
GermEval 2014 Named Entity Recognition Shared Task:
Companion Paper∗

Darina Benikova∗ , Chris Biemann∗, Max Kisselew†, Sebastian Padó†
∗ Language Technology, TU Darmstadt, Germany

† Institute for Natural Language Processing, Universität Stuttgart, Germany
{darina.benikova@stud,biem@cs}.tu-darmstadt.de

{max.kisselew,pado}@ims.uni-stuttgart.de

Abstract

This paper describes the GermEval 2014
Named Entity Recognition (NER) Shared
Task workshop at KONVENS. It provides
background information on the motivation
of this task, the data-set, the evaluation
method, and an overview of the participating
systems, followed by a discussion of their
results. In contrast to previous NER tasks,
the GermEval 2014 edition uses an extended
tagset to account for derivatives of names
and tokens that contain name parts. Further,
nested named entities had to be predicted,
i.e. names that contain other names. The
eleven participating teams employed a wide
range of techniques in their systems. The
most successful systems used state-of-the-
art machine learning methods, combined
with some knowledge-based features in hy-
brid systems.

1 Introduction

Named Entity Recognition (NER or NERC) is the
identification and classification of proper names in
running text. NER is used in information extrac-
tion, question answering, automatic translation,
data mining, speech processing and biomedical
science (Jurafsky and Martin, 2000).

The starting point for this shared task is the ob-
servation that the level of performance of NER for
German is still considerably below the level for
English although German is a well-researched lan-
guage. At least part of the reason is that in English,
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capitalization is an important feature in detecting
Named Entities (NEs). In contrast, German capi-
talizes not only proper names, but all nouns, which
makes the capitalization feature much less infor-
mative. At the same time, adjectives derived from
NEs, which arguably count as NEs themselves,
such as englisch (“English”), are not capitalized in
German, in line with “normal” adjectives. Finally,
a challenge in German is compounding, which al-
lows to concatenate named entities and common
nouns into single-token compounds.

This paper reports on a shared task on Named
Enitity Recognition (NER) for German held in con-
junction with KONVENS 2014. Compared to the
only well-known earlier shared task for German
NER held more than ten years ago in the context
of CoNLL 2003 (Tjong Kim Sang and De Meul-
der, 2003), our shared task corpus introduces two
substantial extensions:

Fine-grained labels indicating NER subtypes.
German morphology is comparatively pro-
ductive (at least when compared to English).
There is a considerable amount of word
formation through both overt (non-zero)
derivation and compounding, in particular
for nouns. This gives rise to morphologically
complex words that are not identical to,
but stand in a direct relation to, Named
Entities. The Shared Task corpus treats these
as NE instances but marks them as special
subtypes by introducing two fine-grained
labels: -deriv marks derivations from
NEs such as the previously mentioned
englisch (“English”), and -part marks
compounds including a NE as a subsequence



deutschlandweit (“Germany-wide”).

Embedded markables. Almost all extant cor-
pora with Named Entity annotation assume
that NE annotation is “flat”, that is, each word
in the text can form part of at most one NE
chunk. Clearly, this is an oversimplification.
Consider the noun phase Technische Univer-
sität Darmstadt (“Technical University (of)
Darmstadt”). It denotes an organization (la-
bel ORG), but also holds another NE, Darm-
stadt, which is a location (label LOC). To ac-
count for such cases, the Shared Task corpus
is annotated with two levels of Named Enti-
ties. It captures at least one level of smaller
NEs being embedded in larger NEs.

In summary, we distinguish between 12 classes
of NEs: four main classes PERson, LOCation,
ORGanisation, and OTHer and their subclasses, an-
notated at two levels (“inner” and “outer” chunks).
The challenge of this setup is that while it techni-
cally still allows a simple classification approach
it introduces a recursive structure that calls for the
application of more general machine learning or
other automatically classifying methods that go
beyond plain sequence tagging.

