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Abstract

We introduce a new highly scalable approach
for computing Distributional Thesauri (DTs).
By employing pruning techniques and a dis-
tributed framework, we make the computation
for very large corpora feasible on comparably
small computational resources. We demon-
strate this by releasing a DT for the whole vo-
cabulary of Google Books syntactic n-grams.
Evaluating against lexical resources using two
measures, we show that our approach pro-
duces higher quality DTs than previous ap-
proaches, and is thus preferable in terms of
speed and quality for large corpora.

1 Introduction

Using larger data to estimate models for machine
learning applications as well as for applications of
Natural Language Processing (NLP) has repeatedly
shown to be advantageous, see e.g. (Banko and
Brill, 2001; Brants et al., 2007). In this work, we
tackle the influence of corpus size for building a
distributional thesaurus (Lin, 1998). Especially, we
shed light on the interaction of similarity measures
and corpus size, as well as aspects of scalability.

We shortly introduce the JoBimText framework
for distributional semantics and show its scalability
for large corpora. For the computation of the data
we follow the MapReduce (Dean and Ghemawat,
2004) paradigm. The computation of similarities
between terms becomes challenging on large cor-
pora, as both the numbers of terms to be compared
and the number of context features increases. This
makes standard similarity calculations as proposed
in (Lin, 1998; Curran, 2002; Lund and Burgess,
1996; Weeds et al., 2004) computationally infeasi-

ble. These approaches first calculate an informa-
tion measure between each word and the accord-
ing context and then calculate the similarity between
all words, based on the information measure for all
shared contexts.

2 Related Work

A variety of approaches to compute DTs have been
proposed to tackle issues regarding size and run-
time. The reduction of the feature space seems to
be one possibility, but still requires the computation
of such reduction cf. (Blei et al., 2003; Golub and
Kahan, 1965). Other approaches use randomised in-
dexing for storing counts or hashing functions to ap-
proximate counts and measures (Gorman and Cur-
ran, 2006; Goyal et al., 2010; Sahlgren, 2006). An-
other possibility is the usage of distributed process-
ing like MapReduce. In (Pantel et al., 2009; Agirre
et al., 2009) a DT is computed using MapReduce
on 200 quad core nodes (for 5.2 billion sentences)
respectively 2000 cores (1.6 Terawords), an amount
of hardware only available to commercial search en-
gines. Whereas Agirre uses a χ2 test to measure the
information between terms and context, Pantel uses
the Pointwise Mutual Information (PMI). Then, both
approaches use the cosine similarity to calculate the
similarity between terms. Furthermore, Pantel de-
scribes an optimization for the calculation of the co-
sine similarity. Whereas Pantel and Lin (2002) de-
scribe a method for sense clustering, they also use
a method to calculate similarities between terms.
Here, they propose a pruning scheme similar to ours,
but do not explicitly evaluate its effect.

The evaluation of DTs has been performed in ex-
trinsic and intrinsic manner. Extrinsic evaluations
have been performed using e.g. DTs for automatic
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set expansion (Pantel et al., 2009) or phrase polar-
ity identification (Goyal and Daumé, 2011). In this
work we will concentrate on intrinsic evaluations:
Lin (1997; 1998) introduced two measures using
WordNet (Miller, 1995) and Roget’s Thesaurus. Us-
ing WordNet, he defines context features (synsets a
word occurs in Wordnet or subsets when using Ro-
get’s Thesaurus) and then builds a gold standard the-
saurus using a similarity measure. Then he evaluates
his generated Distributional Thesaurus (DT) with re-
spect to the gold standard thesauri. Weeds et al.
(2004) evaluate various similarity measures based
on 1000 frequent and 1000 infrequent words. Curran
(2004) created a gold standard thesaurus by manu-
ally extracting entries from several English thesauri
for 70 words. His automatically generated DTs are
evaluated against this gold standard thesaurus using
several measures. We will report on his measure and
additionally propose a measure based on WordNet
paths.

3 Building a Distributional Thesaurus

Here we present our scalable DT algorithm using
the MapReduce paradigm, which is divided into
two parts: The holing system and a computational
method to calculate distributional similarities. A
more detailed description, especially for the MapRe-
duce steps, can be found in (Biemann and Riedl,
2013).

