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Abstract. Previous neurocognitive approaches to word predictability from sen-
tence context in electroencephalographic (EEG) and eye movement (EM) data 
relied on cloze completion probability (CCP) data effortly collected from up to 
100 human participants. Here we test whether two well-established techniques 
in computational linguistics can predict these data. Together with baseline pre-
dictors of word position and frequency, we found that n-gram language models 
but not topic models provide an approach to EEG and EM data that is not sig-
nificantly inferior to the CCP-based predictability data. This is the case for the 
three corpora we used. Most strikingly, our models accounted for about half of 
the variance of the CCP-based predictability estimates, thus suggesting that it 
provides a computational framework to explain the predictability of a word 
from sentence context. This can help to generalize neurocognitive models to all 
possible novel word combinations. 

1 Introduction 

So far, manually collected cloze completion probabilities (CCPs) are typically 
used for quantifying a word’s predictability from sentence context in neurocognitive 
psychology (Kutas and Hillyard, 1984; Reichle et al., 2003). Here we tackle the ques-
tion whether the well-understood n-gram language models and Latent Dirichlet Allo-
cation (LDA) topic modeling (Blei et al., 2003) can account for CCPs, as well as 
whether they can provide an equally well-fitting approach to electroencephalographic 
(EEG) and eye movement (EM) measures, thus rendering time-consuming CCP pro-
cedures unnecessary. 

 CCPs have been traditionally used to account for N400 responses as an EEG sig-
nature of a word’s contextual integration into sentence context (Dambacher et al., 
2006; Kutas and Hillyard, 1984). Moreover, they were included as the quantification 
of the theoretical concept of predictability into models of eye movement control 
(Engbert et al., 2005; Reichle et al., 2003). However, because CCPs are effortly col-
lected from samples of up to 100 participants (Kliegl et al., 2004), they provide a 
severe challenge to the ability of a model to be generalized across all novel stimuli 
(Hofmann and Jacobs, 2014), which also prevents their use in technical applications. 



To quantify how well computational models of word recognition can account for 
human performance, Spieler and Balota (1997) proposed that a model should explain 
variance at the item-level, for instance naming latencies, averaged across a number of 
participants. Therefore, a predictor variable is fitted to the mean word naming latency 
y as a function of  ! = ! ! = !! !! + ! + !""#" for a number of n predictor 
variables x that are scaled by a slope factor a, an intercept of b, and an error term. The 
Pearson correlation coefficient r is calculated, and squared to determine the amount of 
explained variance r2. Models with a larger number of n free parameters are more 
likely to (over-)fit error variance, and thus less free parameters are preferred (e.g., 
Hofmann and Jacobs, 2014). 
While the best cognitive process models can account for 40-50% of variance in be-
havioral naming data (Perry et al., 2010), neurocognitive data are noisier. The only 
interactive activation model that gives an amount of explained variance in EEG data 
(Barber and Kutas, 2007; McClelland and Rumelhart, 1981) was Hofmann et al. 
(2008), who account for 12% of the N400 variance. Though models of eye movement 
control use item-level CCPs as predictor variables (Engbert et al., 2005; Reichle et al., 
2003), they are rarely investigated in this field (Dambacher and Kliegl, 2007). 

While using CCP-data increases the comparability of many studies, the creation of 
such information is expensive and they only exist for a few languages (Kliegl et al., 
2004; Reichle et al., 2003). If it were possible to use (large) natural language corpora 
and derive the information leveraged from such resources automatically, this would 
considerably expedite the process of experimentation for under-resourced languages. 
Comparability would not be compromised when using standard corpora, such as 
available through Goldhahn et al. (2012) in many languages. However, it is not yet 
clear what kind of corpus is most appropriate for this enterprise, and whether there are 
differences in explaining human performance data. 

2 Related Work 

Taylor (1953) was the first to instruct participants to fill a cloze with an appropri-
ate word. The percentage of participants that fill in the respective word serves as cloze 
completion probability. For instance, when exposed to the sentence fragment ”He 
mailed the letter without a ___”, 99% of the participants complete the cloze by 
”stamp”, thus CCP equals 0.99 (Bloom and Fischler, 1980). Kliegl et al. (2004) logit-
transformed CCPs to obtain pred = ln(CCP/(1−CCP)).  

