
Top-Level Domain Crawling for Producing
Comprehensive Monolingual Corpora from the Web

Dirk Goldhahn1, Steffen Remus2, Uwe Quasthoff1, Chris Biemann2
1University of Leipzig, Leipzig, Germany

2Technische Universität Darmstadt, Darmstadt, Germany
{dgoldhahn, quasthoff}@informatik.uni-leipzig.de, {remus, biem}@cs.tu-darmstadt.de

Abstract

This paper describes crawling and corpus processing in a distributed framework. We present new tools that build upon existing tools
like Heritrix and Hadoop. Further, we propose a general workflow for harvesting, cleaning and processing web data from entire
top-level domains in order to produce high-quality monolingual corpora using the least amount of language-specific data. We
demonstrate the utility of the infrastructure by producing corpora for two under-resourced languages. Web corpus production for
targeted languages and/or domains thus becomes feasible for anyone.

Keywords: corpus creation, web crawling, map reduce, web-scale corpora

1. Introduction
With the extraordinary growth of information in the
World Wide Web, online documents increasingly
become the major source for creating high quality
corpora. Unfortunately, the development of technologies
that make the information conveniently available to the
user causes the process of crawling language data to
become even harder. That is why researchers more and
more rely on data provided by companies specialized in
crawling the web, with all limitations that go along with
this (cf. [7]).
We present an approach for creating corpora from the
web with only little effort and by using only freely
available, open-source software. All components used
for data processing can be executed in a highly
distributed environment, resulting in quick processing
times. Researchers, data analysts and others are hence
able to create large-scale high quality corpora targeted
towards their own needs. In a case study, we will create
two corpora for under-resourced languages, Kiswahili
and Faroese. We discuss potential pitfalls, and ways to
avoid them.
While there has been a number of initiatives in the past
to obtain very large monolingual web corpora, for
example WaCky 1 [1], COW 2 [11], Leipzig Corpora
Collection [10], or even the very comprehensive common
crawl3 provided by Amazon, our contribution lies a) in
the comprehensiveness for low-resource languages
reached with minimal effort by crawling entire top-level
domains, b) in the generic distributed processing pipeline
for arbitrary automatic annotations and c) in the
availability of the entire processing chain as open-source
software component – partially provided by us.
The article is structured as follows: Section 2 describes
the proposed approach to crawling and pre-filtering of
entire top-level domains. Section 3 presents a generic
distributed processing pipeline, which allows us to

1http://wacky.sslmit.unibo.it/
2
http://hpsg.fu-berlin.de/cow/

3
http://commoncrawl.org/

process very large amounts of data, and Section 4 gives
detailed information regarding the availability of the
presented tools and the gathered data during the case
study described in Section 5. Section 6 summarizes and
concludes this work.

2. Crawling
For crawling, we rely on the Heritrix project4 (Version
3.1.1). The Heritrix archival crawler project is an
open-source, web-scale crawler made available by the
Internet Archive Community. It is used e.g. for
periodically creating snapshots of large amounts of
webpages in the web, which corresponds to the scheme
of creating corpora from the web. Heritrix is a versatile
tool, providing many options to configure the desired
crawling behavior. Compared with other crawling
software like wget, HTTrack, or Nutch, it offers several
general advantages: Single crawl jobs can cover
hundreds of millions of pages; it is stable, fast and
follows more links than other comparable tools due to
better handling of Java-script links while it is still easy to
use.
Heritrix is initialized with a list of specified webpages –
called seed – from which it extracts web links to other
webpages that are subsequently downloaded and
processed accordingly. Here, we will use it to harvest
entire Top Level Domains (TLD), which means we
download every suited web document we encounter in a
particular TLD. The initially provided list of up to 2,000
seed domains for each TLD contains randomly chosen
URLs coming from previous crawls. The composition of
the seed has only minor influence on the results of the
crawling process: Typically, hubs of a TLD – i.e.
websites that contain links to a many different
websites – are reached within the first steps of the
process. We configured Heritrix to extract links from
URLs and to follow them while not leaving the current
TLD and not downloading the same URL twice or more.

4
http://crawler.archive.org

DocumentJob

DeduplicationJob

DeduplicationByHostJob

UTF8Job

SentenceJob

LanguageJob

SentenceExtractJob

SentenceExtractCompactJob

1. Convert

2. Filter

3. Extract

NGramCountJob

POSNGramCountJob

NGramWithPosCountJob

CooccurrenceCountJob

4. Annotate

5. Count

UIMAJob

ARC WARC Leipzig

N-grams

POS n-grams

N-grams with
POS tags

Cooccurrences

Figure 1: The individual jobs in the standard WebCorpus pipeline. Figure taken from [3].

