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Abstract
In this work, we study the paralinguistic speech task of

eating condition classification and present our submitted clas-
sification system for the INTERSPEECH 2015 Computational
Paralinguistics challenge. We build upon a deep learning lan-
guage identification system, which we repurpose for general
audio sequence classification. The main idea is that we train lo-
cal convolutional neural network classifiers that automatically
learn representations on smaller windows of the full sequence’s
spectrum and to aggregate multiple local classifications towards
a full sequence classification. A particular challenge of the task
is training data scarcity and the resulting overfitting of neural
network methods, which we tackle with dropout, synthetic data
augmentation and transfer learning with out-of-domain data
from a language identification task. Our final submitted system
achieved an UAR score of 75.9% for 7-way eating condition
classification, which is a relative improvement of 15% over the
baseline.
Index Terms: speech classification, computational paralinguis-
tics, neural networks, deep learning, transfer learning, data aug-
mentation

1. Introduction
The study of paralinguistic speech involves perceptual speech
phenomenons that lie beyond the pure transcriptional content of
spoken speech [1]. The term paralanguage [2], literally ’along-
side language’, was coined by linguist Archibald Hill. With
the advent of computational paralinguistics, such phenomena
are attained by automatic means. Automated gender discrimi-
nation, age estimation [3] and emotional state classification [4]
are some examples with a range of diverse applications in e.g.
health care, commerce (advertising) and education. Computa-
tional paralinguistic speech tasks can encounter data sparsity
problems, as it can be more challenging to find or generate
larger amounts of labelled training examples for the desired do-
main than in other areas of speech research.

It is also not easy to argue what constitutes good features
for a specific paralinguistic regression or classification task and
for some of these tasks, even human performance can be sub-
optimal [5]. However, a specific set of speech features devel-
oped in a particular paralinguistic domain can often be applied
to another paralinguistic domain with success [6]. It would cer-
tainly be desirable, if features could adapt automatically to a
new problem domain, instead of the need to manually engineer
and tune features. The recent resurge of interest in neural net-
work approaches to image, audio and text classification prob-
lems enables such a new learning paradigm: promising feature
representations can also be learned automatically from the data
of the problem domain [7].

In this paper, we describe the methods we used for our entry
in the Eating Condition (EC) challenge of the Interspeech 2015
Computational Paralinguistics ChallengE (ComParE2015) [8].
We use the iHEARu-EAT corpus [9], which consists of 945
training utterances and 469 test utterances. The task is to pre-
dict the kind of food someone eats while s/he speaks and it is
posed as a 7-class sequence classification problem with six spe-
cific kinds of food and one class for speech without food (No
Food, Banana, Crisp, Nectarine, Haribo, Apple, Biscuit).

Nonetheless, we think our ideas should be transferable to
other paralinguistic and audio classification tasks. We partic-
ularly address the challenge of having only a few labelled ex-
ample sequences for each class and show how the training pro-
cess makes meaningful use of out-of-domain data with transfer
learning [10, 11] and data augmentation with synthetic train-
ing data examples. Our main idea is to train local classifiers
that automatically learn representations on smaller windows of
an audio sequence and to combine multiple classifications from
such windows to obtain a classification result for a full sequence
input. Alongside better classification performance compared
to systems trained only on per-sequence openSMILE [12, 13]
baseline features, our window approach has the advantage that
it also enables us to extract exact positions of an audio sequence
that are most relevant for its assigned class.

2. Methods and approaches
Our approach bears similarity to the proposed deep learn-
ing architecture for language identification in [14]. We have
obtained good results by replacing Deep Neural Networks
(DNNs) in this pipeline with Convolutional Neural Networks
(CNNs) [15, 16, 17], which have demonstrated recognition ac-
curacy better than or comparable to humans in several visual
recognition tasks [18, 19].

2.1. CNN-based audio sequence classification

Similarly to the recent work in applying CNNs to the audio and
speech domain [21, 22], we interpret overlapping windows in
a frequency spectrum representation as fixed-dimensional 2D
input to the CNNs (comparable to grey scale images). We
have used windows of 40-dimensional log mel filterbank fea-
tures (FBANK) as input to the classifier. End-to-end represen-
tation learning on raw audio would also be possible, but recent
results suggest that providing some kind of spectrogram input
gives better performance [23]. Each FBANK vector is calcu-
lated from a time frame of 25 ms of raw audio and we use a
window of +/- 5 feature vectors around a central feature vector
as input to the CNN. A window has thus a height of 40 and a
width of 11 elements, totalling 440 inputs. We shift the FBANK
window by two frames through all FBANK frames of the signal.
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Figure 1: The CNN architecture used for learning on local FBANK patches Xi of a full sequence X (drawn in the style of [20]).
Contribution weights wi are learned separately with linear models, one for each class, which assign a weight to the local classification’s
contribution to the full classification of a sequence.

