

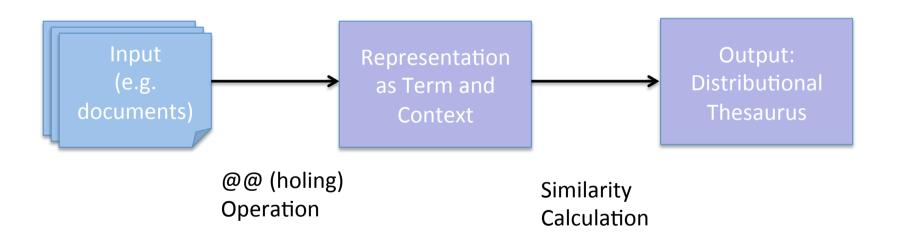
Combining Unsupervised and Supervised Parser

Martin Riedl, Irina Alles and Chris Biemann Language Technology Technische Universität Darmstadt, Germany

COLING 2014, Dublin, Ireland, August 26 2014, 16:35-17:00

Motivation

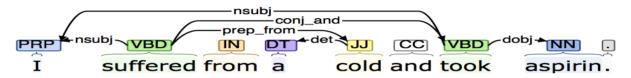
 Dependency parses → Distributional Thesaurus (DT) of high quality


• Unsupervised dependencies → ???

• Combining both \rightarrow ???

Agenda

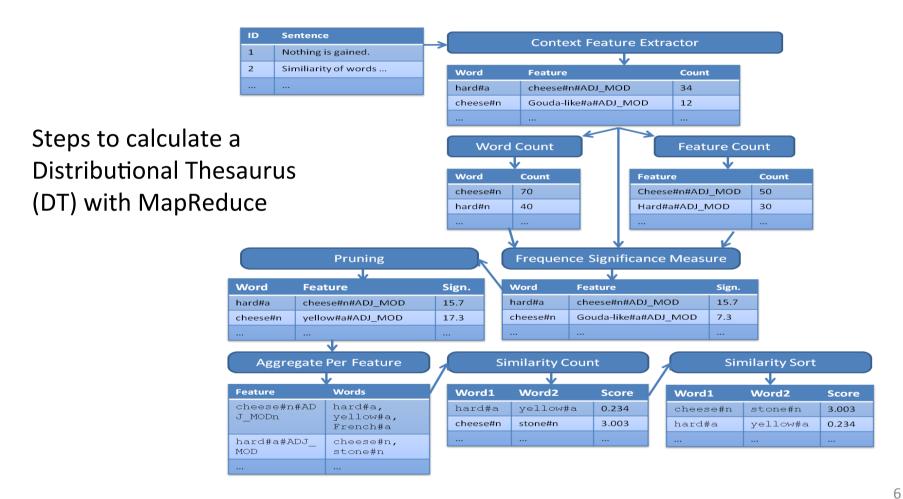
- Building Distributional Thesauri (DTs)
- Evaluation of DTs/UPs
- Experimental Setting
- Results
- Conclusion & Outlook


Building a Distributional Thesaurus using JeBimText Linking Language to Knowledge with Distributional Semantics

http://jobimtext.org/

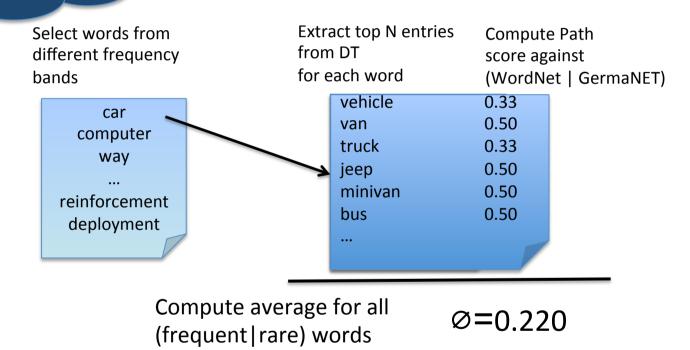
The @@ operation: JoBim Pairs for Syntax Based Distributional Similarity

SENTENCE:


