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Abstract

We present the UKP system which performed
best in the Semantic Textual Similarity (STS)
task at SemEval-2012 in two out of three met-
rics. It uses a simple log-linear regression
model, trained on the training data, to combine
multiple text similarity measures of varying
complexity. These range from simple char-
acter and word n-grams and common sub-
sequences to complex features such as Ex-
plicit Semantic Analysis vector comparisons
and aggregation of word similarity based on
lexical-semantic resources. Further, we em-
ploy a lexical substitution system and statisti-
cal machine translation to add additional lex-
emes, which alleviates lexical gaps. Our final
models, one per dataset, consist of a log-linear
combination of about 20 features, out of the
possible 300+ features implemented.

1 Introduction

The goal of the pilot Semantic Textual Similarity
(STS) task at SemEval-2012 is to measure the de-
gree of semantic equivalence between pairs of sen-
tences. STS is fundamental to a variety of tasks
and applications such as question answering (Lin
and Pantel, 2001), text reuse detection (Clough et
al., 2002) or automatic essay grading (Attali and
Burstein, 2006). STS is also closely related to tex-
tual entailment (TE) (Dagan et al., 2006) and para-
phrase recognition (Dolan et al., 2004). It differs
from both tasks, though, insofar as those operate on
binary similarity decisions while STS is defined as
a graded notion of similarity. STS further requires a
bidirectional similarity relationship to hold between

a pair of sentences rather than a unidirectional en-
tailment relation as for the TE task.

A multitude of measures for computing similar-
ity between texts have been proposed in the past
based on surface-level and/or semantic content fea-
tures (Mihalcea et al., 2006; Landauer et al., 1998;
Gabrilovich and Markovitch, 2007). The exist-
ing measures exhibit two major limitations, though:
Firstly, measures are typically used in separation.
Thereby, the assumption is made that a single
measure inherently captures all text characteristics
which are necessary for computing similarity. Sec-
ondly, existing measures typically exclude similar-
ity features beyond content per se, thereby implying
that similarity can be computed by comparing text
content exclusively, leaving out any other text char-
acteristics. While we can only briefly tackle the sec-
ond issue here, we explicitly address the first one by
combining several measures using a supervised ma-
chine learning approach. With this, we hope to take
advantage of the different facets and intuitions that
are captured in the single measures.

In the following section, we describe the feature
space in detail. Section 3 describes the machine
learning setup. After describing our submitted runs,
we discuss the results and conclude.

2 Text Similarity Measures

We now describe the various features we have tried,
also listing features that did not prove useful.

2.1 Simple String-based Measures

String Similarity Measures These measures op-
erate on string sequences. The longest common
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substring measure (Gusfield, 1997) compares the
length of the longest contiguous sequence of char-
acters. The longest common subsequence measure
(Allison and Dix, 1986) drops the contiguity re-
quirement and allows to detect similarity in case
of word insertions/deletions. Greedy String Tiling
(Wise, 1996) allows to deal with reordered text parts
as it determines a set of shared contiguous sub-
strings, whereby each substring is a match of maxi-
mal length. We further used the following measures,
which, however, did not make it into the final mod-
els, since they were subsumed by the other mea-
sures: Jaro (1989), Jaro-Winkler (Winkler, 1990),
Monge and Elkan (1997), and Levenshtein (1966).

Character/word n-grams We compare character
n-grams following the implementation by Barrón-
Cedeño et al. (2010), thereby generalizing the orig-
inal trigram variant to n = 2, 3, . . . , 15. We also
compare word n-grams using the Jaccard coefficient
as previously done by Lyon et al. (2001), and the
containment measure (Broder, 1997). As high n led
to instabilities of the classifier due to their high in-
tercorrelation, only n = 1, 2, 3, 4 was used.

2.2 Semantic Similarity Measures
Pairwise Word Similarity The measures for
computing word similarity on a semantic level op-
erate on a graph-based representation of words and
the semantic relations among them within a lexical-
semantic resource. For this system, we used the al-
gorithms by Jiang and Conrath (1997), Lin (1998a),
and Resnik (1995) on WordNet (Fellbaum, 1998).

In order to scale the resulting pairwise word sim-
ilarities to the text level, we applied the aggregation
strategy by Mihalcea et al. (2006): The sum of the
idf -weighted similarity scores of each word with the
best-matching counterpart in the other text is com-
puted in both directions, then averaged. In our ex-
periments, the measure by Resnik (1995) proved to
be superior to the other measures and was used in all
word similarity settings throughout this paper.

