
Do Supervised Distributional Methods
Really Learn Lexical Inference Relations?

Omer Levy† Steffen Remus§ Chris Biemann§ Ido Dagan†

† Natural Language Processing Lab § Language Technology Lab
Bar-Ilan University Technische Universität Darmstadt
Ramat-Gan, Israel Darmstadt, Germany

{omerlevy,dagan}@cs.biu.ac.il {remus,biem}@cs.tu-darmstadt.de

Abstract

Distributional representations of words have
been recently used in supervised settings for
recognizing lexical inference relations be-
tween word pairs, such as hypernymy and en-
tailment. We investigate a collection of these
state-of-the-art methods, and show that they
do not actually learn a relation between two
words. Instead, they learn an independent
property of a single word in the pair: whether
that word is a “prototypical hypernym”.

1 Introduction

Inference in language involves recognizing infer-
ence relations between two words (x and y), such
as causality (flu → fever), hypernymy (cat →
animal), and other notions of lexical entailment.
The distributional approach to automatically recog-
nize these relations relies on representing each word
x as a vector ~x of contextual features: other words
that tend to appear in its vicinity. Such features are
typically used in word similarity tasks, where cosine
similarity is a standard similarity measure between
two word vectors: sim(x, y) = cos(~x, ~y).

Many unsupervised distributional methods of rec-
ognizing lexical inference replace cosine similarity
with an asymmetric similarity function (Weeds and
Weir, 2003; Clarke, 2009; Kotlerman et al., 2010;
Santus et al., 2014). Supervised methods, reported
to perform better, try to learn the asymmetric opera-
tor from a training set. The various supervised meth-
ods differ by the way they represent each candidate
pair of words (x, y): Baroni et al. (2012) use con-
catenation ~x ⊕ ~y, others (Roller et al., 2014; Weeds

et al., 2014; Fu et al., 2014) take the vectors’ differ-
ence ~y − ~x, and more sophisticated representations,
based on contextual features, have also been tested
(Turney and Mohammad, 2014; Rimell, 2014).

In this paper, we argue that these supervised meth-
ods do not, in fact, learn to recognize lexical infer-
ence. Our experiments reveal that much of their pre-
viously perceived success stems from lexical mem-
orizing. Further experiments show that these super-
vised methods learn whether y is a “prototypical hy-
pernym” (i.e. a category), regardless of x, rather
than learning a concrete relation between x and y.

Our mathematical analysis reveals that said meth-
ods ignore the interaction between x and y, explain-
ing our empirical findings. We modify them ac-
cordingly by incorporating the similarity between
x and y. Unfortunately, the improvement in per-
formance is incremental. We suspect that methods
based solely on contextual features of single words
are not learning lexical inference relations because
contextual features might lack the necessary infor-
mation to deduce how one word relates to another.

2 Experiment Setup

Due to various differences (e.g. corpora, train/test
splits), we do not list previously reported results,
but apply a large space of state-of-the-art supervised
methods and review them comparatively. We ob-
serve similar trends to previously published results,
and make the dataset splits available for replication.1

1http://u.cs.biu.ac.il/~nlp/resources/
downloads/



Dataset #Instances #Positive #Negative
Kotlerman 2010 2,940 880 2,060

Bless 2011 14,547 1,337 13,210
Baroni 2012 2,770 1,385 1,385
Turney 2014 1,692 920 772
Levy 2014 12,602 945 11,657

Table 1: Datasets evaluated in this work.

2.1 Word Representations
We built 9 word representations over Wikipedia (1.5
billion tokens) using the cross-product of 3 types of
contexts and 3 representation models.

2.1.1 Context Types
Bag-of-Words Uses 5 tokens to each side of the tar-
get word (10 context words in total). It also employs
subsampling (Mikolov et al., 2013a) to increase the
impact of content words.
Positional Uses only 2 tokens to each side of the
target word, and decorates them with their position
(relative to the target word); e.g. the−1 is a common
positional context of cat (Schütze, 1993).
Dependency Takes all words that share a syntactic
connection with the target word (Lin, 1998; Padó
and Lapata, 2007; Baroni and Lenci, 2010). We used
the same parsing apparatus as in (Levy and Gold-
berg, 2014).