Figure 1 illustrates our CNN architecture, along with a
weight prediction scheme using linear models. We follow the
standard CNN design of having alternating convolutional and
maxpool layers followed by fully connected layers [17]. Ini-
tially, we used three convolutional and maxpool layers followed
by two fully connected layers. This is much smaller than pro-
posed architectures for the ImageNet classification task [17, 19]
to account for the smaller input size of the CNN and the smaller
amount of training data available in iHEARu-EAT. We also use
smaller convolution kernel sizes of 3x3 and 2x2, to achieve an
implicit regularisation effect [24]. One particular challenge of
audio sequence classification is that the length of unseen se-
quences is not fixed. We have implemented a simple majority
voting strategy that selects the highest count of individual class
predictions across all windows of the sequence and a weighted
majority voting that learns contribution weights with linear re-
gression models that we describe in the next subsection.

2.2. Weighted majority voting

We use one Ridge linear regression [25] model per class ck,
to predict the weight of a window’s prediction towards the full
prediction of the sequence. A CNN model is trained on all win-
dows Xi of all audio sequences seqs = seq1, seq2, ..., seqn,
Xi ∈ seqj . Each window is assigned the output class c of the
sequence j it belongs to. Then, for each Xi we let the model
predict the most probable class ck given its window of observa-
tion. We assign y = 0.0 for each wrong prediction and y = 1.0
for each successful prediction on the training data the model
was trained on. The assumption here is that some windows of
a sequence contain no discriminative information (e.g. only si-
lence). A linear regression model mck should then learn the
connection between all predicted class probabilities of its class
ck given the window of observation Xi and weights wi = y.
Ideally, these weights should be closer to 0.0 if the predicted
input class probabilities of the observation Xi are likely to con-
tribute to an incorrect classification and close to 1.0 if it sup-
ports the full sequence’s true class. Then, we add the predicted
weight values wi towards a final vote of class ck for seqj .

2.3. Dropout

We employ dropout [26] as a first measure to counter overfitting
in training our networks. It has been specifically proposed for
cases where labelled data is scarce and thus where overfitting

is likely. It works by randomly omitting a certain percentage
of nodes in the network at training time, while using the full
network at test time.

2.4. Data Augmentation

Data augmentation has been widely used in neural network
based pattern recognition tasks [16, 27, 17]. In image pro-
cessing, data augmentation techniques are usually intuitive and
transformations such as translation, deformation and reflec-
tion [17] have led to significant improvements in recognition
accuracy. Inspired by these image augmentation techniques, we
employ a simple audio augmentation technique: We artificially
generate pitch shifted versions of the original training files and
add them to the training set. We make use of the Rubberband
utility1 to generate new files shifted by one semitone upwards
and downwards, without changing the length of the recordings.
We set the ”crispness” level to 6, intended for drum tracks, as
this produced the best sounding pitch-shifted speech output and
was deemed somewhat fitting for smacking noises.

2.5. Transfer learning

The idea of training a neural network on a related problem first
and transferring its weight configuration for a target problem
instead of random initialization is an old one [28, 29]. How-
ever, literal and naive weight transfer has been shown to not
only be ineffective but also detrimental to the classifiers perfor-
mance [29]. These results have now been challenged on sev-
eral visual recognition tasks with deep neural networks, where
representation transfer has been shown to be astoundingly ef-
fective [30]. Azizpour et al. [31] have recently systematically
identified the list of factors that affect the transferability of CNN
representations and of weight configurations for visual recogni-
tion tasks, with exhaustive experimental evidence showing how
these factors should be set.

An important factor is, unsurprisingly, how related the two
problems are. It is then very important, dependent on the re-
latednesses of the tasks, how many of the first layers are trans-
ferred, while the remaining layers are randomly initialized as
usual. We have chosen the Voxforge2 corpus for transfer learn-
ing as it is freely available and easily accessible. We build

1http://breakfastquay.com/rubberband/
2http://www.voxforge.org/



a 7-class language classification problem, where the sequence
should be classified as German, French, Spanish, Italian, Por-
tuguese, Dutch or Russian. We selected 3000 utterances for
each language from the Voxforge data set, which is roughly 30
times larger than the iHEARu-EAT dataset. We then pretrained
our CNN model on this problem first and then transferred the
weight matrices of the model to a new CNN model, which we
train on the iHEARu-EAT data. We have both tested the naive
transfer learning approach where we transfer all layers and one
where we only transfer the weights of convolutional layers, but
initialize the fully connected layers randomly.