Event-related potentials are computed from human EEG data. For the case of the 
N400, words are often presented word-by-word, and the EEG waves are averaged 
across a number of participants relative to the event of word presentation. Because 
brain-electric potentials are labeled by their polarity and latency, the term N400 refers 
to a negative deflection around 400ms after the presentation of a target word. 

After Kutas and Hillyard (1984) discovered the sensitivity of the N400 to cloze 
completion probabilities, they suggested that it reflects the semantic relationship be-
tween a word and the context in which it occurs. However, there are several other 
factors that determine the amplitude of the N400 (Kutas and Federmeier, 2011, for a 
review). For instance, Dambacher et al. (2006) found that word frequency (freq), the 
position of a word in a sentence (pos), as well as predictability does affect the N400. 



While the eyes remain relatively still during fixations, readers make fitful eye 
movements called saccades (Radach et al., 2012). When successfully recognizing a 
word in a stream of forward eye movements, no second saccade to or within the word 
is required. The time the eyes remain on that word is called single-fixation duration 
(SFD), which shows a strong correlation to word predictability from sentence context 
(e.g., Engbert et al., 2005).  

3 Methodology 

3.1 Human Performance Measures 

This study proposes that language models can be benchmarked by item-level per-
formance on three data sets that are openly available in online databases. Predictabil-
ity was taken from the Potsdam Sentence Corpus 1, first published by Kliegl et al. 
(2004). The 144 sentences consist of 1138 tokens, available in Appendix A of Dam-
bacher (2009), and the logit-transformed CCP measures of word predictability were 
retrieved from Ralf Engbert’s homepage1 (Engbert et al., 2005). For instance, in the 
sentence “Manchmal sagen Opfer vor Gericht nicht die volle Wahrheit” [Before the 
court, victims tell not always the truth.], the last word has a CCP of 1. N400 ampli-
tudes were taken from the 343 open-class words published in Dambacher and Kliegl 
(2007). These are available from the Potsdam Mind Research Repository2. The EEG 
data published there are based on a previous study (Dambacher et al., 2006, for meth-
od details). The voltage of ten centroparietal electrodes was averaged across 48 arti-
fact-free participants from 300 to 500ms after word presentation for quantifying the 
N400. SFD are based on the same 343 words from Dambacher and Kliegl (2007), 
available from the same source URL. Data were included when this word was only 
fixated for one time, and these SFDs ranged from 50 to 750ms. The SFD was aver-
aged across up to 125 German native speakers (Dambacher and Kliegl, 2007). 

3.2 N-gram Language and LDA Topic Models 

Language models are based on a probabilistic model of language. The resulting 
probabilities can be used to pick the most fluent of several alternatives e.g. in machine 
translation or speech recognition. Word n-gram models are defined by a Markov 
chain of order ! − 1, where the probability of the following word only depends on 
previous ! − 1 words. The probability distribution of the vocabulary, given a history 
of ! − 1 words, is estimated based on n-gram counts from (large) natural language 
corpora. There exist a range of n-gram language models (see for example Chapter 3  
in Manning and Schütze, 1999). Here, we use a Kneser and Ney (1995) 5-gram mod-
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el3. For each word in the sequence, the language model computes a probability p �]0; 
1[. We use the logarithm log(p) of this probability as predictor. We used all words in 
their full form, i.e. did not filter for specific word classes and did not perform lemma-
tization. N-gram language models are known to model local syntactic structure very 
well. Since only n-gram models use the most recent history for predicting the next 
token, they fail to account for long-range phenomena and semantic coherence, cf. 
(Biemann et al., 2012). 

