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Abstract Syntactic preprocessing is a step that is widely used in NLP applications.
Traditionally, rule-based or statistical Part-of-Speech (POS) taggers are employed that
either need considerable rule development times or a sufficient amount of manually
labeled data. To alleviate this acquisition bottleneck and to enable preprocessing for
minority languages and specialized domains, a method is presented that constructs
a statistical syntactic tagger model from a large amount of unlabeled text data. The
method presented here is called unsupervised POS-tagging, as its application results
in corpus annotation in a comparable way to what POS-taggers provide. Nevertheless,
its application results in slightly different categories as opposed to what is assumed
by a linguistically motivated POS-tagger. These differences hamper evaluation pro-
cedures that compare the output of the unsupervised POS-tagger to a tagging with
a supervised tagger. To measure the extent to which unsupervised POS-tagging can
contribute in application-based settings, the system is evaluated in supervised POS-
tagging, word sense disambiguation, named entity recognition and chunking. Unsu-
pervised POS-tagging has been explored since the beginning of the 1990s. Unlike in
previous approaches, the kind and number of different tags is here generated by the
method itself. Another difference to other methods is that not all words above a certain
frequency rank get assigned a tag, but the method is allowed to exclude words from the
clustering, if their distribution does not match closely enough with other words. The
lexicon size is considerably larger than in previous approaches, resulting in a lower
out-of-vocabulary (OOV) rate and in a more consistent tagging. The system presented
here is available for download as open-source software along with tagger models for
several languages, so the contributions of this work can be easily incorporated into
other applications.
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1 Introduction to Unsupervised POS-Tagging

Assigning syntactic categories to words is an important pre-processing step for most
NLP applications. POS-tags are used for parsing, chunking, anaphora resolution,
named entity recognition and information extraction, just to name a few.

Essentially, two things are needed to construct a tagger: a lexicon that contains tags
for words and a mechanism to assign tags to tokens in a text. For some words, the
tags depend on their use, e.g. in “I saw the man with a saw”. It is also necessary to
handle previously unseen words. Lexical resources have to offer the possible tags, and
a mechanism has to choose the appropriate tag based on the context, in order to
produce annotation like this: “I/PNP saw/VVD the/AT0 man/NN1 with/PRP
a/AT0 saw/NN1. /PUN”.1

Given a sufficient amount of manually tagged text, two approaches have demon-
strated the ability to learn the instance of a tagging mechanism from labelled data
and apply it successfully to unseen data. The first is the rule-based approach (Brill
1992), where transformation rules are constructed that operate on a tag sequence
delivered by the lexicon. The second approach is statistical, for example HMM-tag-
gers (Charniak et al. 1993, inter al.) or taggers based on conditional random fields
(Lafferty et al. 2001). Both approaches employ supervised learning and therefore need
manually tagged training data. Those high-quality resources are typically unavailable
for many languages and their creation is labour-intensive. Even for languages with
rich resources like English, tagger performance breaks down on noisy input. Texts of
a different genre than the training material may also create problems, e.g. e-mails as
opposed to newswire or literature. It is, in general, not viable to annotate texts for all
these cases.

Here, an alternative needing much less human intervention is described. Steps are
undertaken to derive a lexicon of syntactic categories from unstructured text following
the Structure Discovery paradigm (Biemann 2007), which strives at finding and anno-
tating regularities of language using unsupervised and knowledge-free procedures.
Hence, it is not possible to aim at exact correspondence with linguistically motivated
tagsets, but for obvious reasons: even for the same language, linguistically motivated
tagsets differ considerably, as it was measured for various tagsets for English by Clark
(2003).

Two different techniques are employed here, one for high-and medium frequency
words, another for medium- and low frequency words. The categories will be used for
the tagging of the same text the categories were derived from. In this way, domain- or
language-specific categories are automatically discovered. Extracting syntactic cate-
gories for text processing from the texts to be processed fits the obtained structures
neatly and directly to them, which is not possible using general-purpose resources.

1 in this tagset (Garside et al. 1987), PNP stands for personal pronoun, VVD is full verb, AT0 is determiner
is singular or plural, NN1 is singular noun, PRP is Preposition, PUN is punctuation.
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Unsupervised Part-of-Speech Tagging in the Large 103

With moving POS tagging to a data-driven, unsupervised step that can serve as
feature-based input for subsequent steps, a major step in alleviating the acquisition
bottleneck can be taken. The motivation behind this work is primarily to lower the
amount of work that goes into manual annotation or the creation of rule sets; on a
larger perspective, however, it can also unveil principles of language structure in such
as common features and differences between languages are mirrored in the way the
data arranges itself for different languages.

This article is organised as follows. After discussing related work in Sect. 2, the
Chinese Whispers graph clustering algorithm is described in Sect. 3, which is used
here as a means to perform necessary abstractions and generalisations for grouping
words into POS-classes. Section 4 lays out the steps undertaken to arrive at an unsu-
pervised POS-tagger in detail. The quality of the tagger output is assessed in two ways:
Sect. 5 performs a comparison between standard tagsets and the unsupervised variant
for three typologically different languages. Further, influence of different system com-
ponents, corpus size and domain shifting are examined and the tagger is compared
to another word clustering system. In Sect. 6, the tagger’s annotations are used as
features in Machine Learning for various NLP tasks, evaluating its contributions in
an application-based way. Section 7 concludes and provides a way how to obtain the
system and a number of tagger models.

2 Related Work

There are a number of approaches to derive syntactic categories. All of them employ a
syntactic version of Harris’ distributional hypothesis (Harris 1968): words of similar
parts of speech can be observed in the same syntactic contexts. Measuring to what
extent two words appear in similar contexts measures their similarity, cf. (Miller and
Charles 1991). As function words form the syntactic skeleton of a language and almost
exclusively contribute to the most frequent words in a corpus, contexts in that sense
are often restricted to the most frequent words. The words used to describe syntactic
contexts are further called feature words. Target words, as opposed to this, are the
words that are to be grouped into syntactic clusters. Note that usually, the feature
words form a subset of the target words.

The general methodology (Finch and Chater 1992; Schütze 1993, 1995; Gauch and
Futrelle 1994; Clark 2000; Rapp 2005) for inducing word class information can be
outlined as follows:

1. Collect global context vectors of target words by counting how often feature words
appear in neighbouring positions

2. Apply a clustering algorithm on these vectors to obtain word classes.

Throughout, feature words are the 150–250 words with the highest frequency. Some
authors employ a much larger number of features and reduce the dimensions of the
resulting matrix using Singular Value Decomposition (Schütze 1993; Rapp 2005). The
choice of high frequency words as features is motivated by Zipf’s law: these few stop
words constitute the bulk of tokens in a corpus. Pruning context features to these allows
efficient implementations without considerably losing on coverage. Contexts are the
feature words appearing in the immediate neighbourhood of a word. The word’s global
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Table 1 Corpus and context vectors for 6 feature words and a context window of size 4. The feature vectors
of different positions are concatenated

... COMMA sagte der Sprecher bei der Sitzung FULLSTOP

... COMMA rief der Vorsitzende in der Sitzung FULLSTOP

... COMMA warf in die Tasche aus der Ecke FULLSTOP

Features: der(1), die(2), bei(3), in(4), FULLSTOP (5), COMMA (6)

Position −2 −1 +1 +2

Target/feature 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2

sagte 1 1

rief 1 1

warf 1 1 1

Sprecher 1 1 1

Vorsitzende 1 1 1

Tasche 1 1 1

Sitzung 1 1 2 2

Ecke 1 1

context is the sum of all its contexts. Table 1 illustrates the collection of contexts for
a German toy example.

The clustering step is defined by a similarity measure and a clustering algorithm.
Finch and Chater (1992) use the Spearman Rank Correlation Coefficient and a hier-
archical clustering, (Schütze 1993, 1995) uses the cosine between vector angles and
Buckshot clustering, (Gauch and Futrelle 1994) use cosine on Mutual Information
vectors for hierarchical agglomerative clustering and (Clark 2000) applies Kullback-
Leibler divergence in his CDC algorithm.

An extension to this generic scheme is presented in (Clark 2003), where morpho-
logical information is used for determining the word class of rare words. Further,
clustering is driven by the likelihood of an HMM model with a fixed number of states.
Freitag (2004a) does not sum up the contexts of each word in a context vector, but
uses the most frequent instances of four-word windows in a co-clustering algorithm
(Dhillon et al. 2003): rows and columns (here words and contexts) are clustered simul-
taneously. Two-step clustering is undertaken by Schütze (1993): clusters from the first
step are used as features in the second step.

The number of target words in the clustering differ from 1,000 target words in a
2,00,000 token corpus (Gauch and Futrelle 1994) over 5,000 target words (Finch and
Chater 1992; Freitag 2004a) to all 47,025 words in the Brown Corpus in (Schütze
1995). Clark (2000) uses 12 million tokens as input; (Finch and Chater 1992) operate
on 40 million tokens.

