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Abstract

Digital libraries allow us to organize a vast
amount of publications in a structured way
and to extract information of user’s inter-
est. In order to support customized use of
digital libraries, we develop novel meth-
ods and techniques in the Knowledge Dis-
covery in Scientific Literature (KDSL) re-
search program of our graduate school. It
comprises several sub-projects to handle
specific problems in their own fields. The
sub-projects are tightly connected by shar-
ing expertise to arrive at an integrated sys-
tem. To make consistent progress towards
enriching digital libraries to aid users by
automatic search and analysis engines, all
methods developed in the program are ap-
plied to the same set of freely available sci-
entific articles.

1 Introduction

Digital libraries in educational research play a
role in providing scientific articles available in
digital formats. This allows us to organize a vast
amount of publications, and the information con-
tained therein, in a structured way and to extract
interesting information from them. Thus, they
support a community of practices of researchers,
practitioners, and policy-makers. In order to sup-
port diverse activities, digital libraries are re-
quired to provide effective search, analysis, and

⇤This work is licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Page numbers
and proceedings footer are added by the organizers. License
details: http://creativecommons.org/licenses/by/4.0/

exploration systems with respect to specific sub-
jects as well as additional information in the form
of metadata.

Our analysis is mainly focused on the educa-
tional research domain. The intrinsic challenge of
knowledge discovery in educational literature is
determined by the nature of social science, where
the information is mainly conveyed in textual, i.e.,
unstructured form. The heterogeneity of data and
lack of metadata in a database make building digi-
tal libraries even harder in practice. Moreover, the
type of knowledge to be discovered that is valu-
able as well as obtainable is also hard to define.
As this type of work requires considerable human
effort, we aim to support human by building au-
tomated processing systems that can provide dif-
ferent aspects of information, which are extracted
from unstructured texts .

The rest of this paper is organized as follows.
In Section 2, we introduce the Knowledge Dis-
covery in Scientific Literature (KDSL) program
which emphasizes developing methods to support
customized use of digital libraries in educational
research contexts. Section 3 describes the sub-
projects and their first results in the KDSL pro-
gram. Together, the sub-projects constitute an in-
tegrated system that opens up new perspectives
for digital libraries. Section 4 finally concludes
this paper.

2 Knowledge Discovery in Scientific

Literature

In the age of information overload, even research
professionals have difficulties in efficiently ac-
quiring information, not to mention the public.
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An accessible, understandable information supply
of educational research will benefit not only the
academic community but also the teachers, pol-
icy makers and general public.

There are several related research projects. The
CORE (Knoth and Zdrahal, 2012) project aims
to develop a system capable of seamless linking
of existing repositories of open access scientific
papers. The CODE project developed a platform
which facilitates exploration and analysis in re-
search areas using open linked data.1

In contrast to general-purpose systems for man-
aging scientific literature, we aim at building a
system in specific domains including, but not lim-
ited to, the educational research where, for in-
stance, users are allowed to navigate visually a
map of research trends or are provided with re-
lated works which use the same datasets.

2.1 Structure of KDSL

The KDSL program is conducted under close col-
laboration of the Information Center for Educa-
tion (IZB) of the German Institute for Interna-
tional Educational Research (DIPF) and the Com-
puter Science Department of TU Darmstadt. IZB
provides modern information infrastructures for
educational research. It coordinates the German
Education Server and the German Education In-
dex (FIS Bildung Literaturdatenbank).2

Consisting of several related sub-projects, the
KDSL program focuses on text mining, semantic
analysis, and research monitoring, using methods
from statistical semantics, data mining, informa-
tion retrieval, and information extraction.

2.2 Data

All of our projects build up on the same type
of data which consists of scientific publications
from the educational domain. However, the pub-
lications differ from each other in their research
approach (e.g., empirical/theoretical and qualita-
tive/quantitative), in their topics and in their target
audience / format (e.g., dissertations, short/long
papers, journal articles, reviews). This leads to
a vast heterogeneity of content which also fol-
lows from the broad range of disciplines involved

1http://code-research.eu
2http://www.fachportal-paedagogik.de
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Figure 1: Links between sub-projects in KDSL for ed-
ucational research

in the educational research (for example psychol-
ogy, sociology and philosophy).