Latent Dirichlet Allocation (LDA) topic models (Blei et al., 2003) are generative 
probabilistic models representing documents as a mixture of a fixed number of N 
topics, which are defined as unigram probability distributions over the vocabulary. 
Through a sampling process like Gibbs sampling, topic distributions are inferred. 
Words frequently co-occurring in the same documents receive a high probability in 
the same topics. When sampling the topic distribution for a sequence of text, each 
word is randomly assigned to a topic according to the document-topic distribution and 
the topic-word distribution. We use Phan and Nguyen’s (2007) GibbsLDA implemen-
tation for training an LDA model with 200 topics (default values for α = 0.25 and β = 
0.001) on a background corpus. Words occurring in too many documents (a.k.a. 
stopwords) were removed from the LDA vocabulary. Then, we repeatedly sample the 
topic assignments (cf. Riedl and Biemann, 2012) on the input sentence and retain the 
most frequently assigned three topics per word. As predictor for the current open class 
word in the sequence, we count the number of previous open class words in the se-
quence, which have at least one topic in common with the current word. Intuitively, 
this measure should capture the amount of semantic coherence with the previous 
words in the sequence. I.e. for a sequence like ”The dwarf was avoiding the ____”, 
we’d expect a score of 1 for ”elves” for their topical similarity to ”dwarf” (provided 
that there is sufficient support of dwarves and elves in the background corpus), 
whereas we expect a score of 0 for ”rain”. Parameters of this procedure were deter-
mined in preliminary experiments. We hypothesized that topic models account for the 
semantic aspects missing in n-gram models. While Bayesian topic models are proba-
bly the most widespread approach to semantics in psychology (e.g., Griffiths et al., 
2007), latent semantic analysis (LSA) is not applicable in our setting (Landauer and 
Dumais, 1997): we use the capability of LDA to account for yet unseen documents, 
whereas LSA assumes a fixed vocabulary and document space at model construction 
time. In further experiments, we also used collocation statistics to predict semantically 
expected items, but we obtained no correlation with human data.  

4 Experiment Setup 

Engbert et al. (2005)’s data are organized in 144 short German sentences with an 
average length of 7.9 tokens, and provide features, such as freq as corpus frequency in 
occurrences per million (Baayen et al., 1995), pos, and pred. We test whether two 
corpus-based predictors can account for predictability, and compare the capability of 
both approaches in accounting for EEG and EM data. For training n-gram and topic 
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models, we used three different corpora differing in size and covering different as-
pects of language. Further, the units for computing topic models differ in size. 

NEWS: A large corpus of German online newswire from 2009 as collected by 
LCC (Goldhahn et al., 2012) of 3.4 million documents / 30 million sentences / 540 
million tokens. This corpus is not balanced, i.e. important events in the news are cov-
ered better than other themes. The topic model was trained on the article level. 

WIKI: A recent German Wikipedia dump of 114,000 articles / 7.7 million sen-
tences / 180 million tokens. This corpus is rather balanced, as concepts or entities are 
described in a single article each, independent of their popularity, and spans all sorts 
of topics. The topic model was trained on the article level. 

SUB German subtitles from a recent dump of opensubtitles.org, containing 7420 
movies / 7.3 million utterances / 54 million tokens. While this corpus is much smaller 
than the others, it is closer to a colloquial use of language. Brysbaert et al. (2011) 
showed that word frequency measures of subtitles provide numerically greater corre-
lations with word recognition speed than larger corpora of written language. The topic 
model was trained on the movie level. 

Pearson’s product-moment correlation coefficient was calculated (e.g. Coolican, 
2010, p. 293), and squared for the N = 1138 predictability scores (Engbert et al., 
2005) or N = 343 N400 amplitudes or SFD (Dambacher and Kliegl, 2007). To address 
overfitting, we randomly split the material in two halves, and test how much variance 
can be reproducibly predicted on two subsets of 569 items. For N400 amplitude and 
SFD, we used the full set, because one half was too small for reproducible predic-
tions. 

5 Results 

5.1 Predictability results 

In the first series of results, we examine the correlation of manually obtained predict-
ability with corpus-based methods. High correlations would indicate that predictabil-
ity could be replaced by automatic methods. As a set of baseline predictors, we use 
pos and freq, which explains 0.243 / 0.288 of the variance for the first respectively the 
second half of the dataset. We report results in Table 1 for all single corpus-based 
predictors alone and in combination with the baseline, all combinations of the base-
line with n-grams and topics from the same corpus. 

 
predictors NEWS WIKI SUB 
n-gram alone .262/.294 .226/.253 .268/.272 
topic alone .024/.037 .029/.022 .014/.012 
base+n-gram .462/.490 .462/.490 .448/.459 
base+topic .252/.307 .254/.296 .244/.289 
base+both .481/.516 .445/.473 .449/.461 

Table 1. r2 explained variance of predictability, given for two folds of the data set, 
for various combinations of baseline and corpus-based predictors. 

 



It is apparent that the n-gram predictor alone reaches r2 levels comparable to the 
baseline, whereas the topic model alone explains hardly any variance. Combining the 
baseline with the n-gram predictor achieves the best fitting to predictability for the 
WIKI and SUB corpora. Combining the baseline with topics shows small improve-
ments for NEWS and WIKI (see Figure 1). 