Evaluation methodologies differ considerably amongst the papers discussed here.
Finch and Chater (1992) inspect their clusters manually, Rapp (2005) performs flaw-
lessly in sorting 50 medium frequency words into nouns, verbs and adjectives. Schütze
(1995) presents precision and recall figures for a reduced tagset, excluding rare and
non-English-word tags from the evaluation. More recent approaches (Clark 2000,
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Unsupervised Part-of-Speech Tagging in the Large 105

2003; Freitag 2004a) employ information-theoretic measures, see Sect. 5. Regarding
syntactic ambiguity, most approaches do not deal with this issue while clustering, but
try to resolve ambiguities at the later tagging stage, if at all.

As the virtue of unsupervised POS-tagging lies in its possible application to all
natural languages or domain-specific subsets, it is surprising that in most previous
works, only experiments with English are reported. An exception is (Clark 2003),
who additionally uses languages of the Slavonic, Finno-Ugric and Romance families.

A severe problem with most clustering algorithms is that they are parameterised by
the number of clusters. As there are as many different word class schemes as tagsets,
and the exact amount of word classes is not agreed upon intra- and interlingually,
having to specify the number of desired clusters a-priori is clearly a drawback. In that
way, the clustering algorithm is forced to split coherent clusters or to join incompatible
sub-clusters. In contrast, unsupervised part-of-speech induction means the induction
of the tagset, which implies finding the number of classes in an unguided way.

Another alternative which operates on a predefined tagset is presented by Haghighi
and Klein (2006): in this semi-supervised framework, only three words per tag have
to be provided to induce a POS-tagger for English with 80% accuracy. The amount
of data the authors use in their experiments is rather small (8,000 sentences), but
their computationally expensive methods—gradient-based search to optimise Markov
Random Field parameters—does not allow for substantially more input data. This
issue is also shared with Baysian approaches as conducted in Goldwater and Griffiths
(2007).

3 Chinese Whispers Graph Clustering

Chinese Whispers (CW, Biemann 2006) is a very basic—yet effective—algorithm to
partition the nodes of weighted, undirected graphs. It is motivated by the eponymous
children’s game, where children whisper words to each other. This game is also known
as “telephone” in American English. While the game’s goal is to arrive at some funny
derivative of the original message by passing it through several noisy channels, the
CW algorithm aims at finding groups of nodes that broadcast the same message to
their neighbors. The algorithm is outlined as follows:

Algorithm 1 Standard Chinese Whispers CW(graph G(V, E))
for all vi ∈ V do

class(vi ) = i
end for
for it=1 to number-of-iterations do

for all v ∈ V , randomised order do
class(v)=predominant class in neigh(v)

end for
end for
return partition P induced by class labels

Regions of the same class stabilise during the iteration and grow until they reach the
border of a stable region of another class. Notice that classes are updated continuously:
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a vertex can obtain classes from the neighbourhood that were introduced there in the
same iteration. The fractions of a class a in the neighbourhood neigh(v) of a vertex
v with ew(v,w) edge weight of edge vw is computed as

f raction(a, v) =
∑

w∈neigh(v),class(w) = a ew(v,w)
∑

w∈neigh(v) ew(v,w)
,

the predominant class a in the neighbourhood of v is given by

arg max
a

f raction(a, v).

For each class label in the neighbourhood, the sum of the weights of the edges to
the vertex in question is taken as score for ranking. Intuitively, the algorithm works as
follows in a bottom-up fashion: First, all nodes get different classes. Then the nodes
are processed for a small number of iterations and inherit the strongest class in the
local neighborhood. This is the class whose sum of edge weights to the current node
is maximal. In case of multiple strongest classes, one is chosen randomly. Regions of
the same class stabilize during the iteration and grow until they reach the border of a
stable region of another class.

The CW algorithm cannot cross component boundaries (between unconnected sub-
graphs), because there are no edges between nodes belonging to different components.
Further, nodes that are not connected by any edge are discarded from the clustering
process, which possibly leaves a portion of nodes unclustered. In all graphs tested,
almost no changes were observed after 10–20 iterations.

The result of CW is a hard partitioning of the given graph into a number of parti-
tions that emerges in the process—CW itself is parameter-free. It is possible to obtain
a soft partitioning by assigning a class distribution to each node, based on the weighted
distribution of (hard) classes in its neighborhood in a final step. The outcomes of CW
resemble those of Min-Cut, see (Wu and Leahy 1993): Dense regions in the graph are
grouped into one cluster while sparsely connected regions are separated. In contrast
to Min-Cut, CW does not find an optimal hierarchical clustering but yields a non-
hierarchical (flat) partition. Furthermore, it does not require any threshold as input
parameter and is more efficient. Parametrization is, however, realized by the way the
graph is built—this entails the similarity function between nodes and a threshold on
minimal edge weight.

CW can be compared to the Potts (1952) Model in statistical mechanics, which
models phase transitions of spins in chrystalline lattices. The lattice is replaced by
a graph in CW, where coupling strength is given by edge weights. As opposed to
the approaches in statistical mechanics, CW does not attempt to optimally solve the
model, but approximates a solution by aggressively propagating only a single label
at a time. This leads to nondeterministic behavior, which has been observed to lead
to different clusterings for different runs. However, in the case of weighted scale-free
small world graphs as present in the data we operate on, variations are miniscule and
do not severely influence the outcome, cf. (Biemann 2007).
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With its run-time linear in the number of edges, Chinese Whispers belongs to the
class of graph partitioning algorithms at the lower bound of computational complex-
ity: at least, the graph itself has to be taken into account when attempting to partition
it, and the list of edges is the most compact form of its representation. This allows
the clustering of very large graphs and is a crucial feature for large lexicon sizes in
unsupervised POS-tagging.

4 Unsupervised POS-System

What follows is the description of the construction of the unsupervised POS-tagger
from scratch. Input to the system is a considerable amount of unlabelled, tokenised
monolingual text without any POS information. In a first stage, Chinese Whispers
is applied to distributional similarity data, which groups a subset of the most fre-
quent 10,000 words of a corpus into several hundred clusters (tagset 1). Second,
similarity scores on neighbouring co-occurrence profiles are used to obtain again
several hundred clusters of medium- and low frequency words (tagset 2). The com-
bination of both partitions yields sets of word forms belonging to the same induced
syntactic category. To gain on text coverage, ambiguous high-frequency words that
were discarded for tagset 1 are added to the lexicon. Finally, a Viterbi trigram tag-
ger is trained with this lexicon and augmented with an affix classifier for unknown
words.

Figure 1 depicts the process of unsupervised POS-tagging from unlabelled to fully
labelled text. The details of the method will be outlined in the following subsections.

The method employed here follows the coarse methodology as described in the
Sect. 2, but differs from other works in several respects. Although four-word context

Fig. 1 Diagram of the process
of unsupervised POS-tagging,
from unlabelled over partially
labelled to fully labelled text
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Fig. 2 Graph for the data given
in Table 1 and its partition into
nouns and verbs

windows and the top frequency words as features are used as in (Schütze 1995),
the cosine similarity values between the vectors of target words are transformed
into a graph representation in order to be able to cluster them with Chinese Whis-
pers graph clustering, see Section 3. Additionally, a method to identify and incor-
porate POS-ambiguous words as well as low-frequency words into the lexicon is
provided.

4.1 Tagset 1: High and Medium Frequency Words

Four steps are executed in order to obtain tagset 1 for high- and medium frequency
words from a text corpus.

1. Determine 10,000 target and 200 feature words from frequency counts
2. Collect context statistics and construct graph
3. Apply Chinese Whispers on graph
4. Add the feature words not present in the partition as one-member clusters.

The graph construction in step 2 is conducted by adding an edge between two words
a and b with weight2 w = 1/(1 − cos(−→a ,

−→
b )), computed using the feature vectors

−→a and
−→
b (cf. Table 1) of words a and b. The edge is only drawn if w exceeds a

similarity threshold s. The latter influences the number of words that actually end up
in the graph and get clustered. It might be desired to cluster fewer words with higher
confidence as opposed to running the risk of joining two unrelated clusters because of
too many ambiguous words that connect them. After step 3, there is already a partition
of a subset of target words that can be perceived as tagset. Figure 2 shows the weighted
graph and its CW-partition for the example given in Table 1. The number of target
words is limited by computational considerations: since the feature vectors have to be
compared in a pair-wise fashion, a considerably higher number of target words results
in long run times. The number of feature words was examined in preliminary experi-
ments, showing only minor differences with respect to cluster quality in the range of
100–300.

As noted e.g. in (Schütze 1995), the clusters are motivated syntactically as well as
semantically and several clusters per open word class can be observed. The distinctions
are normally finer-grained than existing tagsets, as Fig. 3 illustrates.