Dependency Parser:

nsubj(suffered, I); nsubj(took, I); root(ROOT, suffered); det(cold, a); prep_from(suffered, cold); conj_and(suffered, took); dobj(took, aspirin)

WORD-dependency PAIRS:


Suffered took cold	nsubj(@@, I) nsubj(@@, I) det(@@, a)	1 1 1	
Suffered Suffered	prep_from(@@, cold) conj_and(@@, took)	1	
took	dobj(@@, aspirin)	1	

ı	nsubj(suffered, @@)	1	
I	nsubj(took, @@)	1	
а	det(cold, @@)	1	
cold	prep_from(suffered, @@)	1	
took	conj_and(suffered, @@)	1	
aspirin	dobj(took, @@)	1	

In our experiments we focus on frequent and rare nouns

Evaluate a DT

Experimental Setup

- 1) Train UP on Training Corpus
- 2) Apply UP Parser on Test Corpus
- 3) Compute DT with context from UP
- 4) Evaluate DT

Setup	Training Corpus	Test Corpus	
Setup A	10k sentences 100k sentences 1M sentences 10M sentences	10k sentences 100k sentences 1M sentences 10M sentences	Use Same Training & Test Corpus
Setup B	10k sentences 100k sentences 1M sentences 10M sentences	10M sentences 10M sentences 10M sentences 10M sentences	Shows how much training data is needed for acceptable
			performance

Baselines & Parsers

	English	German	Use POS
	Ra	andom Parser	no
Baseline	Left/Right	Branching (Bigram)	no
	Left & Righ	t Branching (Trigram)	no
Supervised	Stanford Parser	Mate Parser	yes
	Gillenwater (method based on DMV)		yes
	UDP (method based on DMV)		yes
Unsupervised	Bisk (EM approach inducing a Combinatory Categorial Grammar)		yes
	(Use PageRank and	Søgaard I heuristics to connect words)	yes/no
(increme		Seginer er using common cover links)	no 9

Resources

	English	German
Corpus	LCC ¹ English newspaper	LCC ¹ German newspaper
Taxonomy for evaluation	WordNet	GermaNet
words used for evaluation	1000 frequent and 1000 rare nouns	1000 frequent and 1000 rare nouns

¹ http://corpora.uni-leipzig.de/

Results English (frequent words): Setup A

	•			<u> </u>
	Tra	aining (for UP only	and Test Data	
Parser	10k	100k	1M	10M
Random	0.115	0.128	0.145	0.159
Trigram	0.133	0.179	0.200	0.236
Bigram	0.140	0.173	0.208	0.246
Stanford	0.151	0.209	0.261	0.280
Seginer	0.136	0.176	0.211	0.240
Gillenwater	0.135	0.159	0.195	0.223
Søgaard	0.120	0.147	0.185	0.227
UDP	0.127	0.169	0.204	*
Bisk	0.118	*	*	*
	Parser Random Trigram Bigram Stanford Seginer Gillenwater Søgaard UDP Bisk	Parser 10k Random 0.115 Trigram 0.133 Bigram 0.140 Stanford 0.151 Seginer 0.136 Gillenwater 0.135 Søgaard 0.120 UDP 0.127	Parser 10k 100k Random 0.115 0.128 Trigram 0.133 0.179 Bigram 0.140 0.173 Stanford 0.151 0.209 Seginer 0.136 0.176 Gillenwater 0.135 0.159 Søgaard 0.120 0.147 UDP 0.127 0.169	Parser 10k 100k 1M Random 0.115 0.128 0.145 Trigram 0.133 0.179 0.200 Bigram 0.140 0.173 0.208 Stanford 0.151 0.209 0.261 Seginer 0.136 0.176 0.211 Gillenwater 0.135 0.159 0.195 Søgaard 0.120 0.147 0.185 UDP 0.127 0.169 0.204

- Only Seginer can beat the lower baselines on the 1M trained corpus
- Scores increase with more data -> the more the data the better the DT
- UDP did not finish parsing after 157 days, so we skipped it

Unsupervised Parser

- Both UP which do not use POS tags lead to the best results

^{*} denotes, that the model could not be computed (errors, time issues)