At DIPF, there are mainly two databases con-
taining relevant publications for our projects: pe-
docs and FIS Bildung. FIS Bildung (Carstens et
al., 2011) provides references to scientific articles
collected from more than 30 institutions in all ar-
eas of education. Specifically, the database con-
sists of over 800,000 entries and more than a half
of them are journal articles in German. One-third
of the references to articles published recently has
full-text in a pdf format.3 pedocs (Bambey and
Gebert, 2010), a subset of FIS Bildung, main-
tains a collection of open-access publications and
makes them freely accessible to the public as a
long-term storage of documents. As of today,
the total number of documents in pedocs is about
6,000.4 Each entry in both databases is described
by metadata such as title, author(s), keywords and
abstract.

2.3 Vision and Challenges

The overall target of KDSL is to structure publi-
cations automatically by assigning metadata (e.g.,
index terms), extracting dataset names, identify-
ing argumentative structures and so on. There-
fore, our program works towards providing new

3Detailed statistics can be found at
http://dipf.de/de/forschung/abteilungen/pdf/
diagramme-zur-fis-bildung-literaturdatenbank

4April 2014
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methods to identify and present the information
searched by a user with reduced effort, and to
structure the information regarding the specific
needs of the users in searching the mentioned
databases.

Figure 1 shows how the sub-projects interact
with each other to achieve our goal. Each sub-
project in KDSL acts as a building block of the
targeted system, i.e., an automated processing
system to help educational researchers. Getting
more data, even unlabeled (or unannotated), is
one of the key factors which lead to more accurate
machine learning models. The focused crawler
collects documents from websites in educational
contexts (block ¡ in Fig. 1). Other sub-projects
can benefit from a large corpus of the crawled
documents that might provide more stable statis-
tics in making predictions on unseen data. By
using structured databases and the crawled docu-
ments, we perform several extraction tasks (block
¬), such as identifying index terms (Sec. 3.2,
3.5), dataset names (Sec. 3.3), argumentative
structures (Sec. 3.4), and semantic relations be-
tween entities (Sec. 3.1). Towards the enrichment
of databases, we investigate methods to assign
the extracted information in structured formats,
i.e., metadata (block √). In turn, we also aim at
providing novel ways to visualize the search re-
sults and thus to improve the users’ search expe-
rience (block ƒ), for instance through displaying
dynamics of index terms over time (Sec. 3.6) and
tag clouds (Sec. 3.7).

3 Projects

In the following sections, we describe sub-
projects in KDSL with regards to their problems,
approaches, and the first results.

3.1 Crawling and Semantic Structuring

A vital component of the semantic structuring
part of this project is the process of reliably identi-
fying relations between arbitrary nouns and noun
phrases in text. In order to achieve high-quality
results, a large in-domain corpus is required.

Task The corpus necessary for unsupervised
relation extraction is created by enlarging the ex-
isting pedocs corpus (cf. Sec. 2.2) with docu-
ments from the web that are of the same kind. The

project’s contribution is thus twofold: a) focused
crawling, and b) unsupervised relation extraction.

Dataset Plain texts extracted from pedocs pdfs
define the domain of the initial language model
for a focused crawler (Remus, 2014).

Approaches The Distributional Hypothesis
(Harris, 1954), which states that similar words
tend to occur in similar contexts, is the founda-
tion of many tasks including relation extraction
(Lin and Pantel, 2001). Davidov et al. (2007) per-
formed unsupervised relation extraction by min-
ing the web and showed major improvements in
the detection of new facts from only few initial
seeds. They used a popular web search engine as
a major component of their system. Our focused
crawling strategy builds upon the idea of utilizing
a language model to discriminate between rele-
vant and irrelevant web documents. The key idea
of this methodology is that web pages coming
from a certain domain — which implies the use
of a particular vocabulary (Biber, 1995) — link to
other documents of the same domain. The as-
sumption is that the crawler will most likely stay
in the same topical domain as the initial language
model was generated from.