2.6. Hyperparameters

For training DNNs and CNNs we use Nesterov’s Accelerated
Gradient Descent (NAG, Nesterov momentum) [32, 33]. For all
random weight initializations, we have chosen He-initialization,
as described in [19]. We use categorical cross-entropy as the
objective loss function, i.e. the measure of error between com-
puted and desired target outputs of the training data, which we
minimize. One of the downsides of gradient based optimiza-
tion methods, which are primarily used in DNNs and CNNs,
is that they usually introduce additional hyperparameters that
govern the behaviour of the optimization techniques. We start
with reasonable defaults and follow best practices: 0.02 is cho-
sen as the start learning rate and 0.9 as the start momentum. For
transfer learning, we slightly reduce the initial learning rate to
0.01 [31]. Then, we linearly reduce it with each epoch, so that
the learning rate for the last epoch is 0.0001. Similarly, mo-
mentum is linearly increased [33], so that it is 0.999 in the last
epoch. We track performance of the network for each epoch on
1% of all patches, which can be seen as held-out classification
performance on known speakers. We train all our cross valida-
tion models for 400 epochs. We set dropout to 0.1, 0.2 and 0.3
for the first, second and third convolutional layers and 0.5 for
all fully connected layers.

3. Results
We implemented the proposed approaches and methods in the
previous section using Nolearn+Lasagne3 and Scikit-learn [34]
in Python. Since Lasagne is based on the Theano [35] architec-
ture, we could use GPUs to speed up computations. The official
development evaluation is unweighted average recall (UAR)
with leave-one-speaker-out cross-validation (LOSO-CV). This
proved to be computationally impractical for us, as comput-
ing one CNN model can take up to one day on a reasonable
GPU (Nvidia Geforce 970), depending on the number of train-
ing epochs used. We opted to do 5-fold cross validation over the
speakers instead, with 400 epochs of training. Table 1 shows
our results for this cross validation method. While this allowed
us to test different ideas quicker, it makes our results not com-
parable to the baseline LOSO-CV evaluation of the challenge
(61.3% 7-class UAR) [8]. We thus recomputed the baseline
results on exactly the same split with 3 different classifiers:
SVM (C=0.001), Random Forests (RF) and a 3-layer DNN
with dropout. CNN results were computed with the architecture
shown in Figure 1. We performed mean normalization prior to
training on the FBANK patches. For all results shown, we have
kept the number of hidden units in the fully connected layers at
500. Preliminary experiments showed that setting hidden units
to 1000 or 250 in the two last fully-connected layers of the CNN

3https://github.com/dnouri/nolearn and https://
github.com/benanne/Lasagne

Method UAR 7-class UAR 2-class

Baseline features (SVM) 56.0%
(+/- 2.7%)

94.3%
(+/- 2.3%)

Baseline features (RF) 53.6%
(+/- 2.9%)

91.4%
(+/- 4.3%)

net0:
Baseline features (DNN)

59.2%
(+/- 4.2%)

93.8%
(+/- 3.6%)

net1:
CNNs (simple maj. vote)

57.8%
(+/- 3.6%)

94.4%
(+/- 1.8%)

net2:
net1+dropout

61.6%
(+/- 6.1%)

94.1%
(+/- 2.8%)

net3:
net2+weighted maj.

63.1%
(+/- 1.4%)

95.0%
(+/- 2.2%)

net4:
net3+naive transfer learning

62.2%
(+/- 3.6%)

95.4%
(+/- 2.2%)

net5:
net3+transfer learning

65.5%
(+/- 2.2%)

96.6%
(+/- 1.4%)

CNN ensemble
(net0+net2+net3+net5)

67.2%
(+/- 2.6%)

96.3%
(+/- 2.0%)

Table 1: UAR mean and standard deviation with 5-fold
speaker independent cross validation, using the training data of
iHEARu-EAT. In each split the data of 16 speakers were used
for training the classifier(s) and the utterances of the remaining
4 speakers were used to evaluate classification performance.

yielded worse results.
Without any regularization method, a CNN on FBANK

features does actually perform worse than a regularized DNN
on per-sequence baseline features (net1). However, if we use
dropout, we are able to out-perform the results obtained with
the baseline features (net2). Replacing the simple majority vot-
ing with our weighted majority voting based on linear regres-
sion models also improves performance (net3), but using trans-
fer learning naively by transferring all weights from the source
task to the target task produces worse results (net4). However,
when the last two fully connected layers are not transferred, but
initialized randomly, we found transfer learning to be surpris-
ingly effective (net5), showing a large single-technique contri-
bution. If we combine the class probability estimates of dif-
ferently trained CNN models by their harmonic mean, we can
further improve our score, beyond the performance of any sin-
gle method (ensemble).