2 Dataset

The data used for the GermEval 2014 NER Shared
Task builds on the dataset annotated by (Benikova
et al., 2014)1. In this dataset, sentences taken from
German Wikipedia articles and online news were
used as a collection of citations, then annotated
according to extended NoSta-D guidelines and
eventually distributed under the CC-BY license2.

As already described above, those guidelines
use four main categories with sub-structure and
nesting. The dataset is distributed contains overall
more than 31,000 sentences with over 590,000
tokens. Those were divided in the following way:
the training set consists of 24,000 sentences, the
development set of 2,200 sentences and the test
set of 5,100 sentences. The test set labels were not

1The dataset was updated for this task to fix some incon-
sistencies.

2This license allows to distribute, alter and mix the data in
any possible way and to use it for any purpose, including com-
mercial ones (see https://creativecommons.org/
licenses/by/3.0/de/).

Class All Nested3

Location 12,204 1,454
Location deriv 4,412 808
Location part 713 39

Person 10,517 488
Person deriv 95 20
Person part 275 29

Organization 7,182 281
Organization deriv 56 4
Organization part 1,077 9

Other 4,047 57
Other deriv 294 3
Other part 252 2

Total 41,124 3,194

Table 1: Distribution of classes in the entire dataset of
31,300 sentences. Counts differ slightly fron what was
reported in (Benikova et al., 2014) due to correction of
inconsistencies in June 2014.

available to the participants until after the deadline.
The distribution of the categories over the whole
dataset is shown in Table 1. Care was taken to
ensure the even dispersion of the categories in the
subsets.

The entire dataset contains over 41,000 NEs,
about 7.8% of them embedded in other NEs
(nested NEs), about 11.8% are derivations (de-
riv) and about 5.6% are parts of NEs concatenated
with other words (part).

The tab-separated format used in this dataset is
similar to the CoNLL-Format. As illustrated in
Table 2, the format used in the dataset additionally
contains token numbers per sentence in the first
column and a comment line indicating source and
data before each sentence. The second column
contains the tokens. The third column encodes
the outer NE spans, the fourth column the inner
ones. The BIO-scheme was used in order to en-
code the NE spans. In our challenge, further nested
columns were not considered.

3 Evaluation method

We defined four metrics for the shared task, but
only one was used for the final evaluation (“offi-
cial metric”). The others were used in order to
gain more insight into the distinctions between the

3These numbers include all occurrences on the second
level, regardless of the class of the first level NE



# http://de.wikipedia.org/wiki/Manfred Korfmann
1 Aufgrund O O
2 seiner O O
3 Initiative O O
4 fand O O
5 2001/2002 O O
6 in O O
7 Stuttgart B-LOC O
8 , O O
9 Braunschweig B-LOC O
10 und O O
11 Bonn B-LOC O
12 eine O O
13 große O O
14 und O O
15 publizistisch O O
16 vielbeachtete O O
17 Troia-Ausstellung B-LOCpart O
18 statt O O
19 , O O
20 ,, O O
21 Troia B-OTH B-LOC
22 - I-OTH O
23 Traum I-OTH O
24 und I-OTH O
25 Wirklichkeit I-OTH O
26 ” O O
27 . O O

Table 2: Data format illustration. The example sentence
contains five named entities: the locations “Stuttgart”,
“Braunschweig” and “Bonn”, the noun including a loca-
tion part “Troia”-Ausstellung, and the title of the event,
“Troia - Traum und Wirklichkeit”, which contains the
embedded location “Troia”. (Benikova et al., 2014)

different systems.
We follow the pattern of previous evaluation in

NER shared tasks using non-recursive data, which
used the standard precision, recall and F1 score
metrics, using each individual markable as a data-
point in the P/R calculation. Let P denote the set
of NE chunks predicted by a model and G the set
of gold standard chunks. Precision, Recall, and
F1 are usually computed on the basis of of true
positives and false positives and negatives, defined
by set theoretic operations, e.g. TP = P ∩ G
which in turn build on the definition of matches be-
tween predicted chunks and gold standard chunks.
Normally, strict match is assumed: p == g iff
label(p) = label(g) and span(p) = span(g).