3.1 Holing System

The holing operation splits an observation (e.g. a
dependency relation) into a pair of two parts: a
term and a context feature. This captures their first-
order relationship. These pairs are subsequently
used for the computation of the similarities between
terms, leading to a second-order relation. The rep-
resentation can be formalized by the pair <x,y>
where x is the term and y represents the context
feature. The position of x in y is denoted by the
hole symbol ’@’. As an example the dependency
relation (nsub;gave2;I1) could be transferred to
<gave2,(nsub;@;I1)> and <I1,(nsub;gave2;@)>.
This representation scheme is more generic then the
schemes introduced in (Lin, 1998; Curran, 2002),
as it allows to characterise pairs by several holes,
which could be used to learn analogies, cf. (Turney

and Littman, 2005).

3.2 Distributional Similarity
First, we count the frequency for each first-order
relation and remove all features that occur with
more than w terms, as these context features tend to
be too general to characterise the similarity between
other words (Rychlý and Kilgarriff, 2007; Goyal
et al., 2010, cmp.). From this. we calculate a sig-
nificance score for all first-order relations. For this
work, we implemented two different significance
measures: Pointwise Mutual Information (PMI):
PMI(term, feature) = log2(

f(term,feature)
f(term)f(feature))

(Church and Hanks, 1990) and Lexicographer’s Mu-
tual Information (LMI): LMI(term, feature) =
f(term, feature) log2(

f(term,feature)
f(term)f(feature)) (Evert,

2005).
We then prune all negatively correlated pairs

(s<0). The maximum number of context features
per term are defined with p, as we argue that it is
sufficient to keep only the p most salient (ordered
descending by their significance score) context fea-
tures per term. Features of low saliency generally
should not contribute much to the similarity of terms
and also could lead to spurious similarity scores. Af-
terwards, all terms are aggregated by their features,
which allows us to compute similarity scores be-
tween all terms that share at least one such feature.

Whereas the method introduced by (Pantel and
Lin, 2002) is very similar to the one proposed in
this paper (the similarity between terms is calculated
solely by the number of features two terms share),
they use PMI to rank features and do not use pruning
to scale to large corpora, as they use a rather small
corpus. Additionally, they do not evaluate the effect
of such pruning.

In contrast to the best measures proposed by Lin
(1998; Curran (2002; Pantel et al. (2009; Goyal et
al. (2010) we do not calculate any information mea-
sure using frequencies of features and terms (we use
significance ranking instead), as shown in Table 1.

Additionally, we avoid any similarity measure-
ment using the information measure, as also done in
these approaches, to calculate the similarity over the
feature counts of each term: we merely count how
many salient features two terms share. All these con-
straints makes this approach more scalable to larger
corpora, as we do not need to know the full list of
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Information Measures
Lin’s formula I(term, feature) = lin(term, feature) = log f(term,feature)∗f(relation(feature))P

(f(word,relation(feature))f(word)

Curran’s TTest I(term, feature) = ttest(term, feature) = p(term,feature)−p(feature)∗p(term)√
p(feature)∗p(term)

Similarity Measures

Lin’s formula sim(t1, t2) =
P

f∈features(t1)∩features(t2)(I(t1,f)+I(t2,f))P
f∈features(t1) I(t1,f)+

P
f∈features(w2) I(w2,f)

Curran’s Dice sim(t1, t2) =
P

f∈features(t1)∩features(t2) min(I(t1,f),I(t2,f))P
f∈features(t1)∩features(t2)(I(t1,f)+I(t2,f))

with I(t, f) > 0

Our Measure sim(t1, t2) =
∑

f∈features(t1)∩features(t2) 1 with s > 0

Table 1: Similarity measures used for computing the distributional similarity between terms.

features for a term pair at any time. While our com-
putations might seem simplistic, we demonstrate its
adequacy for large corpora in Section 5.

4 Evaluation

The evaluation is performed using a recent dump of
English Wikipedia, containing 36 million sentences
and a newspaper corpus, compiled from 120 million
sentences (about 2 Gigawords) from Leipzig Cor-
pora Collection (Richter et al., 2006) and the Giga-
word corpus (Parker et al., 2011). The DTs are based
on collapsed dependencies from the Stanford Parser
(Marneffe et al., 2006) in the holing operation. For
all DTs we use the pruning parameters s=0, p=1000
and w=1000. In a final evaluation, we use the syn-
tactic n-grams built from Google Books (Goldberg
and Orwant, 2013).