The best overall performance based on a single corpus is achieved with combining 
the baseline with n-grams and topics from the NEWS corpus. This confirms a gener-
ally accepted hypothesis that larger training data trumps smaller, more focused train-
ing data, see e.g. (Banko and Brill, 2001) and others. We also fitted a model based on 
all corpus-based predictors from all corpora, which achieved the overall highest r2= 
0.532 / 0.547 . From these experiments it becomes clear that predictability can largely 
be explained by a combination positional and frequency features combined with a 
word n-gram language model. Different corpora capture slightly different aspects of 
predictability, which is reflected by the improvements when combining predictors 
from all three corpora. The topic model-based predictor only shows a negligible influ-
ence. 

 

 
Fig. 1. Prediction models exemplified for the NEWS corpus in the x-axes and the 

N = 1138 predictability scores on the y-axes. A) shows the prediction by baseline + n-
gram (r2=0.475), and in B) a topic-predictor was added (r2=0.481). Fisher’s r-to-z test 
revealed that there is no significant difference in explained variance (P=0.82) 

5.2 N400 and SFD results 

For modeling N400, we have even more combinations at our disposal since we can 
combine the baseline with predictability as given in the dataset, with corpus-based 
measures, and with both. We evaluate on all 343 data points for N400 amplitude fit-
ting. Without using corpus-based predictors, the baseline predicts a mere 0.032 of 
variance, predictability alone explains 0.192 of variance, and their combination ex-
plains 0.193 – i.e. the baseline is almost entirely subsumed by predictability. 

Fig. 2 lists the results for N400 amplitude modeling with corpus-based predictors. 
Again, the n-gram model is the best corpus-based predictor, and fares best when 
trained on the NEWS corpus, confirming the result that corpus size is the major factor 
for n-gram model quality. For the N400 experiments, the difference between the larg-
er corpora (NEWS, WIKI) and the smaller corpus (SUB) is more pronounced. Again, 
the topic predictor fails to show a major influence for explaining N400 amplitude 



variance. The best combination without predictability, with a score of r2 = 0.182, 
comes close to the performance of predictability alone. 

 
predictors NEWS WIKI SUB 
n-gram alone 0.141 0.140 0.126 
topic alone 0.022 0.021 0.006* 
n-gram+topic 0.170 0.166 0.131 
base+n-gram 0.161 0.153 0.135 
base+topic 0.051 0.050 0.036 
bas+n-gram+topic 0.182 0.172 0.137 
base+pred+n-gram 0.223 0.226 0.206 
base+pred+topic 0.194 0.193 0.193 
base+pred+both 0.228 0.229 0.206 

 

 

Fig. 2. Left: r2 explained variance of N400 amplitude, for various combinations of 
baseline, predictability and corpus-based predictors. * marks statistically independent 
predictors of N400 (p > 0.05). Right: Two prediction models exemplified for the 
NEWS corpus in the x-axes and the N = 343 N400 amplitudes on the y-axes. A) 
shows the prediction by baseline + n-gram, and in B) predictability was added. Fish-
er’s r-to-z test revealed that there is no significant difference in explained variance 
(P=0.25) 
 

The experiments with predictability as an additional predictor confirm the results 
from the previous section: n-grams + baseline and predictability capture slightly dif-
ferent aspects of human reading performance, thus their combination explains about 
3% more variance than predictability alone. This difference, however, is not statisti-
cally reliable (see Figure 2). Differences between the two large corpora are negligible, 
and so is the influence of the topic-based predictor. 
Finally, we examine the corpus-based predictors for modeling the mean single fixa-
tions duration for 343 words. For this target, the pos+freq baseline explains r2 = 
0.021, whereas predictability, alone or combined with the baseline, explains r2 = 
0.184. 
 

predictors NEWS WIKI SUB 
n-gram alone 0.225 0.140 0.126 
topic alone 0.006* 0.006* 0.006* 
n-gram+topic 0.231 0.223 0.226 
base+n-gram 0.239 0.226 0.226 
base+topic 0.023 0.024 0.029 
bas+n-gram+topic 0.242 0.230 0.229 
base+pred+n-gram 0.273 0.274 0.258 
base+pred+topic 0.188 0.184 0.184 
base+pred+both 0.273 0.274 0.259 

 

 

Fig. 3. Left: r2 explained variance of single-fixation duration, for various combina-
tions of baseline, predictability and corpus-based predictors. * marks statistically 
independent predictors of SFD (P > 0.05). Right: Two prediction models exemplified 
for the NEWS corpus in the x-axes and the N = 343 SFD on the y-axes. A) shows the 
prediction by baseline + n-gram, and in B) predictability was added. Fisher’s r-to-z 
test revealed that there is no significant difference in explained variance (P=0.56) 

 
The experiments confirm the utility of n-gram models in accounting for eye 

movement data. Adding predictability did not lead to a significant increase of vari-



ance explained (see Fig. 3). In addition, the n-gram model alone explains more vari-
ance than predictability – however, the difference is not significant. 