Explicit Semantic Analysis We also used the vec-
tor space model Explicit Semantic Analysis (ESA)
(Gabrilovich and Markovitch, 2007). Besides Word-
Net, we used two additional lexical-semantic re-
sources for the construction of the ESA vector space:
Wikipedia and Wiktionary1.

Textual Entailment We experimented with using
the BIUTEE textual entailment system (Stern and
Dagan, 2011) for generating entailment scores to
serve as features for the classifier. However, these
features were not selected by the classifier.

Distributional Thesaurus We used similarities
from a Distributional Thesaurus (similar to Lin
(1998b)) computed on 10M dependency-parsed sen-
tences of English newswire as a source for pairwise
word similarity, one additional feature per POS tag.
However, only the feature based on cardinal num-
bers (CD) was selected in the final models.

2.3 Text Expansion Mechanisms

Lexical Substitution System We used the lexical
substitution system based on supervised word sense
disambiguation (Biemann, 2012). This system au-
tomatically provides substitutions for a set of about
1,000 frequent English nouns with high precision.
For each covered noun, we added the substitutions
to the text and computed the pairwise word similar-
ity for the texts as described above. This feature al-
leviates the lexical gap for a subset of words.

Statistical Machine Translation We used the
Moses SMT system (Koehn et al., 2007) to trans-
late the original English texts via three bridge lan-
guages (Dutch, German, Spanish) back to English.
Thereby, the idea was that in the translation pro-
cess additional lexemes are introduced which allevi-
ate potential lexical gaps. The system was trained on
Europarl made available by Koehn (2005), using the
following configuration which was not optimized for
this task: WMT112 baseline without tuning, with
MGIZA alignment. The largest improvement was
reached for computing pairwise word similarity (as
described above) on the concatenation of the origi-
nal text and the three back-translations.

2.4 Measures Related to Structure and Style

In our system, we also used measures which go
beyond content and capture similarity along the
structure and style dimensions inherent to texts.
However, as we report later on, for this content-

1www.wiktionary.org
20-5-grams, grow-diag-final-and alignment, msd-bidirec-

tional-fe reodering, interpolation and kndiscount
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oriented task they were not selected by the classifier.
Nonetheless, we briefly list them for completeness.

Structural similarity between texts can be de-
tected by computing stopword n-grams (Sta-
matatos, 2011). Thereby, all content-bearing words
are removed while stopwords are preserved. Stop-
word n-grams of both texts are compared using the
containment measure (Broder, 1997). In our experi-
ments, we tested n-gram sizes for n = 2, 3, . . . , 10.

We also compute part-of-speech n-grams for
various POS tags which we then compare using the
containment measure and the Jaccard coefficient.

We also used two similarity measures between
pairs of words (Hatzivassiloglou et al., 1999): Word
pair order tells whether two words occur in the
same order in both texts (with any number of words
in between), word pair distance counts the number
of words which lie between those of a given pair.

To compare texts along the stylistic dimension,
we further use a function word frequencies mea-
sure (Dinu and Popescu, 2009) which operates on a
set of 70 function words identified by Mosteller and
Wallace (1964). Function word frequency vectors
are computed and compared by Pearson correlation.

We also include a number of measures which
capture statistical properties of texts, such as type-
token ratio (TTR) (Templin, 1957) and sequential
TTR (McCarthy and Jarvis, 2010).

3 System Description

We first run each of the similarity measures intro-
duced above separately. We then use the resulting
scores as features for a machine learning classifier.

Pre-processing Our system is based on DKPro3,
a collection of software components for natural
language processing built upon the Apache UIMA
framework. During the pre-processing phase, we to-
kenize the input texts and lemmatize using the Tree-
Tagger implementation (Schmid, 1994). For some
measures, we additionally apply a stopword filter.

Feature Generation We now compute similarity
scores for the input texts with all measures and for
all configurations introduced in Section 2. This re-
sulted in 300+ individual score vectors which served
as features for the following step.