To show the impact of corpus size, we down-
sampled our corpora to 10 million, 1 million and
100,000 sentences. We compare our results against
DTs calculated using Lin’s (Lin, 1998) measure and
the best measure proposed by Curran (2002) (see Ta-
ble 1).

Our evaluation is performed using the same 1000
frequent and 1000 infrequent nouns as previously
employed by Weeds et al. (2004). We create a gold
standard, by extracting reasonable entries of these
2000 nouns using Roget’s 1911 thesaurus, Moby
Thesaurus, Merriam Webster’s Thesaurus, the Big
Huge Thesaurus and the OpenOffice Thesaurus and
employ the inverse ranking measure (Curran, 2002)
to evaluate the DTs.

Furthermore, we introduce a WordNet-based
method. To calculate the similarity between two
terms, we use the WordNet::Similarity path (Peder-
sen et al., 2004) measure. While its absolute scores
are hard to interpret due to inhomogenity in the gran-

ularity of WordNet, they are well-suited for relative
comparison. The score between two terms is in-
versely proportional to the shortest path between all
the synsets of both terms. The highest possible score
is one, if two terms share a synset. We compare the
average score of the top five (or ten) entries in the
DT for each of the 2000 selected words for our com-
parison.

5 Results

First, we inspect the results of Curran’s measure us-
ing the Wikipedia and newspaper corpus for the fre-
quent nouns, shown in Figure 1.

Both graphs show the inverse ranking score
against the size of the corpus. Our method scores
consistently higher when using LMI instead of PMI
for ranking the features per term. The PMI measure
declines when the corpus becomes larger. This can
be attributed to the fact that PMI favors term-context
pairs involving rare contexts (Bordag, 2008). Com-
puting similarities between terms should not be per-
formed on the basis of rare contexts, as these do not
generalize well because of their sparseness.

All other measures improve with larger corpora.
It is surprising that recent works use PMI to calcu-
late similarities between terms (Goyal et al., 2010;
Pantel et al., 2009), who, however evaluate their ap-
proach only with respect to their own implementa-
tion or extrinsically, and do not prune on saliency.
Apart from the PMI measure, Curran’s measure
leads to the weakest results. We could not confirm
that his measure outperforms Lin’s measure as stated
in (Curran, 2002)1. An explanation for this results

1Regarding Curran’s Dice formula, it is not clear whether to
use the intersection or the union of the features. We use an inter-
section, as it is unclear how to interpret the minimum function
otherwise, and the alternatives performed worse.
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Figure 1: Inverse ranking for 1000 frequent nouns (Wikipedia left, Newspaper right) for different sized corpora. The
4 lines represent the scores of following DTs: our method using LMI (dashed black line) and the PMI significance
measure (solid black line) and Curran’s (dash bray line) and Lin’s measure (solid tray line).

might be the use of a different parser, very few test
words and also a different gold standard thesaurus
in his evaluation. Comparing our method using LMI
to Lin’s method, we achieve lower scores with our
method using small corpora, but surpass Lin’s mea-
sure from 10 million sentences onwards.

Next, we show the results of the WordNet eval-
uation measure in Figure 2. Comparing the top 10
(upper) to the top 5 words (lower) used for the eval-
uation, we can observe higher scores for the top 5
words, which validates the ranking. These results
are highly correlated to the results achieved with the
inverse ranking measure. This is a positive result,
as the WordNet measure can be performed automat-
ically using a single public resource2. In Figure 3,
we show results for the 1000 infrequent nouns using
the inverse ranking (upper) and the WordNet mea-
sure (lower).

We can see that our method using PMI does not
decline for larger corpora, as the limit on first-order
features is not reached and frequent features are still
being used. Comparing our LMI DT is en par with
Lin’s measure for 10 million sentences, and makes
better use of large data when using the complete
dataset. Again, the inverse ranking and the Word-
Net Path measure are highly correlated.

2Building a gold standard thesaurus following Curran
(2002) needs access to all the used thesauri. Whereas for some,
programming interfaces exist, often with limited access and li-
cence restrictions, others have to be extracted manually.

Figure 2: Results, using the WordNet:Path measure for
frequent nouns using the newspaper corpus.
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Figure 3: WordNet::Path results for 1000 infrequent
nouns

The results shown here validate our pruning ap-
proach. Whereas Lin and Curran propose ap-
proaches to filter features that have low word feature
scores, they do not remove features that occur with
too many words, which is done in this work. Using
these pruning steps, a simplistic similarity measure
does not only lead to reduced computation times, but
also to better results, when using larger corpora.