2 Cosine similarity is a standard measure for POS induction, however, other measures would be possible.
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Fig. 3 Fine-grained distinctions: female and male first names from German corpus. Note that German
lexicalizes gender in titles and professions, which makes it possible to learn this distinction. The figure
shows only a local neighbourhood of the graph for tagset 1

Since the feature words form the bulk of tokens in the corpus, it is clearly desired
to make sure that they appear in the tagset, although they might end up in clusters with
only one element. This might even be desired, e.g. for English ’not’, which usually has
its own POS-tag in linguistic tagsets. This is done in step 4, where assigning separate
word classes for high frequency words is considered to be a more robust choice than
trying to disambiguate them while tagging. Starting from this, it is possible to map all
words contained in a cluster onto one feature and iterate this process, replacing feature
words by the clusters obtained, cf. (Schütze 1993). In that way, higher counts in the
feature vectors are obtained, which could provide a better basis for similarity statis-
tics. Experiments conducting this showed, however, that only marginal improvements
could be reached, as text coverage is not substantially increased.

Table 2 shows as illustration a selection of clusters for the British National Cor-
pus (BNC,3 Burnard 1995). Several clusters for nouns can be observed. Evaluating
lexical clusters against a gold standard may lead to inconclusive results, because the
granularities of the gold standard and the clusters usually differ, e.g. English singular
and plural nouns end up in one cluster, but first and last names are distinguished. The
evaluation scores are largely depending on the tagset used for gold standard. Here,
an information-theoretic measure is employed that allows an intuitive interpretation:
Entropy precision (EP) measures the extent to which the gold standard classification
is reconstructable from the clustering result. EP directly relates to the precision mea-
sure in information retrieval. Its counterpart, recall as the number of retrieved vs. the
total number of instances relates to the coverage on target words as reached by the
clustering algorithm. For the gold standard, each word gets assigned its most frequent
tag, ignoring POS-ambiguities. Despite all these disadvantages, EP provides a means
to relatively compare the quality of partitions for varying thresholds s.

3 http://.natcorp.ox.ac.uk/ [April 1st, 2007].
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Table 2 Selected clusters from the BNC clustering for setting s such that the partition contains 5,000
words. In total, 464 clusters are obtained. EP for this partition is 0.8276. Gold standard tags have been
gathered from the BNC, sample words are presented in decreasing order of frequency

Rank Size Gold standard tags (count) Description Sample words

1 662 NN1(588), NN2(44) Singular nouns day, government, world, system,
company, house, family

2 401 NN1(311), NN2(86) Singular nouns part, end, state, development,
members, question, policy, ...

3 292 NN2(284), NN1(7) Plural nouns men, services, groups,
companies, systems, schools, ...

4 254 NP0(252), NN1(2) First names John, David, Peter, Paul, George,
James, Michael, ...

5 247 AJ0(233), NN1(9) Adjectives social, political, real, economic,
national, human, private, ...

6 220 NN1(148), NN2(63) Singular and plural nouns business, water, service, staff,
land, training, management, ...

7 209 VVI(209) Verbs get, make, take, give, keep,
provide, play, move, leave, ...

8 195 AJ0(118), NN1(25) Adjectives (country) British, police, New, European,
individual, National, ...

9 110 NP0(109), NN1(1) Last names Smith, Jones, Brown, Wilson,
Lewis, Taylor, Williams, ...

10 92 AJ0(89), CRD(1) Adjectives (size/quality) new, good, little, few, small,
great, large, major, big, special

11 73 AJ0(73) Adjectives (animate) heavy, beautiful, quiet, soft,
bright, charming, cruel, ...

12 67 NN2(67) Plural nouns problems, conditions, costs,
issues, activities, lines, ...

12 67 NP0(66), NN1(1) Countries England, Scotland, France,
Germany, America, Ireland, ...

16 57 NP0(57) Cities Oxford, Edinburgh, Liverpool,
Manchester, Leeds, Glasgow, ...

22 39 AV0(39) Sentence beginning Well, However, Thus, Indeed,
Also, Finally, Nevertheless, ...

25 30 NN2(30) Plural professions teachers, managers, farmers,
governments, employers, ...

34 17 CRD(17) Numbers three, four, five, six, ten, eight,
seven, nine, twelve, fifteen, ...

65 6 NP0(6) Titles Mr, Mrs, Dr, Miss, Aunt, Ms

217 2 AT0(2) Indefinite determiner a, an

217 2 NP0(2) Location 1st Saudi, Sri

217 2 VVZ, VVD To wear wore, wears

217 2 VVZ, VVD To insist insisted, insists

Definition Entropy Precision (EP): Let G = G1, . . . Gm be the gold standard classi-
fication and C = C1, . . . C p be the clustering result. Then, EP is computed as follows:

E P(C, G) = MCG

IG
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Fig. 4 Cluster size distribution for tagset 1 and combined tagset (see Sect. 4.3) in the BNC, ordered
decreasingly by cluster size (rank). Note that while the distribution of cluster sizes in tagset 1 looks like
a power law distribution, cluster sizes in the combined tagset exhibit much larger clusters (due to adding
more words) and a steeper slope for mid-range sized clusters

with mutual information MXY between X and Y

MXY =
∑

xy

P(x, y)ln
P(x, y)

P(x)P(y)

and IX entropy of X .

IX = −
∑

x

P(x)ln P(x)

A maximal EP of 1 is reached by a trivial clustering of singleton clusters. This
does not impose a severe problem, considering the typical cluster size distribution as
depicted in Fig. 4: there is a substantial amount of words to be found in large clusters.
Nevertheless, optimising EP promotes a large number of small clusters, which is why
the number of clusters has to be provided along with the EP figures to give an impres-
sion of the result’s quality. A minimal EP of 0 indicates statistical independence of C
and G.

For evaluation of tagset 1, three corpora of different languages were chosen: 10 mil-
lion sentences of German tagged with 52 tags using TreeTagger (Schmid 1994),
the 6 million sentences of BNC for English, pretagged semi-automatically with the
CLAWS tagset of 84 tags (Garside et al. 1987) and 1 million sentences from a Nor-
wegian web corpus tagged with the Oslo-Bergen tagger (Hagen et al. 2000), using a
simplified tagset of 66 tags. These corpora are automatically tagged, yet we use them
as gold standards for optimizing parameters, arguing that automatic high precision
taggers serve well for this purpose. Note that we use the result from this evaluation
not to tune the unsupervised tagger to a particular dataset or language, but rather
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Fig. 5 Tagset size and Entropy precision dependent on number of included target words for tagset 1

derive general settings for its parametriation. Figure 5 gives the EP results for varying
numbers of target words included in the partition and the number of clusters.

From Fig. 5 it is possible to observe that EP remains stable for a wide range of
target word coverage between about 2,000–9,000 words. The number of parts is max-
imal for the medium range of coverage: at higher coverage, POS-ambiguous words
that are related to several clusters serve as bridges. If too many links are established
between two clusters, CW will collapse both into one cluster, possibly at cost of EP.
At lower coverage, many classes are left out. This evaluation indicates the language-
independence of the method, as results are qualitatively similar for all languages tested.

As indicated above, lexicon size for tagset 1 is limited by the computational com-
plexity of step 2, which is time-quadratic in the number of target words. Due to the
non-sparseness of context vectors of high-frequency words there is not much room
for optimisation. In order to add words with lower frequencies, another strategy is
pursued.

4.2 Tagset 2: Medium and Low Frequency Words

As noted in (Dunning 1993), log likelihood statistics capture word bigram regularities.
Given a word, its neighbouring co-occurrences as ranked by their log likelihood ratio
are the typical immediate contexts of the word. Regarding the highest ranked neigh-
bours as the profile of the word, it is possible to assign similarity scores between two
words A and B according to how many neighbours they share, i.e. to what extent the
profiles of A and B overlap. The hypothesis here is that words sharing many neigh-
bours should usually be observed with the same part-of-speech. For the acquisition of
word classes in tagset 2, the second-order graph on neighbouring co-occurrences is
used. To set up the graph, a co-occurrence calculation is performed which yields word
pairs based on their significant co-occurrence as immediate neighbours. Here, all word
pairs exceeding a log likelihood threshold of 1.00 (corresponding to a positive corre-
lation, yet the outcome is robust in a wide threshold range) enter this bipartite graph.
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Note that if similar words occur in both parts, they form two distinct vertices. Only
words with a frequency rank higher than 2,000 are taken into account: as preliminary
experiments revealed, high-frequency words of closed word classes spread over the
clusters, resulting in deteriorated tagging performance later, so they are excluded in
this step.

This graph is transformed into a second-order graph by comparing the number
of common right and left neighbours for two words. The similarity (edge weight)
between two words is the sum the number of common neighbours on both sides.
Figure 6 depicts the significant neighbouring graph, the second-order graph derived
from it, and its CW-partition. The word-class-ambiguous word ’drink’ (to drink the
drink) is responsible for all inter-cluster edges. In the example provided in Figure 6,
three clusters are obtained that correspond to different parts-of-speech. For computing
the similarities based on the significant neighbour-based word co-occurrence graphs
for both directions, at maximum the 150 most significant co-occurrences per word
are considered, which regulates the density of the graph and leads to improvements in
run-time.