We would like to retain precision and recall

as evaluation measures but need to redefine their
computation to account for the nested nature of
the data. Let P1 and G1 denote the set of all “first-
level”/“outer” NEs (and P2 and G2 denote the set
of all “second-level”/“inner” NEs in the predic-
tions and in the gold standard, respectively.

3.1 Metric 1: Strict, Combined Evaluation
(Official Metric)

The most straightforward evaluation treats first-
level and second-level NEs individually and in-
dependently. This can be modeled by combining
G and P across levels, but taking the level into
account in the match definition:

P = P1 ∪ P2

G = G1 ∪G2

p == g iff label(p) = label(g) and

span(p) = span(g) and

level(p) = level(g)

Thus, this metric distinguishes all 12 labels (4
NE types, each in base, deriv and part varieties)
and treats all markables on a par. It is used to
determine the overall ranking of the systems in
this challenge.

3.2 Metric 2: Loose, Combined Evaluation
Metric 2 again treats each NE individually but we
collapse the label subtypes (base, deriv, part) so
that a match on the base NE class is sufficient. For
example, PER matches PERderiv:

P = P1 ∪ P2

G = G1 ∪G2

p == g iff baseLabel(p) = baseLabel(g) and

span(p) = span(g) and

level(p) = level(g)

This metric is useful to quantify the quality of sys-
tems at a coarse-grained level. It also makes the
scores better comparable to previous NER evalua-
tions, which have mostly used only four labels.

3.3 Metric 3: Strict, Separate Evaluation
Finally, this evaluation computes two sets of
P/R/F1 values, one for G1/P1 and one for G2/P2.
This metric considers the first-level and second-
level markables separately which allows us to see



System ID Institution
Nessy LMU Munich
NERU LMU Munich
HATNER LMU Munich
DRIM LMU Munich
ExB ExB GmbH
BECREATIVE LMU Munich
PLsNER TU Darmstadt
mXS University of Tours
MoSTNER Marmara University
Earlytracks EarlyTracks S.A.
UKP TU Darmstadt

Table 3: Participants of the GermEval 2014 shared task.

how well systems do on first-level vs. second-level
markables individually. It uses strict matching of
labels, and thus uses exactly the traditional match
definition (cf. the beginning of Section 3).

4 Participating systems

11 teams listed in Table 3 participated in the Germ-
Eval 2014 challenge. In the first subsection their
general approaches will be discussed. The second
subsection will present the variety of features that
was used by the systems. Although many teams ex-
perimented with other methods and features, only
those used by the respective final system will be
mentioned here.

4.1 Methods used by the participants

Table 4 shows the different approaches the teams
used for their NER systems. The first two columns
describe handcrafted rules or gazetteer queries
as an individual processing step, when not used
merely as a feature in the overall system.

The NERU (Weber and Pötzl, 2014) system uses
handcrafted rules made individually for the classes
PERson, LOCation and ORGanization. Hence it is
the only participating system not using any ma-
chine learning (ML).

The table shows that four systems (Nessy (Her-
mann et al., 2014), HATNER (Bobkova et al.,
2014), EarlyTracks (Watrin et al., 2014), and BE-
CREATIVE (Dreer et al., 2014)) use a hybrid ap-
proach, combining a ML method with handcrafted
rules or gazetteer queries. All three systems use

4More efficient, but lower prediction quality than CRF

System HR GQ NB ME SVM CRF NN
NERU X
Nessy X X
HATNER X X
DRIM X
EarlyTracks X X X
ExB X4 X
BECREATIVE X X
PLsNER X
mXS X
MoSTNER X
UKP X

Table 4: Methods used by participating systems
HR = handcrafted rules, GQ = gazetteer queries, NB
= Naı̈ve Bayes, ME = Maximum Entropy, SVM =
Support Vector Machine, CRF = Conditional Random
Field and NN = Neural Networks/Word Embeddings

ML in the first step of their classification and some
sort of gazetteer look-up as a post-processing step.
Both Nessy and BECREATIVE use NB in the first
step of their system, whereas HATNER uses ME.
Nessy and HATNER do so only for the part and
deriv classification using handcrafted rules.