Running on a machine with 8 CPU-cores and 20GB of
RAM using an unthrottled 1GBit/s Internet connection, it
reaches crawling speeds of up to 200 URLs/s for each
crawling job while running up to 3 jobs in parallel. We
chose to reduce load for single servers by limiting
queries to the same domain to one per seven seconds.
Hence, high crawling speed is only achieved as long as
many servers are queued. To increase crawling
performance, some basic configurations were considered:
In order to avoid link farms and spider traps, we follow
links only up to a maximum depth. To reduce download
bandwidth we exclude certain kinds of files like images,
media files, compressed archives or executable files.
Additionally, URLs containing certain keywords
(download, files, image, pics, upload, redir or search)
are excluded from consideration. Further, we restrict the
maximum file size to 1 MB to reduce the amount of lists
or computer-generated content.
Heritrix creates output files in the Web Archive file
format (WARC)5. The WARC file format specifies how
to combine multiple digital resources with
meta-information into a single file for long term
archiving or distribution. Further processing steps
proposed in this work operate on this representation.

3. Processing and Analyzing Web-Data
Post-processing of harvested web data can be efficiently
performed using the WebCorpus6 project. WebCorpus
makes use of the highly efficient Hadoop7 framework,
which offers the execution of algorithms following the
MapReduce programming paradigm [6] in a distributed
environment. Due to the choice of Hadoop as the basis
framework it is possible to process very large data in
parallel by a number of computers or just by a single
machine. The core idea in MapReduce is to split an
algorithm into two phases: map and reduce. In the map
phase, so-called key-value pairs of the input data are
produced which are subsequently grouped and combined
in the reduce phase by their key to produce the final
result. In terms of Hadoop, an algorithm following the

5
http://www.digitalpreservation.gov/formats/fdd/
fdd000236.shtml
6http://sf.net/projects/webcorpus
7http://hadoop.apache.org

MapReduce programming principle is called a
HadoopJob. The WebCorpus project provides individual
HadoopJobs, which are designed to process the data in a
pipeline fashion, i.e. one HadoopJob after another.
The general steps of the processing pipeline are
described by:

1. Convert: converting input data – currently
supported input file formats are WARC, ARC8
and Leipzig Corpora Collection [10] – into a
unified document representation, thereby
optionally removing html boilerplate text (cf.
e.g. [8]),

2. Filter: removing duplicate, broken or pointless
documents,

3. Extract: segmenting, filtering and merging
texts in the desired level of granularity – e.g.
unique sentences, paragraphs or documents in a
particular language,

4. Annotate: process texts with UIMA 9
components, e.g. tokenizing, tagging, etc., and
parsing

5. Count: exploit the resulting annotations by
counting n-grams, co-occurrences, subtrees of
dependency parses, etc. in the annotated texts.

Figure 1 shows a more detailed overview of the different
HadoopJobs in the respective phases. For a description
of the individual jobs the reader is referred to [3].
Some of the jobs, in particular the LanguageJob and
partially also the SentenceJob and the UIMAJob, are
language dependent. For example, the LanguageJob uses
the language identification package (JLanI) from the
ASV-Toolbox10 [4], which relies on a precomputed list
of high-frequency words for a particular language. These
word lists are available for more than 500 languages
using mainly Wikipedias, the Universal Declaration of
Human Rights and religious texts. More languages could

8 Internet Archive file format
http://www.digitalpreservation.gov/formats/fdd/
fdd000235.shtml
9 http://uima.apache.org
10
http://wortschatz.uni-leipzig.de/~cbiemann/sof

tware/toolbox/

be included on the basis of Bible texts (cf. [5]).
Likewise, the SentenceJob11 uses handcrafted sentence
breaking rules to segment sentences. While it is equipped
with a generic rule set, more specific rules for a
particular language will certainly improve the results, but
were not considered for the case study in this work for
the sake of generality.
Processing 10 GB of web data took around one hour on
our compute cluster consisting of eight nodes with eight
cores each. The runtime complexity solely depends on
the amount of input data and the number of provided
machines [1].
The cleaned, language-filtered and preprocessed
documents, as well as the various outputs of the count
phases like statistically significant co-occurrences or
n-grams can then be exploited by a variety of
applications, e.g. distributional thesauri or language
models (cf. e.g. [2]). In this work, we will exemplify the
data with visual analysis of significant co-occurrences
using CoocViewer 12 [9]. With CoocViewer,
co-occurrences of words from multiple arbitrary text
corpora can be explored visually in a user-friendly way,
providing also access to the source text via full-text
indexing. The application itself is divided into two major
components:

1. the server-sided data management part, where
data is stored in a relational database for fast
access through indexes (cf. [10]), and

2. the web based front end, which runs on top of
an http server 13 . The browser based client
application is thus independent of the
underlying operating system and available for
many users accordingly.