To test this on a large scale, the second-order similarity graph for the BNC was com-
puted, excluding the most frequent 2,000 words and drawing edges between words
only if they shared at least two left and four right common neighbours. The clusters
are checked against a lexicon that contains the most frequent tag for each word in the
BNC. The largest clusters are presented in Table 3, together with the predominant tags
in the BNC.

In total, CW produced 282 clusters, of which 26 exceed a size of 100. The weighted
average of cluster purity (i.e. the number of predominant tags divided by cluster size)
was measured at 88.8%, which exceeds significantly the precision of 53% on word
type as reported by Schütze (1995).

Again, several hundred clusters, mostly of open word classes are obtained. For
computing tagset 2, an efficient algorithm like CW is crucial: the graphs as used for
the experiments consist typically of 10,000 to 100,000 vertices and about 100,000 to
1 million edges. Note that for the construction of graph 2, it is not necessary to do
a pairwise comparison between all nodes. Rather, the neighbourhood co-occurrence

Fig. 6 Left Bi-partite
neighbouring co-occurrence
graph. Right second-order graph
on neighbouring co-occurrences
clustered with CW, as used for
graph 2
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Table 3 The largest clusters of
tagset 2 for the BNC

Size Tags (count) Sample words

18432 NN(17120), AJ(631) secret, officials, transport,
unemployment, farm, county,
wood, procedure, grounds, ...

4916 AJ(4208), V(343) busy, grey, tiny, thin, sufficient,
attractive, vital, ...

4192 V(3784), AJ(286) filled, revealed, experienced,
learned, pushed, occurred, ...

3515 NP(3198), NN(255) White, Green, Jones, Hill,
Brown, Lee, Lewis, Young, ...

2211 NP(1980), NN(174) Ian, Alan, Martin, Tony, Prince,
Chris, Brian, Harry, Andrew,
Christ, Steve, ...

1855 NP(1670), NN(148) Central, Leeds, Manchester,
Australia, Yorkshire, Belfast,
Glasgow, Middlesbrough, ...

statstics select only a relatively small subset of possible pairs, keeping the construction
time of the graph feasible and the complexity sub-quadratic.

4.3 Combination of Tagsets 1 and 2

Now, there are two tagsets of two different, yet overlapping frequency bands. A large
portion of these 8,000 words in the overlapping region is present in both tagsets. Again,
a graph is constructed, containing the clusters of both tagsets as vertices; weights of
edges represent the number of common elements, if at least two elements are shared.
Notice that the graph is bipartite.

And again, CW is used to cluster this graph of clusters. This results in fewer clusters
than before for the following reason: while the granularities of tagsets 1 and 2 are both
high, they capture different aspects as they are obtained from different sources. Verti-
ces of large clusters (which usually consist of open word classes) have many edges to
the other partition’s vertices, which in turn connect to yet other clusters of the same
word class. Eventually, these clusters can be grouped into one.

Clusters that are not included in the graph of clusters are treated differently, depend-
ing on their origin: clusters of tagset 1 are added to the result, as they are believed to
contain important closed word class groups. Dropouts from tagset 2 are simply left
out, as they mostly consist of small, yet semantically motivated word sets. The total
loss of words by disregarding these many, but small clusters did never exceed 10% in
any experiment. Figure 7 illustrates this combination process.

Conducting this combination yields about 300–600 clusters that will be further used
as a lexicon for tagging. As opposed to the observations made in Schütze (1995), only
a handful of clusters are found per open word class, of which most distinctions are
syntactically motivated, e.g. adjectives with different case markers. For unsupervised
POS-tagging, the aim is to arrive at a low number of clusters to mimic the supervised
counterparts. A more rigid method to arrive at yet less clusters would be to leave out
classes of low corpus frequency.
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Fig. 7 Combination process: tagsets 1 and 2 are related via the number of common elements in their
respective clusters. Shades symbolise the outcome of Chinese Whispers on this graph of clusters. Clusters
marked with x are not included in the resulting graph of clusters

Fig. 8 POS-disambiguation in
the BNC for ‘Miles’ as first and
last name. Note that most of the
last names are ambiguous
themselves, causing ‘Miles’ to
be similar to them

4.4 Setting up the Tagger

4.4.1 Lexicon Construction

From the merged tagsets, a lexicon is constructed that contains one possible tag (the
cluster ID) per word. To increase text coverage, it is possible to include those words
that dropped out in the distributional step for tagset 1 into the lexicon. It is assumed
that some of these words could not be assigned to any cluster because of ambiguity.
From a graph with a lower similarity threshold s (here: such that the graph contains
9,500 target words), neighbourhoods of these words are obtained one at a time. This
is comparable to the methodology in (Ertöz, et al. 2002), where only some vertices
are used for clustering and the rest is assimilated. Here, the added target words are
not assigned to only one cluster: the tags of their neighbours—if known—provide a
distribution of possible tags for these words. Figure 8 gives an example: the name
’Miles’ (frequency rank 8,297 in the BNC) is rated 65% as belonging to a first name
cluster and 35% as last name.

4.4.2 Constructing the Tagger

Unlike in supervised scenarios, the task is not to train a tagger model from a small
corpus of hand-tagged data, but from the clusters of derived syntactic categories and a
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large, yet unlabelled corpus. This realises a class-based N -gram model (Brown et al.
1992).

Here, a simple trigram Viterbi model without re-estimation techniques (such as
Baum-Welch) is employed in order not to blur the quality of lexicon construction
and to speed up processing. Adapting a previous standard POS-tagging framework
(Charniak et al. 1993), the probability of the joint occurrence of tokens ti and cate-
gories ci for a sequence of length n is maximised. At this, the tagger does not only
guess the categories of OOV tokens, but also assigns the most appropriate category
for words that are recorded with several possibilities in the lexicon, cf. Sect. 4.4.1. We
emphasize that the resulting tagger can be applied to unseen text (with unseen types)
and has the capability to disambiguate word classes based on context.

4.4.3 Morphological Extension

A main performance flaw of supervised POS-taggers originates from OOV words.
Morphologically motivated add-ons are used e.g. in (Clark 2003; Freitag 2004a) to
guess a more appropriate category distribution based on a word’s suffix or its capi-
talisation. Here, Compact Patricia Trie classifiers (CPT, see Knuth 1998) trained on
prefixes and suffixes are employed. For OOV words, the category-wise product of
both classifier’s distributions serve as probabilities P(ci |ti ): Let w = ab = cd be a
word, a be the longest common prefix of w and any lexicon word, and d be the longest
common suffix of w and any lexicon words. Then

P(ci |w) = |{u|u = ax ∧ class(u) = ci }|
|{u|u = ax}| · |{v|v = yd ∧ class(v) = ci }|

|{v|v = yd}| .

CPTs do not only serve as a substitute lexicon component, they also handle capi-
talisation, camelCase and suffix endings without having to define features explicitly
or setting length or maximal number thresholds (as in Freitag 2004a for suffixes).
A similar technique is employed by Cucerzan and Yarowsky (1999) in the context
of named entity recognition. The CPT implementation is further used in supervised
settings by Witschel and Biemann (2005) for compound splitting and in (Eiken et al.
2006) for base form reduction, where it is described in more detail.

5 Direct Evaluation of Tagging

For directly measuring the quality of our unsupervised POS-tagger, we adopt the meth-
odology of Freitag (2004a). We measure the cluster-conditional tag perplexity PP as
the average amount of uncertainty to predict the tags of a POS-tagged corpus, given
the tagging with classes from the unsupervised method. For the same corpus tagged
with two methods, the measure indicates how well one tagging can be reproduced
from the other. Let

Ix = −
∑

x

P(x)ln P(x)
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Table 4 Characteristics of corpora for POS induction evaluation: number of sentences, number of tokens,
tagger and tagset size, corpus coverage of top 200 and 10,000 words

Language Sent. Tokens Tagger nr.tags 200 cov. (%) 10K cov. (%)

English 6M 100M BNC 84 55 90

Finnish 3M 43M Connexora 31 30 60

German 10M 177M Schmid (1994) 54 49 78
a Thanks goes to Connexor Oy, Helsinki, for an academic licence of their Finnish MBT tagger

be the entropy of a random variable X and

MXY =
∑

xy

P(x, y)ln
P(x, y)

P(x)P(y)

be the mutual information between two random variables X and Y . Then the cluster-
conditional tag perplexity for a gold-standard tagging T and a tagging resulting from
clusters C is computed as

PP = exp(IT |C ) = exp(IT − MT C ).

Minimum PP is 1.0, connoting a perfect congruence with gold standard tags. Below, PP
on lexicon words and OOV words is reported separately. The objective is to minimise
the total PP.