Using the enlarged corpus, we compute dis-
tributional similarities for entity pairs and de-
pendency paths, and investigate both direc-
tions: a) grouping entity pairs, and b) grouping
dependency paths in order to find generalized re-
lations. Initial results and further details of this
work can be found in (Remus, 2014).

Next Steps Remus (2014) indicates promising
directions, but a full evaluation is still missing and
still has to be carried out. Further, we plan to ap-
ply methods for supervised relation classification
using unsupervised features by applying similar
ideas and methodologies as explained above.

3.2 Index Term Identification

In this section, we present our analysis of ap-
proaches for index term identification on the pe-
docs document collection. Index terms support
users by facilitating search (Song et al., 2006) and
providing a short summary of the topic (Tucker
and Whittaker, 2009). We evaluate two ap-
proaches to solve this task: (1) index term extrac-
tion and (ii) index term assignment. The first one
extracts index terms directly from the text based
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on lexical characteristics, and the latter one as-
signs index terms from a list of frequently used
index terms.

Task Approaches for index term identification
in documents from a given document collection
find important terms that reflect the content of
a document. Document collection knowledge is
important because a good index term highlights
a specific subtopic of a coarse collection-wide
topic. Document knowledge is important because
a good index term is a summary of the document’s
text. Thesauri which are available for English are
not available in every language and less training
data may be available if index terms are to be ex-
tracted for languages other than English.

Dataset We use manually assigned index
terms, which were assigned by trained annotators,
as a gold standard for evaluation. We evaluate our
approaches with a subset of 3,424 documents.5

Annotators for index terms in pedocs were asked
to add as many index terms as possible, thus lead-
ing to a high average number of index terms of
11.6 per document. The average token length of
an index term is 1.2. Hence, most index terms
in pedocs consist of only one token but they are
rather long with on average more than 13 charac-
ters. This is due to many domain-specific com-
pounds.

Approaches We apply index term extraction
approaches based on tf-idf (Salton and Buckley,
1988) using the Keyphrases module (Erbs et al.,
2014) of DKPro, a framework for text process-
ing,6 and an index term assignment approach us-
ing the Text Classification module, abbreviated as
DKPro TC (Daxenberger et al., 2014). The in-
dex term extraction approach weights all nouns
and adjectives in the document with their fre-
quency normalized with their inverse document
frequency. With this approach, only index terms
mentioned in the text can be identified. The in-
dex term assignment approach uses decision trees
(J48) with BRkNN (Spyromitros et al., 2008)
as a meta algorithm for multi-label classification
(Quinlan, 1992). Additionally, we evaluate a hy-
brid approach, which combines the extraction and
assignment approach by taking the highest ranked

5We divided the entire dataset in a development, training,
and test set.

6https://code.google.com/p/dkpro-core-asl/

Type Precision Recall R-prec.

Extraction 11.6% 15.5% 10.2%
Assignment 33.0% 6.1% 6.6%

Hybrid 20.0% 17.9% 14.4%

Table 1: Results for index term indentification ap-
proaches

index terms of both approaches.
Table 1 shows results for all three approaches

in terms of precision, recall, and R-precision. The
extraction approach yields good results for recall
and R-precision, while the assignment approach
yields a high precision but a lower recall and
R-precision. Assignment determines few index
terms with high confidence that increases preci-
sion but lowers recall and R-precision, while ex-
traction allows for identifying many index terms
with lower confidence. The hybrid approach
(Erbs et al., 2013), in which index term extraction
and assignment are combined, results in better
performance in terms of recall and R-precision.

Next Steps We believe that using semantic re-
sources will further improve index term identifi-
cation by grouping similar index terms. Addition-
ally, we plan to conduct a user study to verify our
conclusion that automatic index term identifica-
tion helps the users in finding documents.