Screenshots of the application follow in Section 4 where
we show the feasibility of processing web-data based on
two sample web crawls. As a key characteristic,
CoocViewer also comes with the possibility to visualize
significant concordances. This feature is particularly
useful for analyzing high frequency words.

4. Availability
Corpora as described in the following case study are
made available in various ways. On the one hand the full
size corpora are accessible online using the web interface
of the Leipzig Corpora Collection14. On the other hand
the textual data can be downloaded15. For download
corpora of standard sizes of up to 1 million sentences are
provided. They can be viewed locally using e.g. the Java
Corpus Browser [10]. All textual data underlies creative
commons attribution license (cc by)16 allowing users to

11 The SentenceJob internally uses the ASV-Toolbox.
12 http://coocviewer.sf.net
13 Any webserver that supports PHP.
14 http://corpora.informatik.uni-leipzig.de
15
http://corpora.informatik.uni-leipzig.de/downl

oad.html
16
https://creativecommons.org/licenses/by/3.0/

use and modify the data freely.
The collected sentences are shuffled such that the
original structure of the documents cannot be recovered
easily, because of legal issues. This inhibits the
reconstruction of the original material. With respect to
German copyright legislation this practice is considered
legally secured, since there is no copyright on single
sentences.
The various pre-processing tools involved in the creation
of corpora as described are free to use. Among these are
tools for HTML-Stripping, sentence segmentation,
sentence cleaning, and language identification 17 . All
tools can be utilized for non-commercial users following
creative commons attribution-noncommercial license (cc
by-nc)18. The WebCorpus and the CoocViewer toolkits
are available as open-source components in Java under
the Apache v2 License19.

5. Case Study
For our case study, two top-level-domains were crawled,
from which we assume that they contain documents of
languages that are known to be under-resourced. We
tested the .fo domain (Faeroe Islands) and the .ke domain
(Kenya), where the languages of interest are Faroese and
Kiswahili respectively. Kiswahili is also spoken in other
countries such as Tanzania, which could be collected by
crawling their respective TLDs. Both domains were
crawled using the Heritrix-based crawler, resulting in 1.2
million websites for .fo and 3.1 million websites for .ke.
Crawling took about three days for Faroe Islands and
four days for Kenya resulting in an average speed of 9
resp. 5 URLs per second. Due to self-imposed politeness
restrictions, a maximum download speed of about 200
URLs/s was only reached at the beginning of the
crawling process. Higher average rates could easily be
achieved by lifting query limits for the cost of being less
polite to web server operators.
When conducting language separation, fundamentally
different compositions of the domains in question
become obvious. More than 60% of the documents of
the .fo TLD are written in Faroese, as can be seen in
Table 1. English is the second largest language having a
15% share. Next in the ranking are further North
Germanic languages, namely Icelandic and Danish.

17
http://asvdoku.informatik.uni-leipzig.de/corpo

ra/index.php?id=corpus-pre-processing-tools
18
http://creativecommons.org/licenses/by-nc/3.0/

19
http://www.apache.org/licenses/LICENSE-2.0

Table1: Results of language separation using
websites of the Faroese domain.

 Language Percentage
 Faroese 60.63
 English 14.69
 Icelandic 11.24
 Danish 10.29
 French 0.64

When analyzing the Kenyan TLD, an extremely high
percentage value for English documents becomes evident
(Table 2). Although it is the second largest language
among .ke documents, only 0.84% of all texts contain
Kiswahili. Together, these two form the national
languages of Kenya.

The WebCorpus framework was applied as described in
Section 3. Only Faroese respectively Kiswahili texts
were considered, texts from other languages were filtered
in the Filter phase of the WebCorpus pipeline (cf. Sec. 3).
Further, we defined our unit of granularity to be the
sentence level since our example application is the
analysis of co-occurrences of words on a sentence level.
After applying the entire WebCorpus pipeline as
described in Section 3, we have 7,873 unique sentences
and 31,274 types for Kiswahili, and 888,255 unique
sentences and 1,030,611 types for Faroese. Yet, the lack
of a profound knowledge of these languages makes it
impossible for us to judge the quality of the extracted
sentences. In particular, the very high number of
sentences and tokens for Faroese suggests unclear
boundaries in the language separation step. Indeed,
during manual inspection of the dataset, we observed
some false-positive Danish sentences.
Figure 2 shows the co-occurrences and significant
concordances of selected words from either corpus. As
should become evident, the setup we described is suited
for studies in corpus linguistics and other research.

