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Abstract

After recasting the computation of a distribu-
tional thesaurus in a graph-based framework
for term similarity, we introduce a new con-
textualization method that generates, for each
term occurrence in a text, a ranked list of terms
that are semantically similar and compatible
with the given context. The framework is in-
stantiated by the definition of term and con-
text, which we derive from dependency parses
in this work. Evaluating our approach on a
standard data set for lexical substitution, we
show substantial improvements over a strong
non-contextualized baseline across all parts of
speech. In contrast to comparable approaches,
our framework defines an unsupervised gener-
ative method for similarity in context and does
not rely on the existence of lexical resources as
a source for candidate expansions.

1 Introduction

Following (de Saussure, 1916) we consider two dis-
tinct viewpoints: syntagmatic relations consider the
assignment of values to a linear sequence of terms,
and the associative (also: paradigmatic) viewpoint
assigns values according to the commonalities and
differences to other terms in the reader’s memory.
Based on these notions, we automatically expand
terms in the linear sequence with their paradigmati-
cally related terms.

Using the distributional hypothesis (Harris,
1951), and operationalizing similarity of terms
(Miller and Charles, 1991), it became possible to
compute term similarities for a large vocabulary
(Ruge, 1992). Lin (1998) computed a distributional
thesaurus (DT) by comparing context features de-
fined over grammatical dependencies with an ap-
propriate similarity measure for all reasonably fre-
quent words in a large collection of text, and evalu-
ated these automatically computed word similarities

against lexical resources. Entries in the DT consist
of a ranked list of the globally most similar terms for
a target term. While the similarities are dependent
on the instantiation of the context feature as well as
on the underlying text collection, they are global in
the sense that the DT aggregates over all occurrences
of target and its similar elements. In our work, we
will use a DT in a graph representation and move
from a global notion of similarity to a contextual-
ized version, which performs context-dependent text
expansion for all word nodes in the DT graph.

2 Related Work

The need to model semantics just in the same way
as local syntax is covered by the n-gram-model, i.e.
trained from a background corpus sparked a large
body of research on semantic modeling. This in-
cludes computational models for topicality (Deer-
wester et al., 1990; Hofmann, 1999; Blei et al.,
2003), and language models that incorporate topical
(as well as syntactic) information, see e.g. (Boyd-
Graber and Blei, 2008; Tan et al., 2012). In the
Computational Linguistics community, the vector
space model (Schütze, 1993; Turney and Pantel,
2010; Baroni and Lenci, 2010; Pucci et al., 2009;
de Cruys et al., 2013) is the prevalent metaphor for
representing word meaning.

While the computation of semantic similarities on
the basis of a background corpus produces a global
model, which e.g. contains semantically similar
words for different word senses, there are a num-
ber of works that aim at contextualizing the infor-
mation held in the global model for particular oc-
currences. With his predication algorithm, Kintsch
(2001) contextualizes LSA (Deerwester et al., 1990)
for N-VP constructions by spreading activation over
neighbourhood graphs in the latent space.

In particular, the question of operationalizing se-
mantic compositionality in vector spaces (Mitchell



and Lapata, 2008) received much attention. The lex-
ical substitution task (McCarthy and Navigli, 2009)
(LexSub) sparked several approaches for contextual-
ization. While LexSub participants and subsequent
works all relied on a list of possible substitutions
as given by one or several lexical resources, we de-
scribe a graph-based system that is knowledge-free
and unsupervised in the sense that it neither requires
an existing resource (we compute a DT graph for
that), nor needs training for contextualization.

3 Method

3.1 Holing System

For reasons of generality, we introduce the holing
operation (cf. (Biemann and Riedl, 2013)), to split
any sort of observations on the syntagmatic level
(e.g. dependency relations) into pairs of term and
context features. These pairs are then both used for
the computation of the global DT graph similarity
and for the contextualization. This holing system
is the only part of the system that is dependent on
a pre-processing step; subsequent steps operate on
a unified representation. The representation is given
by a list of pairs <t,c>where t is the term (at a cer-
tain offset) and c is the context feature. The position
of t in c is denoted by a hole symbol ’@’. As an ex-
ample, the dependency triple (nsub;gave2;I1)
could be transferred to <gave2,(nsub;@;I1)>
and <I1,(nsub;gave2;@)>.

3.2 Distributional Similarity

Here, we present the computation of the distribu-
tional similarity between terms using three graphs.
For the computation we use the Apache Hadoop
Framework, based on (Dean and Ghemawat, 2004).