3.3 Identification and Exploration of Dataset

Names in Scientific Literature

Datasets are the foundation of any kind of empir-
ical research. For a researcher, it is of utmost im-
portance to know about relevant datasets and their
state of publications, including a dataset’s charac-
teristics, discussions, and research questions ad-
dressed.

Task The project consists of two parts. First,
references to datasets, e.g. “PISA 2012” or “Na-
tional Educational Panel Study (NEPS)”, must be
extracted from scientific literature. This step can
be defined as a Named Entity Recognition (NER)
task with specialized named entities.7

Secondly, we want to investigate functional
contexts, which can be seen as the purpose of
mentioning a certain dataset, i.e., introducing,

7We extract the NEs from more than 300k German ab-
stracts of the FIS Bildung dataset.
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discussing, side-mentioning, criticizing, or using
a dataset for secondary analysis.

Approaches First of all, the term dataset must
be defined for our purposes. Although there is
a common sense about what a dataset is, no for-
mal definition exists. As a starting point, we use a
list of basic descriptive features from Renear et al.
(2010), which are grouping, content, relatedness,
and purpose. As those features are not precise
enough for our case, we need to further refine un-
clear aspects, like how to treat nested datasets,8 or
general names like PISA, which are not datasets
in the strict sense, as they denote projects com-
prised of multiple datasets. Another question be-
ing discussed with domain experts is, if only pri-
mary datasets or also aggregated datasets, e.g.,
statistical data from the Zensus (German cen-
suses), are relevant or if they should be treated
differently.

There is a large number of approaches for NER
(Nadeau and Sekine, 2007). Due to the lack
of labeled training data and the high annotation
costs, we have to resort to three un- and semi-
supervised methods; a) an information engineer-
ing approach, where we manually crafted rules,
b) a baseline classifier using active learning (Set-
tles, 2011), and c) a bootstrapping approach for it-
erative pattern induction (Riloff and Jones, 1999),
which has been used successfully by Boland et al.
(2012) on a similar task.9

Challenges Apart from general NER chal-
lenges like ambiguity, variants, multi-word names
or boundary determination (Cohen and Hersh,
2005), extracting dataset names comes with addi-
tional challenges. First, not even a partially com-
plete list of names is available, and second, there
is no labelled training data. A user study showed,
that manual labelling is very costly. Furthermore,
dataset names are sparse in our dataset and most
names only occur once.

Next Steps After evaluating the different ap-
proaches, named entity resolution must be con-
ducted on the results to map each name variant

8E. g. the PISA project contains several datasets from
multiple studies, like PISA 2000, PISA 2003, PISA-
International-Plus, or even research specific sub-datasets
could be considered.

9However, their dataset was completely different, so that
it is unclear at this point if bootstrapping performs well on
our task.

to a specific project or dataset entity. To finally
explore the functional contexts, we will use clus-
tering methods to determine clusters of contexts.
After verifying and refining them with domain ex-
perts, multi-label classification can be applied to
assign functional contexts to dataset mentions.

3.4 Identification of Argumentation

Structures in Scientific Publications

One of the main goals of any scientific publica-
tion is to present new research results to an ex-
pert audience. In order to emphasize the novelty
and importance of the research findings, scientists
usually build up an argumentation structure that
provides numerous arguments in favor of their re-
sults.

Task The goal of this project is to automati-
cally identify argumentation structures on a fine-
grained level in scientific publications in the ed-
ucational domain and thereby to improve both
reading comprehension and information access.
A potential use case could be a user interface
which allows to search for arguments in multiple
documents and then to combine them (for exam-
ple arguments in favor or against private schools).
See Stab et al. (2014) for an overview of the topic
Argumentation Mining and a more detailed de-
scription of this project as well as some chal-
lenges.