Unsupervised POS-tagging is meant for yet untagged text, so a system should be
robustly performing on a variety of typologically different languages. For evaluating
tagging performance, three corpora are chosen: the BNC for English, a 10 million sen-
tences newspaper corpus from the Leipzig Corpora Collection (LCC,4 Quasthoff et al.
2006) for German, and 3 million sentences from LCC’s Finnish web corpus. Table 4
summarises some characteristics.

Since a high text coverage is reached with only a few words in English, a strategy
that assigns only the most frequent words to sensible clusters already ensures satisfac-
tory performance. In the Finnish case, a high OOV rate can be expected, hampering
performance of strategies that cannot cope well with low frequency or unseen words.

To put the results in perspective, the following baselines on random samples of the
same 1,000 randomly chosen sentences used for evaluation were computed:

• 1: the trivial top clustering: all words are in the same cluster
• 200: the most frequent 199 words form clusters of their own; all the rest is put into

one cluster.
• 400: same as 200, but with 399 most frequent words

Table 5 summarises the baselines in terms of PP. Additional baselines were
included for comparison with system results.

4 http://corpora.uni-leipzig.de/ [December 1st, 2007].
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Table 5 Baselines for various tagset sizes

English
Baseline 1 200 345 400 619

PP 29.3 3.69 3.17 3.03 2.53

Finnish

Baseline 1 200 400 466 625

PP 20.2 6.14 5.58 5.46 5.23

German

Baseline 1 200 400 440 781

PP 18.24 3.32 2.79 2.73 2.46

6
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4

3

2

1
4000 6000 8000 10000

target word coverage

O+M+A for German: total, lexicon and oov PP

P
P

O: total PP
O+M: total PP

O+M: lex PP

O+M+A: total PP
O: lex PP

O+M+A: lex PP
O: oov PP

O+M: oov PP
O+M+A: cov PP

Fig. 9 Influence of threshold s on tagger performance: cluster-conditional tag perplexity PP as a function
of target word coverage for tagset 1

5.1 Influence of System Components

The quality of the resulting taggers for combinations of several sub-steps is measured
using:

• O: tagset 1
• M: the CPT morphology extension
• T: merged tagsets 1 and 2
• A: adding ambiguous words to the lexicon

Figure 9 illustrates the influence of the similarity threshold s for O, O+M and
O+M+A for German—for other languages, results look qualitatively similar. Varying
s influences coverage on the 10,000 target words. When clustering on very few words,
tagging performance on these words reaches a PP as low as 1.25 but the high OOV
rate impairs the total performance. Clustering too many words results in deterioration
of results—most words end up in one big part. In the medium ranges, higher coverage
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Table 6 Results in PP for English, Finnish, German. OOV% is the fraction of non-lexicon words in terms
of tokens

Lang Words O O+M O+M+A T+M T+M+A

EN Total 2.66 2.43 2.08 2.27 2.05

Lex 1.25 1.51 1.58 1.83

OOV 6.74 6.70 5.82 9.89 7.64

OOV% 28.07 14.25 14.98 4.62

Tags 619 345

FI Total 4.91 3.96 3.79 3.36 3.22

Lex 1.60 2.04 1.99 2.29

OOV 8.58 7.90 7.05 7.54 6.94

OOV% 47.52 36.31 32.01 23.80

Tags 625 466

GER Total 2.53 2.18 1.98 1.84 1.79

Lex 1.32 1.43 1.51 1.57

OOV 3.71 3.12 2.73 2.97 2.57

OOV% 31.34 23.60 19.12 13.80

Tags 781 440

and lower known PP compensate each other, optimal total P Ps were observed at target
word coverages of 4,000–8,000. The system’s performance is stable with respect to
changing thresholds, as long as it is set in reasonable ranges. Adding ambiguous words
results in a worse performance on lexicon words, yet improves overall performance,
especially for high thresholds.

For all further experiments, the threshold s was fixed in a way that tagset 1 consisted
of 5,000 words, so only half of the top 10,000 words are considered unambiguous. At
this value, the best performance throughout all corpora tested was achieved.

Overall results are presented in Table 6. The combined strategy T+M+A reaches
the lowest PP for all languages. The morphology extension (M) always improves the
OOV scores. Adding ambiguous words (A) hurts the lexicon performance, but largely
reduces the OOV rate, which in turn leads to better overall performance. Combining
both partitions (T) does not always decrease the total PP a lot, but lowers the number
of tags significantly.

Finnish figures are generally worse than for the other languages, consistent with
higher baselines. Differences between languages are most obvious when comparing
O+M+A and T+M: whereas for English it pays off much more to add ambiguous
words than to merge the two partitions, it is the other way around in the German and
Finnish experiments.

To sum up the discussion of results: all introduced steps improve the performance,
yet their influence’s strength varies. As a sample of the system’s output, consider the
example in Table 7 that has been tagged by the English T+M+A model: as in the
example above, ‘saw’ is disambiguated correctly. Further, the determiner cluster is
complete; unfortunately, the pronoun ‘I’ constitutes a singleton cluster.
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Table 7 Tagging example Word Cluster ID Cluster members (size)

I 166 I (1)

saw 2 past tense verbs (3818)

the 73 a, an, the (3)

man 1 nouns (17418)

with 13 prepositions (143)

a 73 a, an, the (3)

saw 1 nouns (17418)
. 116 . ! ? (3)

The results can be compared to (Freitag 2004a); most other work uses different eval-
uation techniques that are only indirectly measuring what is tried to optimise here.
Unfortunately, (Freitag 2004a) does not provide a total PP score for his 200 tags. He
experiments with a hand-tagged, clean English corpus that is not free (the Penn Tree-
bank) and is therefore not an option here. Freitag reports a PP for known words of 1.57
for the top 5,000 words (91% corpus coverage, baseline 1 at 23.6: his corpus seems
’easier’ for both the baseline and with respect to OOV rates), a PP for unknown words
without morphological extension of 4.8. Using morphological features the unknown
PP score is lowered to 4.0. When augmenting the lexicon with low frequency words
via their distributional characteristics, a PP as low as 2.9 is obtained for the remaining
9% of tokens. His methodology, however, does not allow for class ambiguity in the
lexicon, the low number of OOV words is handled by a Hidden Markov Model trained
with Baum-Welch-Reestimation. Due to different evaluation tagsets and a different
baseline, it is hard to assess whether Freitag’s method performs better or worse on
information-theoretic measures on English. For most other languages with flatter fre-
quency distributions, Freitag’s method can be expected to perform worse because of
higher OOV rates resulting from the 5,000 word limit.

5.2 Influence of Parameters

A number of parameters for the process of unsupervised POS-tagging were introduced
at the points where they arised. Now, all parameters are listed for recapitulating the
possibilities to fine-tune the method. Table 8 gives the parameters, a short explanation,
and the default setting used in all experiments.

Their influence and interplay is outlined as follows. F E AT did not show to have
a large influence in ranges 100–300. It might be adviseable to use higher values for
languages with low Zipfian exponents (such as Finnish) to gain higher text coverage
for building tagset 1. When processing small corpora, T ARG should not be too high,
because a low corpus frequency for target words results in unreliable context statis-
tics. The parameter CW T ARG must be set smaller than T ARG, Fig. 9 indicates that
40–80% of T ARG is a sensible range. Higher settings result in more words that can
overlap for combining the two tagsets.

N B_SI G and N B_T H RE SH go hand in hand to regulate the density of the graph
for tagset 2: Lower significance thresholds lead to more edges in the neighbouring
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Table 8 Parameters, default settings and explanation

Parameter Default Explanation

F E AT 200 Number of feature words for tagset 1 similarities

T ARG 10,000 Number of target words for tagset 1 similarities

CW T ARG 5,000 Number of words that are clustered for tagset 1 amongst
T ARG words, by applying an appropriate similarity
threshold s on the graph

T O P ADD 9,500 Number of words that are considered for adding
ambiguous words amonst T ARG words, by applying
an appropriate similarity threshold s on the graph

N B_SI G 1.00 Significance threshold for neighbour-based
co-occurrences

N B_T H RE SH 2 Minimum number of common neighbour-based
co-occurrences per side for constituting an edge in the
graph for tagset 2

N B_M AX 150 Maximum neighbouring co-occurrences per word to
consider for the second-order graph of tagset 2

C O N F_OV E RL AP 2 Minimum number of common words for connecting
partitions in the graph of clusters to merge tagset 1
and 2

B E H E AD 2,000 Minimum rank of words to enter the graph for tagset 2
SI N G_ADD 200 Maximum frequency rank of words to add as singletons,

if not already contained in the combined tagset

co-occurrence graph, higher values for N B_T H RE SH prune edges in the graph for
tagset 2. The maximum number of neighbouring co-occurrences per word N B_M AX
influences the density of the graph for tagset 2, lower settings result in less edges per
word. All experiments were carried out with the default value, however, higher values
lead to more coarse-grained tagsets that e.g. join common and proper nouns. Different
settings could prove advantageous for different applications, but no experiments were
conducted to measure to what extent.