We can describe this operation using a bipartite
”term”-”context feature” graph TC(T, C, E) with
T the set terms, C the set of context features and
e(t, c, f) ∈ E edges between t ∈ T , c ∈ C
with f = count(t, c) frequency of co-occurrence.
Additionally, we define count(t) and count(c) as
the counts of the term, respectively as the count
of the context feature. Based on the graph TC
we can produce a first-order graph FO(T, C, E),
with e(t, c, sig) ∈ E. First, we calculate a signif-
icance score sig for each pair (t, c) using Lexicog-
rapher’s Mutual Information (LMI): score(t, c) =

LMI(t, c, ) = count(t, c) log2(
count(t,c)

count(t)count(c))
(Evert, 2004). Then, we remove all edges with
score(t, c) < 0 and keep only the p most signif-
icant pairs per term t and remove the remaining
edges. Additionally, we remove features which co-
occur with more then 1000 words, as these features
do not contribute enough to similarity to justify the
increase of computation time (cf. (Rychlý and Kil-
garriff, 2007; Goyal et al., 2010)). The second-
order similarity graph between terms is defined as
SO(T, E) for t1, t2 ∈ T with the similarity score
s = |{c|e(t1, c) ∈ FO, e(t2, c) ∈ FO}|, which is
the number of salient features two terms share. SO
defines a distributional thesaurus.

In contrast to (Lin, 1998) we do not count how of-
ten a feature occurs with a term (we use significance
ranking instead), and do not use cosine or other sim-
ilarities (Lee, 1999) to calculate the similarity over
the feature counts of each term, but only count sig-
nificant common features per term. This constraint
makes this approach more scalable to larger data, as
we do not need to know the full list of features for
a term pair at any time. Seemingly simplistic, we
show in (Biemann and Riedl, 2013) that this mea-
sure outperforms other measures on large corpora in
a semantic relatedness evaluation.

3.3 Contextual Similarity
The contextualization is framed as a ranking prob-
lem: given a set of candidate expansions as pro-
vided by the SO graph, we aim at ranking them such
that the most similar term in context will be ranked
higher, whereas non-compatible candidates should
be ranked lower.

First, we run the holing system on the lexical
material containing our target word tw ∈ T ′ ⊆
T and select all pairs <tw,ci> ci ∈ C ′ ⊆ C
that are instantiated in the current context. We
then define a new graph CON(T ′, C ′, S) with con-
text features ci ∈ C ′. Using the second-order
similarity graph SO(T, E) we extract the top n
similar terms T ′={ti, . . . , tn}⊆T from the second-
order graph SO for tw and add them to the graph
CON . We add edges e(t, c, sig) between all tar-
get words and context features and label the edge
with the significance score from the first order graph
FO. Edges e(t, c, sig), not contained in FO, get
a significance score of zero. We can then calcu-



late a ranking score for each ti with the harmonic
mean, using a plus one smoothing: rank(ti) =∏

cj
(sig(ti,cj)+1)/count(term(cj))∑

cj
(sig(ti,cj)+1)/count(term(cj))

(term(cj) extracts

the term out of the context notation). Using that
ranking score we can re-order the entries t1, . . . , tn
according to their ranking score.

In Figure 1, we exemplify this, using the tar-
get word tw= ”cold” in the sentence ”I caught
a nasty cold.”. Our dependency parse-based

Figure 1: Contextualized ranking for target ”cold” in the
sentence ”I caught a nasty cold” for the 10 most similar
terms from the DT.

holing system produced the following pairs for
”cold”: <cold5 ,(amod;@;nasty4)>,
<cold5,(dobj;caught2;@)>. The top 10
candidates for ”cold” are T ′={heat, weather, tem-
perature, rain, flue, wind, chill, disease}. The scores
per pair are e.g. <heat, (dobj;caught;@)>
with an LMI score of 42.0, <weather
,(amod;@;nasty)> with a score of 139.4.
The pair <weather, (dobj;caught;@)>
was not contained in our first-order data. Ranking
the candidates by their overall scores as given in the
figure, the top three contextualized expansions are
”disease, flu, heat”, which are compatible with both
pairs. For the top 200 words, the ranking of fully
compatible candidates is: ”virus, disease, infection,
flu, problem, cough, heat, water”, which is clearly
preferring the disease-related sense of ”cold” over
the temperature-related sense.

In this way, each candidate t’ gets as many
scores as there are pairs containing c’ in the holing
system output. An overall score per t′ then given by
the harmonic mean of the add-one-smoothed single
scores – smoothing is necessary to rank candidates
t’ that are not compatible to all pairs. This scheme

can easily be extended to expand all words in a given
sentence or paragraph, yielding a two-dimensional
contextualized text, where every (content) word is
expanded by a list of globally similar words from the
distributional thesaurus that are ranked according to
their compatibility with the given context.