Dataset As described in section 2.2, the pedocs
and FIS Bildung datasets are very heterogeneous.
In addition, it is difficult to extract the structural
information from the PDF files (e.g. headings or
footnotes). For this reason, we decided to create a
new dataset consisting of publications taken from
PsyCONTENT which all have a similar structure
(about 10 pages of A4, empirical studies, same
section types) and are available as HTML files.10

Approaches Previous works have considered
the automatic identification of arguments in spe-
cific domains, for example in legal documents
(Mochales and Moens, 2011) or in online de-
bates (Cabrio et al., 2013). For scientific publica-
tions, more coarse-grained approaches have been
developed, also known as Argumentative Zoning
(Teufel et al., 2009; Liakata et al., 2012; Yepes et
al., 2013). To the best of our knowledge, there is

10http://www.psycontent.com/
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no prior work on identifying argumentation struc-
tures on a fine-grained level in scientific fulltexts
yet.

We define an argument as consisting of several
argument components which are related: an ar-
gument component can either support or attack
another argument component; the argument com-
ponent being supported or attacked is also called
claim. We set the span of an argument compo-
nent to be a sentence. In the following (fictitious)
example, each sentence (A, B, C, D) can be seen
as an argument component connected by support
and attack relations as visualized in figure 2.

A Girls are better in school. B In the XY study,
girls performed better on average. C One rea-
son for this is that girls invest more time in their
homework. D However, there are also other stud-
ies where no differences between girls and boys
could be found.

A B C D
 supports

 
 supports

 
attacks

Figure 2: Visualization of an argumentation struc-
ture: The nodes represent the four sentences (A, B, C,
D), continuous lines represent support relations, dotted
lines represent attack relations

Next Steps Due to the lack of evaluation
datasets, we are performing an annotation study
with two domain experts and two annotators who
developed the annotation guidelines. Next, we
plan to develop weakly supervised machine learn-
ing methods to automatically annotate scientific
publications with argument components and the
relations between them. The first step will be
to distinguish non-argumentative parts from argu-
mentative parts. The second step will be to iden-
tify support and attack relations between the argu-
ment components. In particular, we will explore
lexical features, such as discourse markers (words
which indicate a discourse relation, for example
“hence”, “so”, “however”) and semantic features,
such as text similarity.

3.5 Scalable Multi-label Classification for

Educational Research

This project aims at developing and applying
novel machine learning algorithms which can be
useful for providing methods to automate the pro-

cessing of scientific literature. Scientific publi-
cations often need to be organized in a way of
providing high-level and structured information,
i.e., metadata. A typical example of a metadata
management system is assigning index terms to a
document.

Task The problem of assigning multiple terms
to a document can be addressed by multi-label
classification algorithms. More precisely, our task
is to assign multiple index terms in FIS Bildung,
to a given instance if we have a predefined list of
the terms. There are two problems for multi-label
classification in the text domain; 1) What kinds
of features or which document representations are
useful for our task of interest? 2) How do we ex-
ploit the underlying structure in the label space?

Dataset and Challenges In FIS Bildung
database, tens of thousands of index terms are
defined, because it is a collection of links to
documents coming from diverse institutions each
of which deals with different subjects, thereby
requiring expertise of index terms maintenance.
The difficulty of predicting index terms for a
given document is divided largely into two parts.
First, only abstracts are available which contain
a small number of words compared to fulltexts.
Secondly, given a large number of distinct labels,
it is prohibitively expensive to use sophisticated
multi-label learning algorithms. To be more spe-
cific, we have about 50,000 index terms in FIS
Bildung which most of current multi-label algo-
rithms cannot handle efficiently without a system-
atic hierarchy of labels. Hence, as a simplified ap-
proach, we have focused on 1,000 most frequent
index terms as target labels that we want to pre-
dict because the rest of them occur less than 20
times out of 300K documents.

Approaches Multi-label classifiers often try to
make use of intrinsic structures in a label space by
generating subproblems (Fürnkranz et al., 2008)
or exploiting predictions of successive binary
classifiers for the subsequent classifiers (Read et
al., 2011).