The first ensemble model for predicting on the test set was
retrained on the full training set with the same parameters. With
400 training epochs, this produced a 70.0% 7-class UAR on

Submitted system UAR Acc.
8-layer CNN ensemble
(400 epochs) 70.0% 70.8%

+ 10-layer CNN ensemble
(3000 epochs) 73.6% 74.4%

+ 10-layer CNN with data aug.
(3000 epochs) 75.4% 76.1%

+ Log. regression on CNN features
(trained with SGD, 1000 epochs) 75.9% 76.5%

Table 2: 7-class UAR and accuracy scores on the official test
set, as reported by the official challenge test submission sys-
tem. Each new submission is an ensemble which also includes
previous models. Five individual submissions were allowed.
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Figure 2: Minimizing the objective function: training loss per
epoch for a CNN with completely random initialization and one
with transferred weights. Validation loss is measured on held-
out data from already known speakers.

the official test set, see Table 2. We proceeded to make some
changes which extended training time considerably (> 5 days
per model) and were thus only evaluated on the test set: We
added one additional convolutional layer and pooling layer be-
fore the network’s fully connected layers with the same pa-
rameters as its previous convolutional and pooling layer and
extended the input window to 18 frames with 60 dimensional
FBANK features. We also trained the network for 3000 epochs
instead of 400 epochs. An ensemble network trained with this
larger network raises our test score to 73.6% UAR. Finally,
adding a CNN to the ensemble that was additionally trained on
augmented pitch-shifted training examples and logistic regres-
sion classifiers trained on CNN feature embeddings resulted in
an UAR of 75.9%, which is 15% better than the baseline UAR
of 65.9% reported in [8]. Figure 2 compares validation loss
and training loss per epoch for CNNs with completely random
initialization and transferred convolutional kernel weights from
the Voxforge language identification task, where the latter gives
an advantage in all epochs.

3.1. Insights

Figure 3 shows an example classification on an at training time
unseen speaker. The correct answer is ’Crisp’, which the model
got right. Note that the ’No food’ class is relatively inactive for
almost the entire utterance, which suggests that a small window
of a whole utterance is sufficient to decide if someone eats while
he speaks or not. The class ’Crisp’ has several distinct spots
where classification probabilities are very high, which corre-
spond to characteristic crunch noises in the audio. Our classifi-
cation pipeline is capable of producing insights, as it can point
to sound examples and exact positions in an utterance which are
most characteristic and discriminative of its class.

4. Conclusion
The eating challenge (EC) provides an interesting audio classifi-
cation task, where relatively few samples per class are available,
but good automated classification performance can still be at-
tained. Prior to 2012, when neural networks were renowned for
their propensity to overfit, they would have probably not been
considered for such a learning task. Without techniques like
dropout and transfer learning, it would have been difficult to
beat the baseline results. On the cross validation results, the use
of additional speech data via transfer learning to initialize early

...

...

...

No_Food
Banana
Crisp
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Haribo
Apple
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Figure 3: Classification of (yet unseen) train utterance
train_0112.wav by a CNN model. The correct class is
’Crisp’. From top to bottom: FBANK features, CNN embed-
ding and the 7 class probabilities for its corresponding win-
dow. Orange/red colours represent higher values, while dark
blue represents zero.

layers of the CNN showed a large single-technique improve-
ment and overall best performance was achieved with a vot-
ing scheme between several CNNs. At the expense of a longer
training time, we could also further improve our test set result
with data augmentation and a bigger network, yielding a final
improvement of 15% relative to the baseline score.

To the best of our knowledge, this is the first time that a
convolutional neural network has been applied to a paralinguis-
tic speech task. We have opted to a pipeline where individual
classification results are averaged across a sequence, to produce
a combined classification result for the full sequence. Exami-
nation of the feature representation of the last fully connected
layer suggests that such an automatically learned representa-
tion is fairly sparse. Our results concerning the transferabil-
ity of convolutional neural network weights are in line with
newer results and insights obtained on visual object recognition
tasks [31]: It is paramount to only transfer the first layers to the
target task and to initialise the last layers of the target network
at random, since these are very specific to the target task, while
the first layers of a CNN can encode more generic feature trans-
formations. A different dataset than the Voxforge corpus would
probably be fitter for this kind of transfer learning, as literature
and intuition suggests that the closeness of the source to the tar-
get task is related to how well the transfer learning works. But
especially considering that the Voxforge corpus is recorded in
very mixed and varying conditions and that its recording quality
is not always very good due to the crowdsourced nature of the
project, the obtained results are surprisingly good. We believe
that the classification pipeline presented in this paper could also
be interesting to other - not only paralinguistic - audio classifi-
cation tasks.4
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