2.1.2 Representation Models
PPMI A word-context positive pointwise mutual in-
formation matrix M (Niwa and Nitta, 1994).
SVD We reduced M ’s dimensionality to k = 500
using Singular Value Decomposition (SVD).2

SGNS Skip-grams with negative sampling (Mikolov
et al., 2013b) with 500 dimensions and 5 nega-
tive samples. SGNS was trained using a modified
version of word2vec that allows different context
types (Levy and Goldberg, 2014).3

2.2 Labeled Datasets
We used 5 labeled datasets for evaluation. Each
dataset entry contains two words (x, y) and a label
whether x entails y. Note that each dataset was cre-
ated with a slightly different goal in mind, affecting
word-pair generation and annotation. For example,

2Following Caron (2001), we used the square root of the
eigenvalue matrix Σk for representing words: Mk = Uk

√
Σk.

3http://bitbucket.org/yoavgo/word2vecf

both of Baroni’s datasets are designed to capture hy-
pernyms, while other datasets try to capture broader
notions of lexical inference (e.g. causality). Table 1
provides metadata on each dataset, and the descrip-
tion below explains how each one was created.
(Kotlerman et al., 2010) Manually annotated lexi-
cal entailment of distributionally similar nouns.
(Baroni and Lenci, 2011) a.k.a. BLESS. Created
by selecting unambiguous word pairs and their se-
mantic relations from WordNet. Following Roller et
al. (2014), we labeled noun hypernyms as positive
examples and used meronyms, noun cohyponyms,
and random noun pairs as negative.
(Baroni et al., 2012) Created in a similar fashion
to BLESS. Hypernym pairs were selected as posi-
tive examples from WordNet, and then permutated
to generate negative examples.
(Turney and Mohammad, 2014) Based on a
crowdsourced dataset of 79 semantic relations (Ju-
rgens et al., 2012). Each semantic relation was lin-
guistically annotated as entailing or not.
(Levy et al., 2014) Based on manually anno-
tated entailment graphs of subject-verb-object tuples
(propositions). Noun entailments were extracted
from entailing tuples that were identical except for
one of the arguments, thus propagating the exis-
tence/absence of proposition-level entailment to the
noun level. This dataset is the most realistic dataset,
since the original entailment annotations were made
in the context of a complete proposition.

2.3 Supervised Methods

We tested 4 compositions for representing (x, y) as
a feature vector: concat (~x⊕~y) (Baroni et al., 2012),
diff (~y − ~x) (Roller et al., 2014; Weeds et al., 2014;
Fu et al., 2014), only x (~x), and only y (~y). For each
composition, we trained two types of classifiers, tun-
ing hyperparameters with a validation set: logistic
regression with L1 or L2 regularization, and SVM
with a linear kernel or quadratic kernel.

3 Negative Results

Based on the above setup, we present three nega-
tive empirical results, which challenge the claim that
the methods presented in §2.3 are learning a rela-
tion between x and y. In addition to our setup, these
results were also reproduced in preliminary exper-



Dataset Lexical +Contextual ∆
Kotlerman 2010 .346 .437 .091

Bless 2011 .960 .960 .000
Baroni 2012 .638 .802 .164
Turney 2014 .644 .747 .103
Levy 2014 .302 .370 .068

Table 2: The performance (F1) of lexical versus contex-
tual feature classifiers on a random train/test split with
lexical overlap.

iments by applying the JoBimText framework4 for
scalable distributional thesauri (Biemann and Riedl,
2013) using Google’s syntactic N-grams (Goldberg
and Orwant, 2013) as a corpus.

Lexical Memorization is the phenomenon in
which the classifier learns that a specific word in a
specific slot is a strong indicator of the label. For
example, if a classifier sees many positive examples
where y = animal, it may learn that anything that
appears with y = animal is likely to be positive,
effectively memorizing the word animal.

The following experiment shows that supervised
methods with contextual features are indeed mem-
orizing words from the training set. We randomly
split each dataset into 70% train, 5% validation, and
25% test, and train lexical-feature classifiers, using a
one-hot vector representation of y as input features.
By definition, these classifiers memorize words from
the training set. We then add contextual-features (as
described in §2.1), on top of the lexical features,
and train classifiers analogously. Table 2 compares
the best lexical- and contextual-feature classifiers on
each dataset. The performance difference is under
10 points in the larger datasets, showing that much
of the contextual-feature classifiers’ success is due
to lexical memorization. Similar findings were also
reported by Roller et al. (2014) and Weeds et al.
(2014), supporting our memorization argument.

To prevent lexical memorization in our following
experiments, we split each dataset into train and test
sets with zero lexical overlap. We do this by ran-
domly splitting the vocabulary into “train” and “test”
words, and extract train-only and test-only subsets of
each dataset accordingly. About half of each original
dataset contains “mixed” examples (one train-word
and one test-word); these are discarded.