6. Conclusion
Free and open-source software components have been
made available by us and others, that allow researchers
and others to produce high quality web corpora targeted
to their own needs without relying on the good will of
commercial companies to provide it. We have exercised
one possible workflow for producing such corpora for
two under-resourced languages and conclude, that
although we are lacking the needed knowledge for these
languages, we are able to produce reasonable results. We
assume that further processing of these corpora by
experts – mainly cleaning of artefacts from different
languages, false segmentation, etc. – would result in high
quality corpora from the web. Everybody is thus able to
produce web corpora using just the few steps outlined
above, and by relying solely on freely available software.
By applying some simple configuration settings for
Heritrix, the open-source crawler of the Internet Archive,
it is easy to crawl specified regions of the World Wide
Web in order to collect usable text. By making use of the
Hadoop framework, the user herself chooses the level of
scalability. Even a single computer is able to run the
provided workflow, but when providing more machines,
users are able to create corpora of very large sizes in
reasonable time.
In two case studies, we have demonstrated how to collect
corpora for rather under-resourced languages. Still, the
proposed approach can be applied to larger languages if
enough computational resources are available. These
corpora can form the basis to compute language models,
and other NLP components trained from unannotated
text.

7. References
[1] Marco Baroni, Silvia Bernardini, Adriano Ferraresi and

Eros Zanchetta. 2009. The WaCky Wide Web: A Collection
of Very Large Linguistically Processed Web-Crawled
Corpora. Language Resources and Evaluation 43 (3):
209-226.

[2] Thorsten Brants, Alex Franz (2006): Web 1T 5-gram

Figure 2: Significant co-occurrences and concordances with the word ‘ya’ (engl. pendant is roughly ‘of’, frequency
10,531) from the Kiswahili corpus (upper) and with the word ‘vatn’ (engl. ‘water’, frequency 1,504) from the

Faroese corpus (lower). Thicker lines represent more significant relations.

Table2: Results of language separation using websites
of the Kenyan domain.

 Language Percentage
 English 98.20
 Kiswahili 0.84
 Russian 0.21
 Latin 0.12
 Spanish 0.08

Version 1. LDC, Philadelphia, PA, USA
[3] Chris Biemann, Felix Bildhauer, Stefan Evert, Dirk

Goldhahn, Uwe Quasthoff, Roland Schäfer, Johannes Simon,
Leonard Swiezinski, Torsten Zesch. 2013. Scalable
Construction of High-Quality Web Corpora. Journal for
Language Technology and Computational Linguistics
(JLCL), 28(2), pp. 23–59.

[4] Chris Biemann, Uwe Quasthoff, Gerhard Heyer, and
Florian Holz. 2008. ASV Toolbox – A Modular Collection
of Language Exploration Tools. In Proc. of LREC 2008,
Marrakech, Marocco

[5] Michael Cysouw. 2009. Using the World Atlas of Language
Structures. In STUF - Language Typology and Universals
Sprachtypologie und Universalienforschung. 61(3):
181–185. Akademie Verlag, Berlin

[6] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce:
Simplified Data Processing on Large Clusters. In Proc. of
the 6th Symposium on OSDI. San Francicso, CA, USA

[7] Adam Kilgarriff. 2007. Googleology is Bad Science.
Computational Linguistics. 33(1): 147–151.

[8] Christian Kohlschütter, Peter Fankhauser and Wolfgang
Nejdl. 2010. Boilerplate Detection using Shallow Text
Features. In Proc. of WSDM, New York City, NY, USA

[9] Janneke Rauscher, Leonhard Swiezinski, Martin Riedl and
Chris Biemann. 2013. Exploring Cities in Crime: Significant
Concordance and Co-occurrence in Quantitative Literary
Analysis. In Proc. of the Computational Linguistics for
Literature Workshop at NAACL-HLT 2013, Atlanta, GA,
USA

[10] Matthias Richter, Uwe Quasthoff, Erla Hallsteinsdóttir,
and Chris Biemann. 2006. Exploiting the Leipzig corpora
collection. In Proc. of the IS-LTC. Ljubljana, Slovenia.

[11] Roland Schäfer and Felix Bildhauer. 2012. Building large
corpora from the web using a new efficient tool chain. In
Proc. of LREC 2012, Istanbul, Turkey