3http://dkpro-core-asl.googlecode.com

Run Features

1 Greedy String Tiling
Longest common subsequence (2 normalizations)
Longest common substring
Character 2-, 3-, and 4-grams
Word 1- and 2-grams (Containment, w/o stopwords)
Word 1-, 3-, and 4-grams (Jaccard)
Word 2- and 4-grams (Jaccard, w/o stopwords)
Word Similarity (Resnik (1995) on WordNet

aggregated according to Mihalcea et al. (2006);
2 variants: complete texts + difference only)

Explicit Semantic Analysis (Wikipedia, Wiktionary)
Distributional Thesaurus (POS: Cardinal numbers)

2 All Features of Run 1
Lexical Substitution for Word Sim. (complete texts)
SMT for Word Sim. (complete texts as above)

3 All Features of Run 2
Random numbers from [4.5, 5] for surprise datasets

Table 1: Feature sets of our three system configurations

Feature Combination The feature combination
step uses the pre-computed similarity scores, and
combines their log-transformed values using a linear
regression classifier from the WEKA toolkit (Hall et
al., 2009). We trained the classifier on the training
datasets of the STS task. During the development
cycle, we evaluated using 10-fold cross-validation.

Post-processing For Runs 2 and 3, we applied a
post-processing filter which stripped all characters
off the texts which are not in the character range
[a-zA-Z0-9]. If the texts match, we set their similar-
ity score to 5.0 regardless of the classifier’s output.

4 Submitted Runs

Run 1 During the development cycle, we identi-
fied 19 features (see Table 1) which achieved the
best performance on the training data. For each
of the known datasets, we trained a separate clas-
sifier and applied it to the test data. For the surprise
datasets, we trained the classifier on a joint dataset
of all known training datasets.

Run 2 For the Run 2, we were interested in the
effects of two additional features: lexical substitu-
tion and statistical machine translation. We added
the corresponding measures to the feature set of Run
1 and followed the same evaluation procedure.

Run 3 For the third run, we used the same feature
set as for Run 2, but returned random numbers from
[4.5, 5] for the sentence pairs in the surprise datasets.
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Dim. Text Similarity Features PAR VID SE

Best Feature Set, Run 1 .711 .868 .735
Best Feature Set, Run 2 .724 .868 .742

Content Pairwise Word Similarity .564 .835 .527
Character n-grams .658 .771 .554
Explicit Semantic Analysis .427 .781 .619
Word n-grams .474 .782 .619
String Similarity .593 .677 .744
Distributional Thesaurus .494 .481 .365
Lexical Substitution .228 .554 .483
Statistical Machine Translation .287 .652 .516

Structure Part-of-speech n-grams .193 .265 .557
Stopword n-grams .211 .118 .379
Word Pair Order .104 .077 .295

Style Statistical Properties .168 .225 .325
Function Word Frequencies .179 .142 .189

Table 2: Best results for single measures, grouped by di-
mension, on the training datasets MSRpar, MSRvid, and
SMTeuroparl, using 10-fold cross-validation

5 Results on Training Data

Evaluation was carried out using the official scorer
which computes Pearson correlation of the human
rated similarity scores with the the system’s output.

In Table 2, we report the results achieved on
each of the training datasets using 10-fold cross-
validation. The best results were achieved for the
feature set of Run 2, with Pearson’s r = .724,
r = .868, and r = .742 for the datasets MSR-
par, MSRvid, and SMTeuroparl, respectively. While
individual classes of content similarity measures
achieved good results, a different class performed
best for each dataset. However, text similarity mea-
sures related to structure and style achieved only
poor results on the training data. This was to be ex-
pected due to the nature of the data, though.

6 Results on Test Data

Besides the Pearson correlation for the union of all
datasets (ALL), the organizers introduced two addi-
tional evaluation metrics after system submission:
ALLnrm computes Pearson correlation after the sys-
tem outputs for each dataset are fitted to the gold
standard using least squares, and Mean refers to the
weighted mean across all datasets, where the weight
depends on the number of pairs in each dataset.

In Table 3, we report the offical results achieved
on the test data. The best configuration of our system
was Run 2 which was ranked #1 for the evaluation

#1 #2 #3 Sys. r1 r2 r3 PAR VID SE WN SN

1 2 1 UKP2 .823 .857 .677 .683 .873 .528 .664 .493
2 3 5 TL .813 .856 .660 .698 .862 .361 .704 .468
3 1 2 TL .813 .863 .675 .734 .880 .477 .679 .398
4 4 4 UKP1 .811 .855 .670 .682 .870 .511 .664 .467
5 6 13 UNT .784 .844 .616 .535 .875 .420 .671 .403
...

...
...

...
...

...
...

...
...

...
...

...