The goal of the ExB group (Hänig et al., 2014)
was to build a system that runs efficiently on mo-
bile devices. They experimented with different
ML mechanisms. The result of their experiment
was that the system that found more correct NEs
made use of CRFs, but recommend to use ME in
situations where resources are limited.

All other groups decided for one ML mech-
anism only. DRIM (Capsamun et al., 2014)
uses SVM, ExB Group, and MoSTNER (Schüller,
2014) use CRF, and PLsNER (Nam, 2014) and
UKP (Reimers et al., 2014) use NN.

4.2 Features used by the participating
systems

Table 5 displays the types of features used by the
participating systems. As NERU used gazetteers
for its handwritten rules, it made no use of any
other features. As shown, all systems except
PLsNER made use of gazetteers and POS-tags.

5 Discussion of results

This section provides and discusses the results of
the submitted systems.

5.1 Analysis by official metric (M1)

Table 6 shows the results of the systems in terms of
M1, the official metric. For the sake of clarity, we



System G POS tok NE-n cap NE lem 1st last tok-n #span POS-n char WS KW SeC SiC WE
NERU X
Nessy X X X X X X X X X X X
HATNER X X X X X X
DRIM X X X X X X X X
EarlyTracks X X X X X X X X X
ExB Group X X X X X X
BECREATIVE X X X X X X
PLsNER X X X X
mXS X X X X
MoSTNER X X X X X X X
UKP X X X X X

Table 5: Features used by systems. G = gazetteers, POS = part of speech, tok = token, NE-n = NE n-gram, cap =
capitalization, lem = lemma, 1st = first word in span, last = last word in span, tok-n = token n-gram, #span = number
of tokens in span, POS-n = POS n-gram, char = character-level, including affixes, n-grams, decompounding, WS =
word shape, KW=keywords, SeC = semantic class, SiC = similarity clusters, WE = word embeddings

only show the best run submitted for each system,
since our analysis has found that the within-system
variance across runs is quite small compared to
the between-system variance. The table is sorted
according to F1 measure.

It is clearly visible that the systems fall into
three tiers: one top tier (ExB, UKP) with F-Scores
between 75 and 77; a middle tier (PLsNER, MoST-
NER, Earlystracks, DRIM) with F-Scores between
69 and 72; and a third tier with lower F-Scores.

The overall winner is the ExB system. Its vic-
tory is mostly due to its excellent recall of almost
4 points higher than that of the next-best system,
while its precision is close to, albeit above, the
median. Overall, all systems have a considerably
higher precision that recall. We interpret this as
an indication of the important role of successful
generalization from the training data to novel, po-
tentially different test data. The systems that were
most successful in this generalization were the
overall most successful systems in the shared task.
Conversely, the system with the highest precision,
mXS, does not fare well overall precisely due to
its comparatively low recall.

Impact of Methods. Following up on the anal-
ysis from Section 4.1, we observe that purely
rule-based systems and systems relying heavily
on gazetteer queries could not reach competitive
performance. In line with general trends in the
field, it seems to be beneficial to rather plug in
rules, lists and language-specific extractors as fea-
tures in a machine learning framework than using
them verbatim. As for machine learning methods,
simple classification approaches that do not exploit

System Precision Recall F1

ExB 78.07 74.75 76.38
UKP 79.54 71.10 75.09
MoSTNER 79.20 65.31 71.59
Earlytracks 79.92 64.65 71.48
PLsNER 76.76 66.16 71.06
DRIM 76.71 63.25 69.33
mXS 80.62 50.89 62.39
Nessy 63.57 54.65 58.78
NERU 62.57 48.35 54.55
HATNER 65.62 43.21 52.11
BECREATIVE 40.14 34.71 37.23
Median 76.71 63.25 69.33

Table 6: Precision, Recall, and F1 for Metric 1 on the
test set (official ranking)

information about interdependencies among dat-
apoints are substantially outperformed by CRFs
and Neural Networks. See (Hänig et al., 2014) for
a direct comparison between ME and CRF using
the same features.