B E H E AD should be set in a way that stop words are excluded from tagset 2, but
considerably lower than T ARG, to enable sufficient overlap between the two tagsets.
Less than a value of 2 for C O N F_OV E RL AP can result in spurious combinations
in the graph of clusters, higher values reduce the lexicon size since clusters from tagset
2 are more likely to be excluded.

Adding more singletons amongst the SI N G_ADD most frequent words increases
the number of tags, but also the number of trigrams available for training the Viterbi
tagger.

A sensible extension would be to limit the total number of tags by excluding these
clusters from the combined tagset that have the lowest corpus frequency, i.e. the sum
of frequencies of the lexicon words constituting this tag.

5.3 Influence of Corpus Size

Having determined a generic setting for the interplay of the different system compo-
nents (M+T+A), the influence of corpus size on the cluster-conditional tag perplexity
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Fig. 10 PP, OOV rate and lexicon size versus corpus size for German

PP shall be examined now. For this purpose, taggers were induced from German cor-
pora of varying size from 1,00,000 sentences up to 40 million sentences, taken from
LCC. Evaluation was carried out by measuring PP between the resulting taggers and
the hand-tagged German NEGRA corpus (Brants et al. 1997), testing on all 20,000
sentences of NEGRA. The evaluation corpus was not part of the corpora used for tagger
induction. Figure 10 provides total PP, the OOV rate and the lexicon size, dependent
on corpus size.

Not surprisingly, the more corpus is provided for tagger induction, the better per-
formance levels are reached in terms of PP. The more data provided, the more reliable
the statistics for tagset 1, which is reflected in tremendous PP improvement from
using 1,00,000 to 10,00,000 sentences. In this range, tagset 2 is almost empty and
does not contribute to the lexicon size, which is mirrored in a constant OOV rate
for this range. Above 1 million sentences, the size of tagset 2 increases, resulting in
lower PP and OOV rates. The lexicon size explodes to some 1,00,000 entries for
a corpus size of 40 million sentences. Summarizing the results obtained by training
the unsupervised POS-tagger on corpora of various sizes, there always seems to be
room for improvements by simply adding more data. However, improvements beyond
10 million sentences are small in terms of PP.

The interpretation of the PP measure is difficult, as it largely depends on the
gold standard. While it is possible to relatively compare the performance of different
components of a system or different systems along these lines, it only gives a poor
impression on the utility of the unsupervised tagger’s output. Therefore, several appli-
cation-based evaluations are undertaken in Sect. 6. But before that, we discuss domain
shifting and make an attempt to compare this method with the clustering described in
Clark (2003).

5.4 Domain Shifting

Now we shed some light in the advantage of using unsupervised POS tags for domain
adaptation. When cultivating an NLP system for one domain or genre and then
applying it to a different domain, a major drop in performance can be expected due to
different vocabulary and different constructions, cf. (Hal and Marcu 2006).
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Table 9 OOV rates for unsupervised POS models for BNC and MEDLINE, both in-domain and cross-
domain. For reference, also OOV rates with respect to the most frequent 10 K words per corpus are
given

BNC model (%) BNC top 10 K (%) MEDLINE
model (%)

MEDLINE top
10 K (%)

BNC OOV 7.1 8.6 12.0 20.7

MEDLINE OOV 18.8 21.9 5.0 9.5

It would be desirable to train on one domain and test performance on the other,
using various ways to incorporate our unsupervised POS tags, e.g. inducing separate
models or a single model on a mixed corpus and measure the contribution to a task.
Apart from corpora from different domains, this would require gold standard data for
the same task in different domains, which we unfortunately did not have available.
This is why we revert to quantitative observations, accompanied by exemplifying data,
from contrasting a general-domain corpus of British English (the BNC as used above)
with a specialized medical domain corpus of mixed-spelling English (the 2004 MeSH
abstracts,5 henceforth called MEDLINE).

In Table 9, OOV rates for two unsupervised POS models trained on our cor-
pora are given. It is clearly observable that changing domain results in higher OOV
rates. Applying a model trained on the specialized domain MEDLINE corpus to the
general-domain BNC leads to almost twice the OOV rate. Applying the general domain
BNC model to the specialized domain—a more common scenario in domain adapta-
tion—results in a more than 3-fold increase of the OOV rate from 5 to 18.8%.

While OOV rates only reveal how much vocabulary is covered when shifting
domain, it does not reveal the utility of the tagset. Tagsets for specialized corpora
often reflect their domain: in addition to the core word classes, additional word clas-
ses are discovered that could help for certain applications. In Table 10, domain-specific
clusters for MEDLINE are given. For example the tag for units can help to project
from generally used units like kg or gallons to specialized units like kcal/mol. The tag
for cell lines or viruses might facilitate Information Extraction tasks.

5.5 Comparison with Clark 2003

This section aims at comparing the unsupervised tagger to the unsupervised word
clustering described in (Clark 2003).6

Clark’s system as used here for a comparison consists of a clustering that is
inspired by the well-known k-means algorithm. All words above a certain frequency
threshold t are clustered into k clusters by iteratively improving the likelihood of
a given clustering. The likelihood is measured with respect to a combination of a

5 http://www.nlm.nih.gov/mesh/filelist.html [Jan 2010].
6 Thanks goes to Alexander Clark for making his clustering software available for download http://www.
cs.rhul.ac.uk/home/alexc/pos2.tar.gz [Jan 2010].
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Table 10 Selected clusters from the MEDLINE clustering (final tagset) with randomly selected words.
In total, 479 clusters were obtained, which were ordered by decreasing size to rank them. These clusters
reflect domain specific word classes that are usually not found in general-domain corpora

Rank Size Description Sample words

10 1707 Cell lines F98, ANA-1, HUC, NTERA2, Caco-2BBe,
AT5BIVA, YH, TIG-1, EG2+, LNCaP-FGC,
IEC-6, Raw264.7, spleen, RKO, H292, HT29,
BCE, SRG, MLE-15, S16, Mer+, SP-ir, C-21,
SW1990, Caki-2, HT-1080, HT29-Cl.16E,
SK-N-SH, MH-S, Haller, MES-SA, CA46,
NFS-60, MN9D, MCTC, ...

19 705 Viruses APEC, SIVsm, salmonella, herpes, IKC, virus-2,
dengue, Hib, Adv, Pnc, pneumococcal, TMEV,
anthrax, THO, BVDV-1, NDV, dengue-2, TCLA,
HGV, SV-40, toxoplasma, heartworm, WNV, YF,
diphtheria, Ara-, IFV, MLV, cryptococcus, ...

27 474 Units kg, g/l, Hz, hm2, mo, CFU, mm2/s, mm2, dL, hrs,
U/ml, min)-1, microV, IU/ml, Pounds, kcal/mol,
cm3/ min, g/ min, microg/ml, metre, PDLs, ml/g,
centimetres, gallons, euros, mumol/l, pg, months,
nanometres, pmoles, MPa, cm2, MJ/d, bp, francs,
IU/L, U/m2/day, g/d, g/kg/ min, mol, cfu/cm2, ...

39 213 Time relative to treatment postsurgery, post-transplant, postload, postfracture,
gestation, ago, 12-months, post-release, post-test,
postop, postcoitus, postchallenge, posttrauma,
postdose, post-insult, postadmission, poststroke,
postburn, postresuscitation, post-stress, postpartal,
post-challenge, regraft, postnatal, EGA,
postinsemination, postaxotomy, post-hatching,
posthemorrhage, postmenstrual, ...

bigram class model (Ney et al. 1994) for distributional evidence, a letter Hidden
Markov Model for modeling morphological similarities and a frequency prior. The
parameter k can be used to set the desired granularity of the clustering.

In contrast to the method described in this paper, all words of a given corpus are
clustered: words with frequency of t or less are simply clustered together in one large
cluster. This means that there are no OOV words in the corpus w.r.t. the clustering.
The method as it stands does not allow assigning tags for unknown words (in new
text) from the context alone. Also, the same word always gets assigned the same tag,
there is no mechanism that accounts for ambiguity.

Due to the computational cost of the clustering, which increases for larger k, we
could not successfully run the methods on corpora larger than the BNC, which took
up to a week in CPU time for large k. In contrast, the method presented here induces a
model for the BNC in a few hours. We used the default settings (t = 5, 10 iterations) to
produce clusterings for varying k for the BNC and a German corpus of 5M sentences,
assigning cluster IDs as tags for the same evaluation corpus used in Sect. 5 above.