4http://jobimtext.org

Dataset Best Supervised Only ~y Unsupervised
Kotlerman 2010 .408 .375 .461

Bless 2011 .665 .637 .197
Baroni 2012 .774 .663 .788
Turney 2014 .696 .649 .642
Levy 2014 .324 .324 .231

Table 3: A comparison of each dataset’s best supervised
method with: (a) the best result using only y composi-
tion; (b) unsupervised cosine similarity cos(~x, ~y). Perfor-
mance is measured by F1. Uses lexical train/test splits.

Supervised vs Unsupervised While supervised
methods were reported to perform better than un-
supervised ones, this is not always the case. As a
baseline, we measured the “vanilla” cosine similar-
ity of x and y, tuning a threshold with the validation
set. This unsupervised symmetric method outper-
forms all supervised methods in 2 out of 5 datasets
(Table 3).

Ignoring x’s Information We compared the per-
formance of only y to that of the best configuration
in each dataset (Table 3). In 4 out of 5 datasets, the
difference in performance is less than 5 points. This
means that the classifiers are ignoring most of the
information in x. Furthermore, they might be over-
looking the compatibility (or incompatibility) of x to
y. Weeds et al. (2014) reported a similar result, but
did not address the fundamental question it beckons:
if the classifier cannot capture a relation between x
and y, then what is it learning?

4 Prototypical Hypernyms

We hypothesize that the supervised methods exam-
ined in this paper are learning whether y is a likely
“category” word – a prototypical hypernym – and,
to a lesser extent, whether x is a likely “instance”
word. This hypothesis is consistent with our previ-
ous observations (§3).

Though the terms “instance” and “category” per-
tain to hypernymy, we use them here in the broader
sense of entailment, i.e. as “tends to entail” and
“tends to be entailed”, respectively. We later show
(§4.2) that this phenomenon indeed extends to other
inference relations, such as meronymy.

4.1 Testing the Hypothesis
To test our hypothesis, we measure the performance
of a trained classifier on mismatched instance-



Dataset Top Positional Contexts of y
Kotlerman 2010 grave−1, substances+2, lend-lease−1, poor−2, bureaucratic−1, physical−1, dry−1, air−1, civil−1

Bless 2011 other−1, resembling+1, such+1, assemblages+1,magical−1, species+1, any−2, invertebrate−1
Baroni 2012 any−1, any−2, social−1, every−1, this−1, kinds−2, exotic−1,magical−1, institute−2, important−1
Turney 2014 of+1, inner−1, including+1, such+1, considerable−1, their−1, extra−1, types−2, different−1, other−1
Levy 2014 psychosomatic−1, unidentified−1, auto-immune+2, specific−1, unspecified−1, treatable−2, any−1

Table 4: Top positional features learned with logistic regression over concat. Displaying positive features of y.

category pairs, e.g. (banana, animal). For each
dataset, we generate a set of such synthetic exam-
ples S, by taking the positive examples from the test
portion T+, and extracting all of its instance words
T+
x and category words T+

y .

T+
x = {x|(x, y) ∈ T+} T+

y = {y|(x, y) ∈ T+}

We then define S as all the in-place combinations of
instance-category word pairs that did not appear in
T+, and are therefore likely to be false.

S =
(
T+
x × T+

y

)
\ T+

Finally, we test the classifier on a sample of S (due to
its size). Since all examples are assumed to be false,
we measure the false positive rate as match error
– the error of classifying a mismatching instance-
category pair as positive.

According to our hypothesis, the classifier can-
not differentiate between matched and mismatched
examples (T+ and S, respectively). We therefore
expect it to classify a similar proportion of T+ and
S as positive. We validate this by comparing recall
(proportion of T+ classified as positive) to match er-
ror (proportion of S classified as positive). Figure 1
plots these two measures across all configurations
and datasets, and finds them to be extremely close
(regression curve: match error = 0.935 · recall),
thus confirming our hypothesis.

4.2 Prototypical Hypernym Features

A qualitative way of analyzing our hypothesis is to
look at which features the classifiers tend to con-
sider. Since SVD and SGNS features are not eas-
ily interpretable, we used PPMI with positional con-
texts as our representation, and trained a logistic re-
gression model with L1 regularization using concat
over the entire dataset (no splits). We then observed
the features with the highest weights (Table 4).

Figure 1: The correlation of recall (positive rate on T+)
with match error (positive rate on S) compared to perfect
correlation (green line).

Many of these features describe dataset-specific
category words. For example, in Levy’s medical-
domain dataset, many words entail “symptom”,
which is captured by the discriminative feature
psychosomatic−1. Other features are domain-
independent indicators of category, e.g. any−1,
every−1, and kinds−2. The most striking features,
though, are those that occur in Hearst (1992) pat-
terns: other−1, such+1, including+1, etc. These
features appear in all datasets, and their analogues
are often observed for x (e.g. such−2). Even quali-
tatively, many of the dominant features capture pro-
totypical or dataset-specific hypernyms.