Neural networks are a good way for capturing
the label structure of multi-label problems, as has
been shown in BP-MLL (Zhang and Zhou, 2006).
Recent work (Dembczyński et al., 2012; Gao and
Zhou, 2013) find inconsistency of natural (con-
vex) rank loss functions in multi-label learning.
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Based on these results, Nam et al. (2014)
showed that the classification performance can be
further increased with methods that have been re-
cently developed in this area, such as Dropout
(Srivastava et al., 2014), Adagrad (Duchi et al.,
2011), and ReLUs (Nair and Hinton, 2010), on
the FIS Bildung dataset as well as several text
benchmark datasets. Specifically, for multi-label
text classification task, the cross-entropy loss
function, widely used for classification tasks, has
shown to be superior to a loss function used for
BP-MLL which try to minimize errors resulting
from incorrect ranked labels. Even though the
former does not consider label ranking explicitly,
it converges faster and perform better in terms of
ranking measures. More details can be found in
(Nam et al., 2014).

Next Steps Even though our proposed ap-
proach has shown interesting results, the origi-
nal problem remains unsolved. How do we as-
sign multiple labels to an instance where tens or
even hundreds of thousands of labels are in our
list? To answer this, we are going to transform
both instances and labels into lower dimensional
spaces while preserving original information or
deriving even more useful information (Socher et
al., 2013; Frome et al., 2013) which enables us
to make predictions for unseen target labels at the
time of training.

3.6 Temporally Dynamic Networks of Topics

and Authors in Scientific Publications

In this part of the KDSL program, we build a
probabilistic network for various aspects of sci-
entific publication. The important entities are au-
thors, ideas and papers. From authors, writing
style and communities can be modelled. From pa-
pers, index terms, citations and arguments can be
extracted. In reality, all these factors affect each
other and when they are considered in one proba-
bilistic model, the precision of each model should
be improved, as a result of enhanced context.

Task and Data At first, we took the pedocs
dataset and performed temporal analysis as the
first dimension of the probabilistic network. By
tracking the occurrence of index terms in the last
33 years, we monitor the development of topics
in the corpus. The first assumption is that trendy
topics lever-up the frequency of their represent-

ing keyword in the corpus at each period of time.
The second assumption is that the significant co-
occurrence of keywords indicates the emergence
of new research topics.

Approach Co-occurrence has been used in
trend detection (Lent et al., 1997). To capture
more interesting dynamic behaviors of the in-
dex terms, we experimented with different mea-
sures to find index term pairs of interest. Covari-
ance, co-occurrence, Deviation-from-Random,
Deviation-from-Lower-Envelop are some of the
measures we used to detect the co-developing
terms. The covariance, co-occurrence are the
standard statistical measures in temporal relation
analysis (Kontostathis et al., 2004). The other
measures are developed in our work, which ex-
hibit the capability to gain more insights from the
data.

Interestingly, some of the measures can re-
veal strong semantic relatedness between the in-
dex terms, e.g., Internationalisierung - Glob-
alisierung (Internationalization - Globalization).
This phenomenon indicates a potential unsuper-
vised semantic-relatedness measure. And gener-
ally, our methodology can find interesting pairs
of index terms that help the domain researcher to
gain more insight into the data, please see (Ma
and Weihe, 2014) for detailed examples of the
findings.

For the manually selected index terms (about
300), we collaborated with domain experts from
DIPF to assign categories (Field, Topic, Method,
etc.) to them. With the category, we can look for
the term pairs of our interest. For example, we can
focus on the method change of topics, by limiting
the categories of a term pair to Topic and Method.

Next Steps One critical problem to these anal-
yses is data sparsity. Some experiments can only
output less than 10 instances, which may be in-
sufficient for statistically significant results. We
adapt the methods to larger datasets like FIS Bil-
dung. Besides optimization, we will work on
other new measures and evaluate the results with
the help of domain experts.