4 Evaluation

The evaluation of contextualizing the thesaurus (CT)
was performed using the LexSub dataset, introduced
in the Lexical Substitution task at Semeval 2007
(McCarthy and Navigli, 2009). Following the setup
provided by the task organizers, we tuned our ap-
proach on the 300 trial sentences, and evaluate it
on the official remaining 1710 test sentences. For
the evaluation we used the out of ten (oot) preci-
sion and oot mode precision. Both measures cal-
culate the number of detected substitutions within
ten guesses over the complete subset. Whereas en-
tries in the oot precision measures are considered
correct if they match the gold standard, without pe-
nalizing non-matching entries, the oot mode preci-
sion includes also a weighting as given in the gold
standard1. For comparison, we use the results of the
DT as a baseline to evaluate the contextualization.
The DT was computed based on newspaper corpora
(120 million sentences), taken from the Leipzig Cor-
pora Collection (Richter et al., 2006) and the Giga-
word corpus (Parker et al., 2011). Our holing system
uses collapsed Stanford parser dependencies (Marn-
effe et al., 2006) as context features. The contextual-
ization uses only context features that contain words
with part-of-speech prefixes V,N,J,R. Furthermore,
we use a threshold for the significance value of the
LMI values of 50.0, p=1000, and the most similar 30
terms from the DT entries.

5 Results

Since out contextualization algorithm is dependent
on the number of context features containing the tar-
get word, we report scores for targets with at least
two and at least three dependencies separately. In
the Lexical Substitution Task 2007 dataset (LexSub)
test data we detected 8 instances without entries in
the gold standard and 19 target words without any

1The oot setting was chosen because it matches the expan-
sions task better than e.g. precision@1



dependency, as they are collapsed into the depen-
dency relation. The remaining entries have at least
one, 49.2% have at least two and 26.0% have at least
three dependencies. Furthermore, we also evalu-
ated the results broken down into separate part-of-
speeches of the target. The results on the LexSub
test set are shown in Table 1.

Precision Mode Precision
min. # dep. 1 2 3 1 2 3
POS Alg.
noun CT 26.64 26.55 28.36 38.68 38.24 37.68
noun DT 25.35 25.09 28.07 34.96 34.31 36.23
verb CT 23.39 23.75 23.05 32.05 33.09 33.33
verb DT 22.46 22.13 21.32 29.17 28.78 28.25
adj. CT 32.65 34.75 36.08 45.09 48.24 46.43
adj. DT 32.13 33.25 35.02 43.56 43.53 42.86
adv. CT 20.47 29.46 36.23 30.14 40.63 100.00
adv. DT 28.91 26.75 29.88 41.63 34.38 66.67

ALL CT 26.46 26.43 26.61 37.21 37.40 37.38
ALL DT 27.06 24.83 25.24 36.96 33.06 33.11

Table 1: Results of the LexSub test dataset.

Inspecting the results for all POS (denoted as
ALL), we only observe a slight decline for the preci-
sion score with at least only one dependency, which
is caused by adverbs. For targets with more than
one dependency, we observe overall improvements
of 1.6 points in precision and more than 4 points in
mode precision.

Regarding the results of different part-of-speech
tags, we always improve over the DT ranking, ex-
cept for adverbs with only one dependency. Most
notably, the largest relative improvements are ob-
served on verbs, which is a notoriously difficult
word class in computational semantics. For adverbs,
at least two dependencies seem to be needed; there
are only 7 adverb occurrences with more than two
dependencies in the dataset. Regarding performance
on the original lexical substitution task (McCarthy
and Navigli, 2009), we did not come close to the per-
formance of the participating systems, which range
between 32–50 precision points, respectively 43–66
mode precision points (only taking systems with-
out duplicate words in the result set into account).
However, all participants used one or several lexical
resources for generating substitution candidates, as
well as a large number of features. Our system, on
the other hand, merely requires a holing system – in
this case based on a dependency parser – and a large

amount of unlabeled text, and a very small number
of contextual clues.

For an insight of the coverage for the entries deliv-
ered by the DT graph, we extended the oot precision
measure, to consider not only the first 10 entries, but
the first X={1,10,50,100,200} entries (see Figure 2).
Here we also show the coverage for different sized

Figure 2: Coverage on the LexSub test dataset for differ-
ent DT graphs, using out of X entries.

datasets (10 and 120 million sentences). Amongst
the 200 most similar words from the DT, a cover-
age of up to 55.89 is reached. DT quality improves
with corpus size, especially due to increased cover-
age. This shows that there is considerable headroom
for optimization for our contextualization method,
but also shows that our automatic candidate expan-
sions can provide a coverage that is competitive to
lexical resources.

6 Conclusion

We have provided a way of operationalizing seman-
tic similarity by splitting syntagmatic observations
into terms and context features, and representing
them a first-order and second-order graph. Then,
we introduced a conceptually simple and efficient
method to perform a contextualization of semantic
similarity. Overall, our approach constitutes an un-
supervised generative model for lexical expansion
in context. We have presented a generic method
on contextualizing distributional information, which
retrieves the lexical expansions from a target term
from the DT graph, and ranks them with respect to
their context compatibility. Evaluating our method
on the LexSub task, we were able to show improve-
ments, especially for expansion targets with many
informing contextual elements. For further work,
we will extend our holing system and combine sev-
eral holing systems, such as e.g. n-gram contexts.



Additionally, we would like to adapt more advanced
methods for the contextualization (Viterbi, 1967;
Lafferty et al., 2001) that yield an all-words simulta-
neous expansion over the whole sequence, and con-
stitutes a probabilistic model of lexical expansion.
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