The V-measure is the harmonic mean of two measures: Homogeneity h and Com-
pleteness c. h quantifies how well the system assignment can be mapped to the gold
standard, not penalising too fine-grained system clusters. This measure is very closely
related to E P as defined above. The symmetrically defined c quantifies how well
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Table 11 V-measure evaluation
for German and English:
Baselines, Clark’s system
(with number of clusters) and
this system for the German 40M
sentence corpus and the BNC

Best V-measure per corpus
marked in bold

System Completeness Homogeneity V-measure

German
Base-1 1 0 0

Base-200 0.6096 0.58626 0.5977

Base-440 0.5798 0.6536 0.6145

Base-781 0.5539 0.6878 0.6136

Clark-128 0.5481 0.8407 0.6636

Clark-256 0.5221 0.8941 0.6592

Clark-440 0.4982 0.9079 0.6434

Unsupos-440 0.5670 0.8604 0.6835

English BNC

Base-1 1 0 0

Base-200 0.6988 0.6172 0.6555

Base-345 0.6697 0.6612 0.6654

Base-400 0.6633 0.6739 0.6686

Clark-128 0.6228 0.8204 0.7081

Clark-256 0.5841 0.8554 0.6942

Clark-345 0.5727 0.8708 0.6910

Unsupos-345 0.6349 0.766 0.6943

the gold standard can be mapped to the system assignment, at this penalising fine-
grained system distinctions. Both h and c are normalised and take on values between
0 (undesirable) and 1 (desirable), serving as analogies to Precision and Recall.

Table 11 shows the V-measure for the German and English data for different k and
different baselines in comparison with the M+T+A models described above.

From Table 11, it becomes clear that the V-measure is relatively independent for
a wide range of the number of clusters. Baseline scores demonstrate the tradeoff
between h and c. Clark’s system generally produces higher h and lower c than the
system presented here for the same number of clusters. This points at a different clus-
ter size distribution: Clark’s cluster size distribution on the token level is flatter. For
German, the system presented here outperforms Clark’s system for all ks tested on
the V-measure. For English, Clark’s system with 128 clusters shows a higher perfor-
mance. Overall, the systems exhibit a similar performance, with the system presented
here being more expressive (with regard to ambiguous words) and more flexible (with
respect to unseen types).

6 Application-Based Evaluation

POS-taggers are a standard component in any applied NLP system. In this section,
a number of NLP tasks are viewed as machine learning problems: the POS-tagger
component provides some of the features that are used to learn a function that assigns
a label to unseen examples, characterised by the same set of features as the examples
used for training. In this setting, it is straightforward to evaluate the contribution of
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POS-taggers—be they supervised or unsupervised—by providing the different POS-
tagging annotations to the learning algorithm or not.

Having advanced machine learning algorithms at hand that automatically perform
feature weighting and selection, the standard approach to NLP systems is to provide
all possible features and to leave the choice to the learning algorithm.

The task-performing systems for application-based evaluation were chosen to cover
two different machine learning paradigms: kernel methods in a word sense disambig-
uation (WSD) system and Conditional Random Fields (CRFs, see Lafferty et al. 2001)
for supervised POS, named entity recognition (NER) and chunking. Some results of
this section have been previously published in (Biemann et al. 2007).

All evaluation results are compared in a pair-wise fashion using the approximate
randomisation procedure of Noreen (1989) as significance test, for which p-values as
error probabilities are given, i.e. a significant difference with p < 0.01 means that the
test is more than 99% sure that the difference has not been caused by chance.

6.1 Unsupervised POS for Supervised POS

It might seem contradictory to evaluate an unsupervised POS tagger in terms of the
contribution it can make to supervised POS tagging. While there exist high precision
supervised POS taggers and elaborate feature sets have been worked out (see Toutanova
et al. 2003 for state-of-the art POS tagging on the Penn Treebank), it does not seem
necessary to create an unsupervised tagger in presence of training data. This, however,
changes if one looks at different domains or languages. In these settings, any method
that can help reduce the amount of training data is a contribution to development speed
and cost of natural language processing systems.

In this section, we examine the contribution of the unsupervised tagger as a feature
in supervised POS tagging. We show that the unsupervised tags capture structural
regularities beyond standard features such as capitalization and affixes.

As a machine learning algorithm we use first-order Conditional Random Fields,
leveraging the CRF++ implementation.7

In order to test the contribution of unsupervised POS features, we set up 4 different
systems and compare their performance:

• System A: Only lexical features, time-shifted by −2, −1, 0, 1, 2
• System B: Like System A. Additionally, features time-shifted by −1, 0, 1 for

capitalization, number, 2-letter prefix and 2-letter suffix
• System C: Like System A. Additionally, unsupervised labels time-shifted by −2,

−1, 0, 1, 2 as assigned by the tagger model induced on 40 million sentences from
the Wortschatz project as evaluated in Fig. 10

• System D: Combination of all features present in systems A, B and C.

Training sets of varying sizes are selected randomly from the 20,000 sentences of
the hand-tagged NEGRA corpus for German, the respective remainders are used for
evaluation. Results are reported in tagging accuracy (number of correctly assigned tags

7 Available at http://crfpp.sourceforge.net/ [version 0.53].
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Fig. 11 Learning curve for supervised POS-tagging with and without using unsupervised POS features
(accuracy)

%training 1 10 30 50 70 90

System A 0.6527 0.8362 0.8907 0.9103 0.9210 0.9305
System B 0.8227 0.9229 0.9464 0.9550 0.9595 0.9647
System C 0.8440 0.9323 0.9517 0.9590 0.9626 0.9660
System D 0.8739 0.9481 0.9630 0.9680 0.9706 0.9733

divided by total number of tokens), averaged over three different splits per training
size each. Figure 11 shows the learning curve.

Results indicate that supervised tagging can clearly benefit from unsupervised tags:
between 30% and 50% training with unsupervised tags, the performance on 90% train-
ing without the unsupervised extension is surpassed comparing systems D and B. At
90% training, error rate reduction of system D over B is 24.3%, indicating that the
unsupervised tagger grasps very well the linguistically motivated syntactic categories
and provides a valuable feature to either reduce the size of the required annotated
training corpus or to improve overall accuracy. Comparing the gains of systems B, C
and D over system A, we conclude that the unsupervised features provide more than
simple capitalization, number of affix features, since their combination D significantly
outperforms systems B and C.

Probably also due to a more advanced machine learning paradigm, system D with
its 0.9733 accuracy compares favourably to the performance of (Brants 2000), who
reports an accuracy of 0.967 at 90% training on the same data set—equal to the perfor-
mance of system C. To our knowledge, system D presented here constitutes state-of-the
art for German POS tagging.

When swapping the unsupervised POS features in system D with the 128 clusters
from Clark’s method—the k for which the best V-measure were obtained in Sect. 5.5—
we measured equal performance of 0.9733 on the same splits for 90% training. Com-
bining unsupervised features and Clark’s features, precision is further improved to
0.9743. Since the improvements of the single unsupervised features do not wipe out
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each other, it can be concluded that the two clustering methods capture somewhat
different aspects of syntactic similarity.

6.2 Unsupervised POS for Word Sense Disambiguation

The task in word sense disambiguation (WSD) is to assign the correct word sense
to ambiguous words in a text based on the context. The senses are provided by a
sense inventory (usually WordNet, Miller et al. 1990). Supervised WSD is trained on
examples where the correct sense is provided manually, and tested by comparing the
system’s outcome on held-out examples.

In the WSD literature, many algorithms have been proposed, characterised by dif-
ferent feature sets and classification algorithms. The state of the art supervised WSD
methodology, reporting the best results in most of the Senseval-3 lexical sample tasks
(Mihalcea et al. 2004) in different languages, is based on a combination of syntag-
matic and domain kernels (Gliozzo 2005) in a Support Vector Machine classification
framework.

A great advantage of this methodology is that all its pre-processing steps are also
unsupervised and knowledge-free and therefore comply to the SD paradigm. It is
shown here that the only language-dependent component in the system of (Gliozzo
et al. 2005)—a supervised POS-tagger—can safely be replaced by the unsupervised
POS-tagger.

Kernel WSD basically encompasses two different aspects of similarity: domain
aspects, mainly related to the topic (i.e. the global context) of the texts in which the
word occurs, and syntagmatic aspects, concerning the lexical-syntactic pattern in the
local contexts. Domain aspects are captured by the domain kernel, while syntagmatic
aspects are taken into account by the syntagmatic kernel.

The domain kernel handles domain aspects of similarity among two texts based on
the Domain Model as introduced in (Gliozzo 2005), which is a soft clustering of terms
reflecting semantic domains. On the other hand, syntagmatic aspects are probably the
most important evidence while recognising sense similarity. In general, the strategy
adapted to model syntagmatic relations in WSD is to provide bigrams and trigrams
of collocated words as features to describe local contexts (Yarowsky 1994). The main
drawback of this approach is that non-contiguous or shifted collocations cannot be
identified, decreasing the generalisation power of the learning algorithm.

The syntagmatic kernel allows estimating the number of common non-continu-
ous subsequences of lemmas (i.e. collocations) between two examples, in order to
capture syntagmatic similarity. Analogously, the POS kernel is defined to operate on
sequences of parts-of-speech. The syntagmatic kernel is given by a linear combination
of the collocation kernel and the POS kernel.