3.7 Structured Tag Clouds

Tag clouds are popular visualizations on web
pages. They visually depict a set of words in a
spatial arrangement with font size being mapped
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to an approximation of term importance such as
term frequency. It is supposed that by organizing
the words according to some (semantic) term re-
lation, the usefulness of tag clouds can be further
improved (see e.g., (Hearst and Rosner, 2008; Ri-
vadeneira et al., 2007)). The goal of this project
is to investigate if this assumption holds true and
to research the optimal design and automatic gen-
eration of such structured tag clouds (Figure 3).

Task To approach our research goal, three main
tasks can be distinguished: First, we examine how
humans structure tags when being told that the re-
sulting tag cloud should provide a quick overview
of a document collection. Second, based on the
determined criteria that the participants of our
study aimed at, when layouting the clouds, we de-
velop methods for automatically generating struc-
tured tag clouds. Finally, the performance of
users employing structured tag clouds is com-
pared to unstructured ones for specific tasks.

Dataset As the name suggests, tag clouds
are often employed to visualize a set of (user-
generated) tags. In our research, we use user-
generated tags from social bookmarking systems
such as BibSonomy11 or Edutags12. We expect
that the results can be generalized to similar data
such as index terms assigned to scientific publica-
tions or these extracted from a document (collec-
tion).

Challenges There are many ways to (se-
mantically) structure tags (e.g., based on co-
occurrences or lexical-semantic relations). How-
ever, our goal must be not to generate an arbitrary
tag structure but to organize tags in a way that is
conclusive for human users and thus easy to read.
A key challenge here is that no ground-truth exists
saying how a specific tag set is arranged best.

Approaches We conducted a user study in
which the participants were asked to manually ar-
range user-generated tags of webpages that were
retrieved by a tag search in the social bookmark-
ing system BibSonomy. Being aware that no
single ground-truth exists, we investigated the
criteria underlying the layout in detailed post-
task interviews. Those criteria are now the ba-
sis for researching automatic algorithms and vi-
sual representations that can best approximate the

11http://www.bibsonomy.org/
12http://www.edutags.de/
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Programming 

Hardware 
Compiler 

Figure 3: Example for a structured tag cloud.

user-generated layouts. Finally, unstructured and
structured tag clouds will be compared in a study
in which the performance of users in specific tasks
is measured.

Results & Next Steps In (Oelke and Gurevych,
2014) we presented the results of our user
study. While previous work mainly relies on co-
occurrence relations when building structured tag
clouds, our study revealed that semantic associa-
tions are the main criterion for human layouters
to build their overall structure on. Co-occurrence
relations (i.e., two tags that are at least once as-
signed to the same bookmarked webpage) were
only rarely taken into account, although we pro-
vided access to this information.

While some participants included all tags in
their final layout, others consequently sorted out
terms that they deemed redundant. Lexical-
semantic relations (e.g., synonyms or hypernyms)
turned out to be the basis for determining such re-
dundant terms. Furthermore, small clusters were
preferred over large ones and large clusters were
further structured internally (e.g., arranged ac-
cording to semantic closeness, as a hierarchy, or
split into subclusters).

Next, we will work on the algorithmic design
and finally evaluate the performance of structured
tag clouds.

4 Conclusion

This paper describes ’Knowledge Discovery in
Scientific Literature’, a unique graduate program
with the goal to make the knowledge concealed
in various kinds of educational research literature
more easily accessible. Educational researchers
will benefit from automatically processed infor-
mation on both local and global scopes. Local in-
formation consists of index terms (Sec. 3.2, 3.7,
3.5), relations (Sec. 3.1), dataset mentions and
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functional contexts (Sec. 3.3), and argumentation
structures (Sec. 3.4). On the level of the entire
corpus, temporal evolution of index terms and au-
thors can be provided (Sec. 3.6).

Each sub-project aims at new innovations in
the particular field. The close connection between
computer science researchers and educational re-
searchers helps us with immediate evaluation by
end users.
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