be characterized by
modifying adjectives while others can not. It would be interesting to see
whether there is a similar distinction for other contextual constellations as,
for instance, role filler positions in verb frames, but this requires much more
preprocessing.
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To improve the recall of our method, the combination of the single at-
tribute classifiers as described in Section 3.2 could be relaxed by taking the
quality of the classifiers into account. Another way to circumvent the sparse
data problem is to abstract from single adjectives by means of semantic ad-
jective classes like ‘physical property’; cf. (Biemann and Osswald 2005, Sect.
6.1). However, this would require a large scale classification of adjectives by
appropriate semantic classes.

A further important issue for the extension of the method is the treatment
of polysemy: If a word has multiple readings that differ in at least one at-
tribute, the method as proposed here classifies the word according to the most
frequent reading in the corpus in the best case. In the worst case, the word
will not get classified at all, because the adjectives seem to contradict each
other in some attributes. A possibility to split an adjective profile into several
profiles, which reflect the different readings, is shown in (Bordag 2003) for
untyped co-occurrences and can be paraphrased for the task described here
as follows: Presuming one reading per sentence, weak co-occurrence between
the context words of the different readings, and strong co-occurrence within
the context words of the same reading, the adjective profiles can be split in
disjoint subsets that collect modifiers of different noun readings, respectively.
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