For SFD, corpus size does not seem to be a major influencing factor, as results are 
comparable across corpora, however with the largest corpus (NEWS) still yielding the 
best modeling results overall in absence of the predictability predictor. For SFD, topic 
models seem entirely uncorrelated. 

And again, the experiments confirm that n-gram models and predictability capture 
similar, but slightly different aspects, since their combination yields another im-
provement, explaining r2 = 0.273 overall. 

6 Conclusion 

We have examined the utility of two corpus-based predictors to account for word 
predictability from sentence context, as well as the EEG signals and EM-based read-
ing performance elicited by it. Our hypothesis was that word n-gram models and topic 
models would account for the predictability of a token, given the preceding tokens in 
the sentence, as perceived by humans. Our hypothesis was at least partially con-
firmed: n-gram models, sometimes in combination with a frequency-based and posi-
tional baseline, are highly correlated with human predictability scores and in fact 
explain variance of human reading performance to an extent comparable to predicta-
bility – slightly less on N400 but slightly more on SFD.  

Topic models on the other hand, at least in the particular way we used them here, 
failed to show a major influence on modeling human reading performance. This might 
be related to the fact that the sentence scope in the data set is rather short so that most 
“priming” effects can already be captured by our 5-gram model – topic models usual-
ly perform well on the level of documents, not single sentences. 

Can we now safely replace human predictability scores with n-gram statistics? 
Given the high correlation between predictability and the combination of n-grams 
with frequency and positional information, and given that n-gram-based predictors 
achieve similar levels of explained variance than predictability, the answer seems to 
be positive. However, though our corpus-based approaches explain most of the vari-
ance that by manually collected CCP scores also account for, adding predictability 
always accounts for more variance – though this difference is not significant (see 
Figures 1-3). It is yet an open question, whether additional corpus-based predictors, 
be it topic models or something else, could entirely explain the prediction power of 
human CCP data for tasks like N400 amplitude and SFD modeling. 

While n-gram models together with word frequency and position captured about 
half of the predictability variance, and most of the N400 and SFD variance elicited by 
it, we propose that it can be used to replace tediously collected CCPs. This not only 
saves a lot of pre-experimental work, but it also opens the possibility to apply (neuro-) 
cognitive models in technical applications. For instance, n-gram models can be used 
to generalize computational models of eye movement control to novel sentences 
(Engbert et al., 2005; Reichle et al., 2003).  

In the end, this will also improve our understanding of the cognitive processes un-
derlying EM and EEG measures. While both of these are not as well understood as 
human CCP performance, predictability provided a great step towards understanding 



the determinants of neurocognitive prediction processes. If we can compute the de-
terminants of N400 and SFDs from a corpus of sentences, however, we can computa-
tionally define these cognitive processes rather than using a better-understood per-
formance (CCP) to account for other human performance (N400, SFD). 

Baayen (2010) proposed word frequency to be a collector variable often subsuming 
other highly correlated variables. We found that adding n-grams to the baseline of pos 
and freq doubled the explained variance in CCP-based predictability scores. This 
suggests that the sentence level can unfold the cognitive processes previously ascribed 
to word frequency. The doubling of explained variance suggests still unexploited 
sources of human variance to be explained by neurocognitive simulation models, 
which quantify the contextual constraints imposed by position-sensitive predictions of 
a sentence’s words (e.g. Hofmann & Jacobs, 2014; Kutas & Federmeier, 2011).  

Much as for computational models of word recognition, the amount of explained 
item-level variance can serve as a benchmark for language models. Such a common 
benchmark facilitates the comparison of differential computational models. Thus, for 
instance, we would not only know that Frank et al. (2013)’s novel language model 
can account for the N400, but the common benchmark of explained variance could be 
easily compared to any novel approach – for instance by assessing whether one meas-
ure is significantly better than another one for the purpose of modeling.  
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