As mentioned, the datasets examined in this work
also contain inference relations other than hyper-
nymy. In Turney’s dataset, for example, 77 %
of positive pairs are non-hypernyms, and y is of-
ten a quality (coat → warmth) or a component
(chair → legs) of x. Qualities and components
can often be detected via possessives, e.g. of+1 and
their−1. Other prominent features, such as extra−1



and exotic−1, may also indicate qualities. These ex-
amples suggest that our hypothesis extends beyond
hypernymy to other inference relations as well.

5 Analysis of Vector Composition

Our empirical findings show that concat and diff are
clearly ignoring the relation between x and y. To un-
derstand why, we analyze these compositions in the
setting of a linear SVM. Given a test example, (x, y)
and a training example that is part of the SVM’s sup-
port (xs, ys), the linear kernel function yields Equa-
tions (1) for concat and (2) for diff.

K (~x⊕ ~y, ~xs ⊕ ~ys) = ~x · ~xs + ~y · ~ys (1)

K (~y − ~x, ~ys − ~xs) = ~x · ~xs + ~y · ~ys − ~x · ~ys − ~y · ~xs (2)

Assuming all vectors are normalized (as in our ex-
periments), the kernel function of concat is actually
the similarity of the x-words plus the similarity of
the y-words. Two dis-similarity terms are added to
diff’s kernel, preventing the x of one pair from being
too similar to the other pair’s y (and vice versa).

Notice the absence of the term ~x · ~y. This means
that the classifier has no way of knowing if x and y
are even related, let alone entailing. This flaw makes
the classifier believe that any instance-category pair
(x, y) is in an entailment relation, even if they are
unrelated, as seen in §4. Polynomial kernels also
lack ~x · ~y, and thus suffer from the same flaw.

6 Adding Intra-Pair Similarity

Using an RBF kernel with diff slightly mitigates this
issue, as it factors in ~x · ~y, among other similarities:

KRBF (~y − ~x, ~ys − ~xs) = e−
1
σ2
|(~y−~x)−( ~ys− ~xs)|2

= e−
1
σ2

(~x~y+ ~xs ~ys+~x ~xs+~y ~ys−~x ~ys−~y ~xs−2) (3)

A more direct approach of incorporating ~x · ~y is to
create a new kernel, which balances intra-pair simi-
larities with inter-pair ones:

KSIM ((~x, ~y) , ( ~xs, ~ys)) = (~x~y · ~xs ~ys)
α
2 (~x ~xs · ~y ~ys)

1−α
2 (4)

While these methods reduce match error –
match error = 0.618 · recall versus the previous
regression curve of match error = 0.935 · recall
– their overall performance is only incrementally
better than that of linear methods (Table 5). This
improvement is also, partially, a result of the non-
linearity introduced in these kernels.

Dataset LIN(concat) LIN(diff) RBF(diff) SIM
Kotlerman 2010 .367 .187 .407 .332

Bless 2011 .634 .665 .636 .687
Baroni 2012 .745 .769 .848 .859
Turney 2014 .696 .694 .691 .641
Levy 2014 .229 .219 .252 .244

Table 5: Performance (F1) of SVM across kernels. LIN
refers to the linear kernel (equations (1) and (2)), RBF to
the Gaussian kernel (equation (3)), and SIM to our new
kernel (equation (4)). Uses lexical train/test splits.

7 The Limitations of Contextual Features

In this work, we showed that state-of-the-art su-
pervised methods for recognizing lexical inference
appear to be learning whether y is a prototypical
hypernym, regardless of its relation with x. We
tried to factor in the similarity between x and y,
yet observed only marginal improvements. While
more sophisticated methods might be able to extract
the necessary relational information from contextual
features alone, it is also possible that this informa-
tion simply does not exist in those features.

A (de)motivating example can be seen in §4.2. A
typical y often has such+1 as a dominant feature,
whereas x tends to appear with such−2. These fea-
tures are relics of the Hearst (1992) pattern “y such
as x”. However, contextual features of single words
cannot capture the joint occurrence of x and y in that
pattern; instead, they record only this observation
as two independent features of different words. In
that sense, contextual features are inherently hand-
icapped in capturing relational information, requir-
ing supervised methods to harness complementary
information from more sophisticated features, such
as textual patterns that connect x with y (Snow et al.,
2005; Turney, 2006).
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