5.1 Using a large3 corpus

We demonstrate the scalability of our method using
the very large Google Books dataset (Goldberg and
Orwant, 2013), consisting of dependencies extracted
from 17.6 billion sentences. The evaluation results,
using different measures, are given in Table 2.

Comparing the results for the Google Books DT
to the ones achieved using Wikipedia and the news-

Corpus Inv. P@1 Path@5 Path@10

frequent
nouns

Newspaper 2.0935 0.709 0.3277 0.2906
Wikipedia 2.1213 0.703 0.3365 0.2968
Google Books 2.3171 0.764 0.3712 0.3217

infrequent
nouns

Newspaper 1.4097 0.516 0.2577 0.2269
Wikipedia 1.3832 0.514 0.2565 0.2265
Google Books 1.8125 0.641 0.2989 0.2565

Table 2: Comparing results for different corpora.

paper, we can observe a boost in the performance,
both for the inverse ranking and the WordNet mea-
sures. Additionally, we show results for the P@1
measure, which indicates the percentage of entries,
whose first entry is in the gold standard thesaurus.
Remarkably, we get a P@1 against our gold stan-
dard thesaurus of 76% for frequent and 64% for in-
frequent nouns using the Google Books DT.

The most computation time was needed for the
dependency parsing and took two weeks on a small
cluster (64 cores on 8 nodes) for the 120 million
Newspaper sentences. The DT for the Google Books
was calculated in under 30 hours on a Hadoop clus-
ter (192 cores on 16 nodes) and could be calculated
within 10 hours for the Newspaper corpus. The com-
putation of a DT using this huge corpus would be in-
tractable with standard vector-based measurements.
Even computing Lin’s and Curran’s vector-based
similarity measure for the whole vocabulary of the
newspaper corpus was not possible with our Hadoop
cluster, as too much memory would have been re-
quired and thus we computed similarities only for
the 2000 test nouns on a server with 92GB of main
memory.

6 Conclusion

We have introduced a highly scalable approach
to DT computation and showed its adequacy for
very large corpora. Evaluating against thesauri and
WordNet, we demonstrated that our similarity mea-
sure yields better-quality DTs and scales to corpora
of billions of sentences, even on comparably small
compute clusters. We achieve this by a number of
pruning operations, and distributed processing. The
framework and the DTs for Google Books, News-
paper and Wikipedia are available online3 under the
ASL 2.0 licence.

3https://sf.net/projects/jobimtext/
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Suresh Venkatasubramanian. 2010. Sketch techniques
for scaling distributional similarity to the web. In Pro-
ceedings of the 2010 Workshop on GEometrical Mod-
els of Natural Language Semantics, GEMS ’10, pages
51–56, Uppsala, Sweden.

Dekang Lin. 1997. Using syntactic dependency as local
context to resolve word sense ambiguity. In Proceed-
ings of the 35th Annual Meeting of the Association for
Computational Linguistics and Eighth Conference of
the European Chapter of the Association for Compu-
tational Linguistics, ACL ’98, pages 64–71, Madrid,
Spain.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 17th interna-
tional conference on Computational linguistics - Vol-
ume 2, COLING ’98, pages 768–774, Montreal, Que-
bec, Canada.

889



Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, 28(2):203–
208.

Marie-Catherine De Marneffe, Bill Maccartney, and
Christopher D. Manning. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of the International Conference on Language
Resources and Evaluation, LREC 2006, Genova, Italy.

George A. Miller. 1995. Wordnet: A lexical database for
english. Communications of the ACM, 38:39–41.

Patrick Pantel and Dekang Lin. 2002. Discovering word
senses from text. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, KDD ’02, pages 613–619,
Edmonton, Alberta, Canada.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu, and Vishnu Vyas. 2009. Web-scale
distributional similarity and entity set expansion. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2
- Volume 2, EMNLP ’09, pages 938–947, Singapore.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword Fifth Edi-
tion. Linguistic Data Consortium, Philadelphia, PA,
USA.

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-
lizzi. 2004. Wordnet::similarity: measuring the
relatedness of concepts. In Demonstration Papers
at HLT-NAACL 2004, HLT-NAACL–Demonstrations
’04, pages 38–41, Boston, Massachusetts, USA.

Matthias Richter, Uwe Quasthoff, Erla Hallsteinsdóttir,
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