Impact of features. Building on the results of
Section 4.2, we observe that the three best sys-
tems have a comparatively small overlap in fea-
tures: their intersection contains gazetteer-based,
POS-level and character-level features. While
gazetteers and parts of speech are used by nearly
all the participating systems, the character-level
features warrant further exploration. The best sys-
tem, ExB, used several character query-based fea-
tures in order to find sequences that are character-
istic for NE classes, e.g. -stadt, -hausen or -ingen,
which are typical endings for German cities. The



System Precision Recall F1

ExB 78.85 75.50 77.14
UKP 80.41 71.88 75.91
PLsNER 78.09 67.31 72.30
MoSTNER 79.94 65.92 72.26
Earlytracks 80.55 65.16 72.04
DRIM 77.53 63.92 70.07
mXS 81.21 51.26 62.85
Nessy 64.34 55.31 59.48
NERU 63.61 49.16 55.46
HATNER 66.19 43.58 52.56
BECREATIVE 40.78 35.26 37.82

Table 7: Precision, Recall, and F1 for Metric 2 (sub-
types base, deriv and part collapsed

MoSTNER system used Morphisto (Schmid et al.,
2004; Zielinski and Simon, 2008) in order to di-
vide tokens into morphological units at character
level, which also may have categorized NE spe-
cific affixes. These morphological features can be
understood as contributing to the generalization
aspect outlined above.

The same is true for the use of semantic gen-
eralization features, which also can be found in
different realizations in each of the three best sys-
tem. Each used at least one high-level semantic
feature, such as Similarity Clusters or Word Em-
beddings, that were rarely used by other systems.
These features are computed in an unsupervised
fashion on large corpora and alleviate sparsity by
informing the system about words not found in
the training set via their similarity to known words
– be it as clusters of the vocabulary (MoSTNER,
ExB) or vector representations (UKP, PLsNER).
The use of simple semantic generalization to im-
prove recall for NER was demonstrated in previous
work (Biemann et al., 2007; Finkel and Manning,
2009; Faruqui and Padó, 2010).

5.2 Analysis by “loose metric” (M2)

Table 7 shows the evaluation results for the Met-
ric 2 which does not distinguish between label
subtypes.

Our main observation regarding Metric 2 is that
the results are very similar to Metric 1. The three
tiers can be identified exactly as for Metric 1, and
the ordering in Tiers 1 and 3 is in fact identical.
The only reordering takes place in Tier 2, where

the differences among systems are so small (<.5%
F1) that this is not surprising. In absolute terms,
systems typically do between .5% and 1% F-Score
better on M2 than on M1, an improvement equally
spread between higher precision and recall scores.
Our conclusion is that the subtypes do not consti-
tute a major challenge in the data.

Given that the M2 (four-class) results are most
comparable to previous work on four-class NER,
it is interesting to note that the best results of this
challenge are quite close to the best reported re-
sults on the other prominent German dataset, the
CoNLL 2003 newswire dataset. It is a question of
further work to what extent this is a glass ceiling
effect connected to, e.g., annotation reliability.

5.3 Per-Level Analysis (M3)

Finally, Table 8 shows the results according to
Metric 3, that is, separately for inner and outer
level NEs.

Across all systems, we see a noticeably worse
performance on second-level NEs: the best F1 on
first-level NEs is 79, the best one on second-level
NEs is 49. The more general observation is that
first- and second-level NEs behave substantially
differently. On first-level NEs, precision and re-
call are fairly balanced for most systems, with a
somewhat higher precision. This is reflected in
the maximum values reached: 82 points precision
and 77 points recall, respectively. On second-level
NEs, precision tends to be much higher than re-
call for many systems, often twice as high or even
more. The maximum values obtained are 70 points
precision and 41 points recall.