The modularity of the kernel approach makes it possible to easily compare systems
with different configurations by testing various kernel combinations. To examine the
influence of POS-tags, two comparative experiments were undertaken. The first exper-
iment uses only the POS kernel, i.e. the POS labels are the only feature visible to the
learning and classification algorithm. In a second experiment, the full system as in
(Gliozzo et al. 2005) is tested against replacing the original POS kernel with the
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Table 12 Comparative
evaluation on Senseval scores
for WSD. All differences are not
significant at p < 0.1

System Only POS Full

No POS N/A 0.717

Supervised POS 0.629 0.733

Unsupervised POS 0.633 0.735

unsupervised POS kernel and omitting the POS kernel completely. Table 12 summa-
rises the results in terms of Senseval scores for WSD, tested on the lexical sample
task for English. The unsupervised POS annotation was created using the BNC tagger
model, see Sect. 5.

Results show that POS information is generally contributing to a very small extent
to WSD accuracy in the full WSD system. Using the unsupervised POS-tagger results
in a slight performance increase, improving over the state of the art results in this task,
that have been previously achieved with the same system using supervised POS-tags.
In conclusion, supervised tagging can safely be exchanged in kernel WSD with the
unsupervised variant. Replacing the only pre-processing step that is dependent on
manual resources in the system of (Gliozzo et al. 2005), state of the art supervised
WSD is proven to not being dependent on any linguistic pre-processing at all.

Gains in using an unsupervised tagger for WSD can probably be attributed to the
finer distinctions the unsupervised tagger makes. E.g. a separate tag for professions
can help to generalize over this category. While it is arguable whether this distinction
should be part of a standard POS tagset, since this is rather a semantic than a syntactic
restriction, it is desirable from the point of view of this application.

6.3 Unsupervised POS for NER and Chunking

Named entity recognition (NER) is the task of finding and classifying named entities,
such as persons, organisations and locations. Chunking is concerned with shallow
syntactic annotation; here, words in a text are labelled as being syntactically corre-
lated, e.g. in noun phrases, verb phrases and prepositional phrases. For performing
NER and chunking, these applications are perceived as a tagging task: in each case,
labels from a training set are learned and applied to unseen examples. In the NER
task, these labels mark named entities and non-named entities, in the chunking task,
the respective phrases or chunks are labelled.

For both tasks, the MALLET tagger (McCallum 2002) is trained. It is based on
first-order Conditional Random Fields (CRFs), which define a conditional probability
distribution over label sequences given a particular observation sequence. The flexi-
bility of CRFs to include arbitrary, non-independent features makes it easy to supply
either standard POS-tags, unsupervised POS-tags or no POS-tags to the system without
changing its overall architecture.

The tagger operates on a different set of features for the two tasks. In the NER
system, the following features are accessible, time-shifted by −2, −1, 0, 1, 2:

• the word itself
• its POS-tag
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Table 13 Comparative evaluation of NER on the Dutch CoNLL-2002 dataset in terms of F1 for PERson,
ORGanisation, LOCation, MISCellaneous, ALL. No differences are significant with p < 0.1

Category PER ORG LOC MISC ALL

No POS 0.8084 0.7445 0.8151 0.7462 0.7781

Supervised POS 0.8154 0.7418 0.8156 0.7660 0.7857

Unsupervised POS 0.8083 0.7357 0.8326 0.7527 0.7817

• Orthographic predicates
• Character bigram and trigram predicates

In the case of chunking, features are only time-shifted by -1, 0, 1 and consist only of:

• Word itself
• POS-tag

This simple feature set for chunking was chosen to obtain a means of almost direct
comparison of the different POS schemes without blurring results by other features or
system components. Per system, three experiments were carried out, using standard
POS features, unsupervised POS features and no POS features.

To evaluate the performance on NER, the methodology as proposed by the pro-
viders of the CoNLL-2002 (Roth and van den Bosch 2002) dataset is adopted: for all
settings, the difference in performance in terms of the F18 measure is reported. Here,
the Dutch dataset is employed, the unsupervised POS-tagger is induced on the 70 mil-
lion token Dutch CLEF corpus, see (Peters 2006). Table 13 summarises the results
of this experiment for selected categories using the full training set for training and
evaluating on the test data.

The scores in Table 13 indicate that POS information is hardly contributing any-
thing to the system’s performance, be it supervised or unsupervised. This indicates
that the training set is large enough to compensate for the lack of generalisation when
using no POS-tags, in line with e.g. (Banko and Brill 2001) and (van den Bosch and
Buchholz 2001). The situation changes when taking a closer look on the learning
curve, produced by using train set fractions of differing size. Figure 12 shows the
learning curves for the categories LOCATION and the (micro average) F1 evaluated
over all the categories (ALL).

On the LOCATION category, unsupervised POS-tags provide a high generalisa-
tion power for a small number of training samples. This is due to the fact that the
induced tagset treats locations as a different tag; the tagger’s lexicon plays the role
of a gazetteer in this case, comprising 765 lexicon entries for the location tag. On the
combination of ALL categories, this effect is smaller, yet the incorporation of POS
information outperforms the system without POS for small percentages of training.

This disagrees with the findings of (Freitag 2004b), where features produced by
distributional clustering were used in a boosting algorithm. Freitag reports improved

8 F1 is the harmonic mean of precision P (number of correct divided by number of assigned labels) and
recall R (number of correct divided by number of all labels), F1 = 2P R

P+R cf. (Van Rijsbergen 1979).
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Fig. 12 Learning curves in NER task for category LOC and combined category

Fig. 13 Learning curve for the chunking task in terms of F1. Performance at 100% training is 0.882
(no POS), 0.904 (unsupervised POS) and 0.930 (supervised POS), respectively

performance on PERSON and ORGANISATION, but not on LOCATION, as com-
pared to not using a tagger at all.

Experiments on NER reveal that POS information is not making a difference, as
long as the training set is large enough. For small training sets, usage of unsupervised
POS features results in higher performance than supervised or no POS, which can be
attributed to its finer-grained tagset that directly indicates types of named entities.

Performance of the simple chunking system was tested using different portions
of the training set as provided in the English CoNLL-2000 data (Tjong kim Sang
and Buchholz 2000) for training, evaluation was carried out on the provided test set.
Performance is reported in Fig. 13.

As POS is the only feature that is used here apart from the word tokens themselves,
and chunking reflects syntactic structure, it is not surprising that providing this fea-
ture to the system results in increased performance: both kinds of POS significantly
outperform not using POS (p < 0.01). In contrast to the previous systems tested,
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using the supervised POS labels resulted in significantly better chunking (p < 0.01)
than using the unsupervised labels. This can be attributed to a smaller tagset for
supervised POS, providing more reliable statistics because of less sparseness. Fur-
ther, both supervised tagging and chunking aim at reproducing the same perception
of syntax, which does not necessarily fit the distributionally acquired classes of an
unsupervised system. Despite the low number of features, the chunking system using
supervised tags compares well with the best system in the CoNLL-2000 evaluation
(F1=0.9348).

7 Conclusion

An unsupervised POS-tagging system was described in detail and evaluated directly
and indirectly on various languages and tasks. In difference to previous approaches to
unsupervised POS-tagging, this method allows for a larger lexicon, where also POS
ambiguities are handled. Further, the discovery of the number of POS categories is
part of the method, rather than chosen beforehand.

Comparison with another unsupervised word clustering method shows that the
model presented here differs from the system presented in (Clark 2003). Both sys-
tems yield competitive scores on evaluations, while the system described here is more
expressive and faster to induce. The takeaway, however, is that combining several dif-
ferent unsupervised systems as features empowers supervised systems to reach higher
performance levels.

Table 14 Available taggermodels to date for 14 languages, with corpus size (million sentences), lexicon
size (thousand words) and number of tags

Language Source Sentences Lexicon size Tagset size

Catalan LCC 3M 50K 369

Czech LCC 4M 71K 538

Danish LCC 3M 43K 376

Dutch LCC 18M 140K 332

English BNC 6M 26K 344

English MEDLINE 34M 118K 479

Finnish LCC 11M 130K 444

French LCC 3M 42K 358

German LCC 40M 258K 395

Hungarian LCC 18M 180K 332

Icelandic LCC 14M 132K 326

Italian LCC 9M 85K 381

Norwegian LCC 16M 135K 393

Spanish (Mexico) LCC 4M 34K 414

Swedish LCC 3M 43K 370
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Evaluation on typologically different languages demonstrated the language-
independence and robustness of the method. In indirect evaluation it was shown that
for many tasks that use POS as a pre-processing step, there is no significant difference
in results between using a trained POS-tagger or the unsupervised tagger presented
here.

As far as performance in applications is concerned, the manual efforts necessary
to construct a POS-tagger should rather be invested in collecting a large basis of text
of the target domain or language, which can be also used for other purposes besides
training the unsupervised POS-tagger.

An implementation of the unsupervised POS-tagger system by Andreas Klaus is
available for download.9 This implementation uses the parameter names as given in
Table 8. On the same page, the tagger models listed in Table 14 can be obtained.
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