Results English (frequent words): Setup B

		Tr	raining Data (Test	is done on 10M)	
	Parser	10k	100k	1M	10M
es	Random				0.159
Baselines	Trigram				0.236
3as6	Bigram				0.246
	Stanford				0.280
Unsupervised Parser	Seginer	0.200	0.236	0.241	0.240
	Gillenwater	0.220	0.221	0.221	0.223
	Søgaard	0.227	0.227	0.227	0.227
	Bisk	0.220	*	*	*
_	UDP	*	*	*	*

- Gillenswater approach can hardly make use of additional training data
- Bisks parser was effectively trained only on 5000 sentences (due to pruning)

^{*} denotes, that the model could not be computed (errors, time issues)

Results English (rare words)

Results show a similar trend

Achieve generally lower scores

Results German (frequent words): Setup A

		Т	raining (for UP on	ly) and Test Data	
	Parser	10k	100k	1M	10M
es	Random	0.097	0.108	0.123	0.143
eIII	Trigram	0.102	0.130	0.159	0.179
Baselines	Bigram	0.112	0.130	0.163	0.192
_	Mate	0.111	0.126	0.170	0.204
	Seginer	†0.113	†0.137	0.171	0.208
_	Gillenwater	0.104	0.118	0.132	*
Parser	Søgaard	0.104	0.123	0.161	0.193
P	UDP	0.107	0.129	0.151	*
	Bisk	0.101	*	*	*

- Seginer outperforms the upper baseline

Unsupervised

- Dependency relations from Mate seem to be very sparse
- Søgaard and Seginer achieve good results, when using large data

^{*} significant improvement (paired t-test p<0.01) against the Mate parser 14 denotes, that the model could not be computed (errors, time issues)

Results German (frequent words): Setup B

		Training (for UP only) and Test Data				
	Parser	10k	100k	1M	10M	
S	Random				0.143	
Baselines	Trigram				0.179	
3ası	Bigram				0.192	
	Mate				0.204	
	Seginer	0.153	0.186	0.200	0.208	
vise er	Gillenwater	0.189	0.190	0.189	*	
upervi: Parser	Søgaard	0.193	0.193	0.193	0.193	
Unsupervised Parser	Bisk	0.185	*	*	*	
Ō	UDP	*	*	*	*	
-	- Similar trend as for English					

^{*} denotes, that the model could not be computed (errors, time issues)

Combining Thesauri

- We compute the Holing operation
- Combine different feature combinations
- Compute a DT on 10M sentences
 - Our approach uses the top 1000 significant context features for word
- Evaluate DT again

Combined Results for English

Parser	frequent	rare
Stanford (Supervised)	0.280	0.209
Seginer	0.240	0.155
Søgaard	0.227	0.144
Seginer & Søgaard	0.248	0.162
Stanford & Bigram & Trigram	† 0.290	† 0.217
Stanford & Seginer & Søgaard	† 0.291	† 0.217
Stanford & Seginer & Søgaard & Bigram &		
Trigram	† 0.290	† 0.218

- Combining UPs improves the quality of an DT
- Combining UPs with supervised parser improves the quality even more

Combined Results for German

Parser	frequent	rare
Mate (Supervised)	0.204	0.090
Seginer	0.208	0.091
Søgaard	0.193	0.077
Seginer & Søgaard	† 0.218	† 0.097
Mate & Bigram & Trigram	0.204	0.091
Mate & Seginer & Søgaard	† 0.222	† 0.10
Mate & Seginer & Søgaard & Bigram & Trigram	† 0.222	† 0.10

Conclusion

- Extrinsic evaluation method for UP
 - Ranking of UP is different than the Treebank Ranking
- Best Practice for building DTs
 - Building DTs using several features improves the quality
- UP can beat a supervised parser

Future Work

- Apply approach for different part-of-speech
- Analyze the impact of the sentence size
- What are the context features from UP not covered by supervised parser?
- Replace POS tags by unsupervised ones

Thanks for your attention

Germany's next top
parser
might be unsupervised