Another interesting finding is that the overall
best system, ExB, is the best system for first-level
NEs by a margin of over 2% F1 (79% vs. 77%).
In contrast, it is merely the median system on
second-level NEs (43%) and performs more than
five points F1 below the best system, UKP (49%).
Among all systems, UKP performs most consis-
tently across first- and second-level NEs, obtaining
second place on both levels. On the second level,
is closely pursued by the Earlytracks system which
shows a very high precision on second-level NEs
(70%) but is hampered by a low recall (37%), re-
sulting on an overall F-Score of 48%.

It is an open question for future analysis to
what extent the large differences between first-



First-level NEs Second-level NEs
System Precision Recall F1 Precision Recall F1

ExB 80.67 77.55 79.08 45.20 41.17 43.09
UKP 79.90 74.13 76.91 58.74 41.75 48.81
MoSTNER 79.71 67.74 73.24 69.14 36.12 47.45
Earlytracks 80.44 66.98 73.10 70.00 36.70 48.15
PLsNER 77.93 68.52 72.92 57.86 37.86 45.77
DRIM 77.27 65.93 71.15 64.78 31.07 41.99
mXS 81.90 53.63 64.81 51.67 18.06 26.76
Nessy 64.83 56.93 60.62 42.86 27.38 33.41
NERU 63.67 51.33 56.84 33.85 12.62 18.39
HATNER 72.88 44.14 54.98 24.81 32.04 27.97
BECREATIVE 40.14 37.60 38.83 0 0 0

Table 8: Precision, Recall and F1 for Metric 3, computed separately for first-level NEs and second-level NEs.
Systems ranked according to F1 on first-level NEs.

and second-level NEs reflect actual differences in
difficulty (i.e., embedded NEs are more difficult
to capture) and to what extent they are simply a re-
sult of the substantially smaller number of training
examples (compare Table 1).

5.4 Per-NE Type Analysis

Finally, Table 9 shows the F1 scores of the three
best systems on the four NE classes from the
data. All systems show the same patterns: best
performance on PERson, followed by LOCation,
ORGanization and finally on OTHer. The differ-
ences between PERson and LOCation are nonexis-
tant to small (2%) while they perform substantially
worse on ORG and again substantially worse on
OTH. Again, it is interesting to compare the two
top systems, ExB and UKP: UKP does slightly
better on PER and LOC, the two most frequent
classes (cf. Table 1), while ExB excels signifi-
cantly for the two minority classes ORG and OTH.
This complementary behavior indicates that there
is a potential for ensemble learning using these
systems.

In this comparison of NE types, the same ques-
tion arises as for the comparison of levels: to what
extent are the results a simple function of training
set sizes? It is definitely striking that the ranking of
the NEs types in terms of performance corresponds
exactly to the ranking in terms of training data (cf.
Table 1). At the same time, there is also reason to
believe that the NE categories ORGanization and,
in particular, OTH, are much less internally coher-

ExB UKP MoSTNER
PER 84.05 85.48 82.54
LOC 84.05 84.62 80.47
ORG 76.29 69.60 62.24
OTH 59.46 49.81 48.38

Table 9: Peformance by NE type for top systems
(F1 according to M1, outer chunks)

ent than PER and LOC and therefore more difficult
to model.

5.5 Comparing systems

An open question at this point is to what extent
the submitted systems are complementary: do they
make largely identical predictions or not? Given
that the methods that the systems use are quite
diverse, a large number of identical predictions
could indicate problems with the dataset. Con-
versely, highly complementary output presents an
opportunity for ensemble and other system com-
bination methods. Historically, the best CoNLL
2003 system was also an ensemble (Florian et al.,
2003).

We first computed the overlap between the pre-
dictions of each pair of systems at the word level,
i.e., for what portion of words the two systems pre-
dicted the same label. We excluded words where
both systems predicted O. Only the overall best
run of each system was considered. We included
the gold standard as a pseudo system (GOLD).