87 85 70 B/L .311 .673 .435 .433 .299 .454 .586 .390

Table 3: Official results on the test data for the top 5
participating runs out of 89 which were achieved on the
known datasets MSRpar, MSRvid, and SMTeuroparl, as
well as on the surprise datasets OnWN and SMTnews. We
report the ranks (#1: ALL, #2: ALLnrm, #3: Mean) and
the corresponding Pearson correlation r according to the
three offical evaluation metrics (see Sec. 6). The provided
baseline is shown at the bottom of this table.

metrics ALL (r = .823)4 and Mean (r = .677), and
#2 for ALLnrm (r = .857). An exhaustive overview
of all participating systems can be found in the STS
task description (Agirre et al., 2012).

7 Conclusions and Future Work

In this paper, we presented the UKP system, which
performed best across the three official evaluation
metrics in the pilot Semantic Textual Similarity
(STS) task at SemEval-2012. While we did not
reach the highest scores on any of the single datasets,
our system was most robust across different data. In
future work, it would be interesting to inspect the
performance of a system that combines the output
of all participating systems in a single linear model.

We also propose that two major issues with the
datasets are tackled in future work: (a) It is unclear
how to judge similarity between pairs of texts which
contain contextual references such as on Monday
vs. after the Thanksgiving weekend. (b) For several
pairs, it is unclear what point of view to take, e.g. for
the pair An animal is eating / The animal is hopping.
Is the pair to be considered similar (an animal is do-
ing something) or rather not (eating vs. hopping)?

Acknowledgements This work has been sup-
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499% confidence interval: .807 ≤ r ≤ .837

438



References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor

Gonzalez-Agirre. 2012. SemEval-2012 Task 6: A Pi-
lot on Semantic Textual Similarity. In Proceedings of
the 6th International Workshop on Semantic Evalua-
tion, in conjunction with the 1st Joint Conference on
Lexical and Computational Semantics.

Lloyd Allison and Trevor I. Dix. 1986. A bit-string
longest-common-subsequence algorithm. Information
Processing Letters, 23:305–310.

Yigal Attali and Jill Burstein. 2006. Automated es-
say scoring with e-rater v.2.0. Journal of Technology,
Learning, and Assessment, 4(3).

Alberto Barrón-Cedeño, Paolo Rosso, Eneko Agirre, and
Gorka Labaka. 2010. Plagiarism Detection across
Distant Language Pairs. In Proceedings of the 23rd
International Conference on Computational Linguis-
tics, pages 37–45.

Chris Biemann. 2012. Creating a System for Lexi-
cal Substitutions from Scratch using Crowdsourcing.
Language Resources and Evaluation: Special Issue
on Collaboratively Constructed Language Resources,
46(2).

Andrei Z. Broder. 1997. On the resemblance and con-
tainment of documents. Proceedings of the Compres-
sion and Complexity of Sequences, pages 21–29.

Paul Clough, Robert Gaizauskas, Scott S.L. Piao, and
Yorick Wilks. 2002. METER: MEasuring TExt
Reuse. In Proceedings of 40th Annual Meeting of
the Association for Computational Linguistics, pages
152–159.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL Recognising Textual Entailment
Challenge. In Machine Learning Challenges, Lecture
Notes in Computer Science, pages 177–190. Springer.

Liviu P. Dinu and Marius Popescu. 2009. Ordinal mea-
sures in authorship identification. In Proceedings of
the 3rd PAN Workshop. Uncovering Plagiarism, Au-
thorship and Social Software Misuse, pages 62–66.

William B. Dolan, Chris Quirk, and Chris Brockett.
2004. Unsupervised Construction of Large Paraphrase
Corpora: Exploiting Massively Parallel News Sources.
In Proceedings of the 20th International Conference
on Computational Linguistics, pages 350–356.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Com-
puting Semantic Relatedness using Wikipedia-based
Explicit Semantic Analysis. In Proceedings of the
20th International Joint Conference on Artificial In-
telligence, pages 1606–1611.

Dan Gusfield. 1997. Algorithms on Strings, Trees and
Sequences: Computer Science and Computational Bi-
ology. Cambridge University Press.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1):10–18.

Vasileios Hatzivassiloglou, Judith L. Klavans, and
Eleazar Eskin. 1999. Detecting text similarity over
short passages: Exploring linguistic feature combina-
tions via machine learning. In Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, pages
203–212.

Matthew A. Jaro. 1989. Advances in record linkage
methodology as applied to the 1985 census of Tampa
Florida. Journal of the American Statistical Associa-
tion, 84(406):414–420.

Jay J. Jiang and David W. Conrath. 1997. Semantic sim-
ilarity based on corpus statistics and lexical taxonomy.
In Proceedings of the 10th International Conference
on Research in Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
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