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Abstract— The degree distribution of scale-free Small World
networks follows a power law. For random graph generators,
its exponent is constrained by the construction mechanism,
whereas in real-world data, different slopes can be observed.
However, the degree distribution alone does not reveal much of
the local structure of these graphs. Therefore, we propose a graph
transformation we call ”higher order” transformation, which
encodes the number of common neighbours two vertices share
in its edge weights. Studying the degree distribution of second-
and third order graphs and comparing it to natural language co-
occurrence data, we find that the higher order transformation
reveals differences that cannot be detected by only looking at
traditional measures on the original graph.

I. INTRODUCTION

Recent years showed an increased interest in random graph
generators that yield graphs with the scale-free Small World
property. The Small World (SW) property as defined in [6] is
given by a higher average clustering coefficient and a similar
average path length than in classical random graphs [4]. A
graph is called scale-free when its degree distribution follows
a power-law, i.e. there is no characteristic scale on the degree
of vertices.

There is the following duality between SW graphs and
vertex sequences: Using the trivial fact that every path in
a graph corresponds to a vertex sequence, special vertex
sequences are used to construct random SW graphs. These
are defined by preference, a memory of the recently visited
vertices and some random elements. These three features are
essential ingredients of natural language, and SW graphs have
been found in language data [5]. The aim of the paper is to
introduce a higher order transformation for a comparison of
these graphs.

A. Random Graph Models

Several models were proposed that randomly generate undi-
rected scale-free Small World graphs by iteratively adding new
vertices. In the BA-model [1], a graph is constructed by pref-
erential attachment: a new vertex connects to existing vertices
with a probability according to their degree. A modification
that targets modelling natural language co-occurrences is the
DM-model [2]: the new vertex is connected to the preferential
existing vertex, but additionally edges in the set of existing
vertices are introduced with a probability according to the
product of their degrees.
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Fig. 1. Degree distributions (left) of two random graph
models. (right) of significant sentence-based word co-
occurrences of 1 million German sentences obtained from
http://corpora.informatik.uni-leipzig.de/download.html.
Data points were obtained using logarithmic binning. As other experiments
showed, the characteristics are similar for all natural languages

In this work, we are merely interested in the degree distribu-
tion D(k) of such random graphs. Figure 1 shows the degree
distribution of graphs generated with the aforementioned mod-
els with n = 10, 000 vertices and an average degree k = 10.
DBA(k) is approximated by a power-law pl(x) ∼ x−γ with
γ = 3, DDM (k) follows two power-law regimes with γ1 = 1.5
and γ2 = 3.

B. Sentence Paths and Word Co-occurrences

Assume we are given a large but finite set of vertices V .
A set of paths P = {P1, ..., Pn} (i.e. each Pi is a vertex
sequence) defines a graph G = G(V, P ) having just the edges
given in the paths, with graph characteristics depending on
P . For the following, we assume a maximum path length l,
which corresponds to the sentence length when representing
words as vertices and paths as sentences in a text corpus. This
procedure can be generalised by considering arbitrary graphs
instead of paths. In the following, we will be interested in
P consisting of relatively small connected subgraphs of small
diameter and l or less vertices.

Considering weighted edges, we count how many elements
of P contain the respective edge. Edge weights are relevant
for the following co-occurrence graph. For this, we replace
Pks by P ′

ks, where P ′
k is the fully connected graph of vertices

in Pk. Next we construct G(V, P ′) with this edge weighting
function. The resulting co-occurrence graph G′ is obtained
from G(V, P ′) by pruning all edges with low weights – here
by applying a threshold on a significance measure [3].



II. HIGHER ORDER TRANSFORMATION

A. Definition

We now describe the higher order transformation that is
used in this work to transform original graphs (of order 1) into
higher order graphs (here of order 2 and 3). In the higher order
graph, an edge is drawn between two different vertices if they
share a common neighbour and attributed a weight according
to the number of common neighbours. The adjacency matrix
of the higher order graph is obtained by the square of the
adjacency matrix of the original graph and placing zeros in
the main diagonal (no reflexive edges).

In terms of paths, the higher order transformation is laid
out as follows: The above step of constructing G′ given G
using V and P can be iterated in the following way to
construct a sequence G0, G1, ...: While V does not change
during the iteration, we need a canonical procedure to define
P = P (Gn) at every step. For each v ∈ V , Pv denotes the
fully connected graph of neighbouring vertices of v, which are
given by {a|{a, v} ∈ P (Gn)}. Next define P =

⋃
v∈V Pv .

Using this and the construction above, we start with a set
of paths P and define G0 = G(V, P ), then we recursively
define Gn+1 using Gn and its set of local subgraphs P (Gn)
as described above. In terms of the adjacency matrix An of
Gn, we get An+1 = A2

n, but we will apply the following
pruning operation.

Since the average path length of scale-free SW graphs is
short and local clustering is high, this operation leads to an
almost fully connected graph in the limit, which does not
allow to draw conclusions about the initial structure. Thus,
we prune the graph in every iteration in the following way:
For each vertex, only the t outgoing edges with the highest
weights are taken into account. Notice that this vertex degree
threshold t does not limit the maximum degree, as thresholding
is asymmetric. This operation is equivalent with only keeping
the t largest entries per row in the adjacency matrix A = (aij),
then At = (sign(aij + aji)).

B. Random Graphs of Higher Order

The higher order graph degree distributions of the random
graphs of figure 1 show considerable differences. The order 2
BA graph shows a power-law degree distribution with γ = 2,
thresholding has almost no effect. In order 3, the slope is even
lower, but the tail is decaying faster than a power-law would
predict. The full order 2 DM graph retains its two power-
law regimes, yet thresholding leads to a single power-law
approximation with γ ≈ 2. In order 3, there is a large quantity
of high degree vertices, indicating a densely connected graph.

C. Word Co-occurrence Graphs of Higher Order

Interestingly, the slope of the order 2 BA degree distribution
matches the order 1 co-occurrences, cf. Fig. 1 (right). As
opposed to this, the degree distribution of order 2 word co-
occurrences are influenced by thresholding and exhibit two
regions with many low-degree and few high-degree vertices,
dependent on t. The full order 2 graph distribution resembles
the shape of the order 2 DM graph. But while the order 3 DM
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Fig. 2. Orders 2 and 3 for the random graph models and for word co-
occurrences for various t

graph degree distribution cannot be approximated by a power
law, the order 2 co-occurrences show two power-law regimes
with γ1 ≈ 1 and γ2 ≈ 4 – slopes that are also observed for
order 2 DM graphs.

D. Asymptotic Behaviour

Starting with a node v one might be interested in the
sequence Pn,v . For such higher order word co-occurrences
we made the following observations in previous experiments:

• As expected, the dynamics often yield to fixed points,
i.e. sets of nodes invariant under iteration. Usually, there
are several strong attracting fixed points. One can also
observe attracting cycles.

• In the case of words, the words in the fixed point are
often not semantically related to the starting point, yet
the first steps seem more interesting.

• Stronger thresholds lead to fewer fixed points and cycles,
the empty set is the only attractor in the limit.

III. CONCLUSION

We examined the utility of the BA-model and the DM-
model to explain the degree distributions of word co-
occurrence graphs in natural language. Using a higher order
transformation, we could show that both random generators
produce graphs that match some of the characteristics of nat-
ural language, but no single model can generate graphs – even
only with similar degree distributions – that agree with word
co-occurrence graphs taking the higher order transformations
into account.
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