The results are shown in Table 10. The overlap



UKP Nessy BECREATIVE GOLD NERU ExB DRIM mXS MoSTNER PLsNER Earlytracks HATNER
UKP — 0.447 0.317 0.594 0.406 0.561 0.542 0.448 0.578 0.613 0.568 0.389
Nessy 0.447 — 0.316 0.419 0.406 0.457 0.503 0.441 0.465 0.466 0.487 0.446
BECREATIVE 0.317 0.316 — 0.292 0.286 0.316 0.333 0.312 0.343 0.344 0.343 0.299
GOLD 0.594 0.419 0.292 — 0.392 0.614 0.525 0.418 0.556 0.558 0.553 0.361
NERU 0.406 0.406 0.286 0.392 — 0.431 0.442 0.426 0.432 0.443 0.442 0.448
ExB 0.561 0.457 0.316 0.614 0.431 — 0.550 0.460 0.578 0.572 0.576 0.406
DRIM 0.542 0.503 0.333 0.525 0.442 0.550 — 0.506 0.574 0.572 0.605 0.481
mXS 0.448 0.441 0.312 0.418 0.426 0.460 0.506 — 0.491 0.499 0.503 0.486
MoSTNER 0.578 0.465 0.343 0.556 0.432 0.578 0.574 0.491 — 0.610 0.619 0.437
PLsNER 0.613 0.466 0.344 0.558 0.443 0.572 0.572 0.499 0.610 — 0.595 0.453
Earlytracks 0.568 0.487 0.343 0.553 0.442 0.576 0.605 0.503 0.619 0.595 — 0.447
HATNER 0.389 0.446 0.299 0.361 0.448 0.406 0.481 0.486 0.437 0.453 0.447 —

Table 10: Pairwise word-level overlap of system predictions
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Figure 1: Heat map for pairwise system overlap

is relatively low: only a handful of comparisons
yield an overlap of more than 0.5. We visualize
the system comparisons as a heatmap in Figure 1.
We see that BECREATIVE is very dissimilar to all
other systems (it did not make any predictions for
second-level NEs), while Earlytracks and MoST-
NER have a comparatively high overall similar-
ity to other systems (i.e., they produce a kind of
“consensus” annotation). These two systems have
also been clustered together, which may be re-
lated to the fact that they both use CRFs as their
learning framework. Similarly, PLsNER and UKP,
which are both based on neural networks, are also
grouped together. The overall best system, ExB,
has been grouped together with the gold standard.

Overall, these results look promising regard-
ing future work on system combination. Without
running a full-fledged analysis, we gauged the con-
crete potential by performing two simple analyses.
The first one follows up on the per-level results
from M3 (cf. Table 8), where we found that ExB
and UKP show the best results for the first and the
second level, respectively. Simply combining the
ExB first level with the UKP second level yields a

new best system with F1=77.03 (M1), a further im-
provement of ∆F=.65 over ExB’s previous result
(cf. Table 6. The improvement notably is gained in
precision (79.40 compared to 78.07) while recall
stays about constant (74.79 compared to 74.75).

Finally, we computed an upper bound for the
recall of an ensemble of the current systems. We
performed this analysis because the fact almost
all systems have a lower recall than precision (the
best system has a recall of almost 75%, but the
median is just at 63%) could be interpreted as an
indicator that the corpus annotation is inconsis-
tent or extremely difficult to recover automatically.
However, when computing how many NE chunks
in the gold standard are found by any of the sys-
tems, we determined that an oracle with access to
all systems can cover 89.5% of the NE chunks. We
take this result as an indication that there are no
serious problems with the corpus, and that innova-
tive strategies can hope to substantially improve
over the current recall level.

6 Concluding remarks

In this paper, we have described the GermEval
2014 Named Entity Recognition shared task which
extends the setup of traditional NER with morpho-
logically motivated subtypes and embedded NEs.

The 11 submissions we received span a wide
range of learning frameworks and types of features.
The top systems appear to combine expressive ma-
chine learning techniques appropriate for the task
(sequence classification and neural networks) with
features that support intelligent generalization, no-
tably encoding semantic knowledge.

The systems already achieve reasonable predic-
tions on the dataset, in particular for precision-
focused scenarios (median precision 76.7%, me-



dian recall 63.25%). At the same time, overlap in
predictions between systems is surprisingly small,
and system or feature combination may be able to
further improve on the current results.
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