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Abstract

We introduce an approach to word sense
induction and disambiguation. The method
is unsupervised and knowledge-free: sense
representations are learned from distribu-
tional evidence and subsequently used to
disambiguate word instances in context.
These sense representations are obtained
by clustering dependency-based second-
order similarity networks. We then add
features for disambiguation from heteroge-
neous sources such as window-based and
sentence-wide co-occurrences, and explore
various schemes to combine these context
clues. Our method reaches a performance
comparable to the state-of-the-art unsuper-
vised word sense disambiguation systems
including top participants of the SemEval
2013 word sense induction task and two
more recent state-of-the-art neural word
sense induction systems.

1 Introduction

A word sense disambiguation (WSD) system takes
as input a word and its context and outputs a sense
of this word (Navigli, 2009). While the goal of
all such methods is the same, there are substantial
differences in their implementation. Some systems
use knowledge-based approaches that rely on hand-
crafted sense inventories, such as WordNet (Miller,
1995), while others use supervised approaches that
learn from hand-labeled training data, such as Sem-
Cor (Miller et al., 1993). However, hand-crafted
lexical resources and training data are expensive to
create, often inconsistent and domain-dependent.
Furthermore, these methods assume a fixed sense
inventory for each word. This is problematic as (1)
senses emerge and disappear over time; (2) differ-
ent applications require different granularities of a
sense inventory.

An alternative route explored in this paper
is based on an unsupervised knowledge-free ap-
proach. Our method learns an interpretable sense
inventory by clustering semantically similar words.
To learn sense inventories, we rely on the JoBim-
Text framework and distributional semantics (Bie-
mann and Riedl, 2013), adding a word sense dis-
ambiguation functionality on top of it.

The key contribution of this paper is a framework
that relies on such induced inventories as a pivot
for learning contextual feature representations and
uses them for disambiguation. The advantage of
our method, compared to prior art, is that it can
incorporate several types of context features in an
unsupervised way. We demonstrate our approach,
by combining four heterogeneous types of context
features. The method achieves state-of-the-art re-
sults in unsupervised WSD.

2 Related Work

Approaches to WSD vary according to the level of
supervision and according to the amount of external
knowledge they use (Agirre and Edmonds, 2007;
Navigli, 2009).

Supervised approaches use an explicitly sense-
labeled training corpus to construct a model, usu-
ally building one model per target word. Successful
machine learning setups include SVMs (Lee and
Ng, 2002) and classifier ensembles (Klein et al.,
2002). Wee (2010) shows that decision trees us-
ing bag-of-word features are unable to outperform
the most frequent sense baseline. Supervised ap-
proaches achieve the top performance in shared
tasks on WSD such as SemEval, but require con-
siderable amounts of sense-labeled examples.

A WSD method that uses predefined dictionar-
ies, lexical resources or semantic ontologies can
be considered knowledge-based. Knowledge-based
systems rely on a lexical resource and vary from the
classical Lesk (1986) algorithm that use word defi-
nitions to the BabelFy (Moro et al., 2014) system



that harnesses a multilingual semi-automatically
constructed lexical semantic network. Knowledge-
based approaches to WSD do not learn a model
per target, but rather utilize information from a lex-
ical resource that provides the sense inventory as
well. Examples include (Lesk, 1986; Banerjee and
Pedersen, 2002; Pedersen et al., 2005).

In this paper we deal with unsupervised and
knowledge-free WSD approaches. They use neither
handcrafted lexical resources nor hand-annotated
sense-labeled corpora. Instead, they induce word
sense inventories automatically from corpora. Ac-
cording to Navigli (2009), unsupervised WSD
methods fall into two categories: context clustering
(Pedersen and Bruce, 1997; Schütze, 1998) and
word (ego-network) clustering (Lin, 1998; Pantel
and Lin, 2002; Widdows and Dorow, 2002; Bie-
mann, 2006; Hope and Keller, 2013).

Context clustering methods, e.g. (Schütze, 1998),
represent an instance by a vector that character-
izes its context, where the definition of context can
vary greatly. These vectors of each instance are
then clustered. Sense embeddings methods extend
word embeddings (Mikolov et al., 2013) so that
they learn one embedding per word sense and are
commonly fitted with a disambiguation mechanism
(Huang et al., 2012; Tian et al., 2014; Neelakantan
et al., 2014; Bartunov et al., 2016; Li and Juraf-
sky, 2015). The approach of Pelevina et al. (2016)
is similar to the one presented in this paper, but
instead of sparse features the authors use word em-
beddings.

The AI-KU system (Baskaya et al., 2013) is also
based on context clustering. First, for each instance
the system identifies the 100 most probable lexical
substitutes using an n-gram model (Yuret, 2012).
Each instance is thus represented by a bag of sub-
stitutes. These vectors are clustered using k-means.
The Unimelb system by Lau et al. (2013) imple-
ments context clustering using the Hierarchical
Dirichlet Process (HDP) (Teh et al., 2006). Latent
topics discovered in the training instances, specific
to every word, are interpreted as word senses.

Another class of word sense induction systems
cluster word ego-networks, rather than single in-
stances of words. An ego network consists of a
single node (ego) together with the nodes they are
connected to (alters) and all the edges among those
alters, cf. Figure 1. Nodes of an ego-network can
be (1) words semantically similar to the target word,
as in our approach, or (2) context words relevant to

the target, as in the UoS system (Hope and Keller,
2013). Edges usually represent semantic similari-
ties resp. association strength between nodes. The
sense induction process using word graphs was pre-
viously explored by (Widdows and Dorow, 2002;
Biemann, 2010; Hope and Keller, 2013). Disam-
biguation of instances is performed by assigning
the sense with the highest overlap between the in-
stance’s context words and the words of the sense
cluster, similar to the simplified Lesk algorithm.

The UoS system by Hope and Keller (2013)
builds a word ego-network with nodes being the
300 highest-ranked words in a dependency relation
with the target word and clusters the graph to obtain
senses weighted by word similarities. The graph
is clustered with the MaxMax algorithm. Similar
clusters are merged. Disambiguation of instances is
performed by assigning the sense with the highest
overlap between the instance’s context words and
the words of the sense cluster.

While arguably the UoS system is the most sim-
ilar to ours, there are crucial differences. First,
nodes in their ego network are (first-order) context
features, not (second-order) similar words. Sec-
ond, edge weights in our network represent the
number of shared features, not the significance of
co-occurrences. Finally, their disambiguation com-
ponent relies on overlap between context and a
sense’s cluster words.

Our system combines several of the above ideas,
such as word sense induction based on clustering
word similarities (Pantel and Lin, 2002), but in con-
trast to other unsupervised knowledge-free systems,
we are able to combine and systematically evalu-
ate the evidence from several features that model
context differently.

3 Data-Driven Noun Sense Modelling

Our method consists of the three steps: computa-
tion of a distributional thesaurus, word sense induc-
tion, and building a disambiguation model of the
induced senses.

3.1 Distributional Thesaurus of Nouns

The goal of this step is to build a graph of word sim-
ilarities, such as “(tablet, notebook, 0.781)”.1 To
compute the graph, we used the JoBimText frame-
work (Biemann and Riedl, 2013). While multiple
alternatives exist for computing of semantic simi-

1We use the terms “semantic similarity/relatedness” to de-
note scores derived with a distributional semantics approach.
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Figure 1: Visualization of the ego-network of
the word “tablet” with three color-coded senses:
“stone”, “device”, and “pill”. Note that the ego
word “tablet” is excluded from clustering.

larity e.g. (Mikolov et al., 2013), this framework
is convenient in our case due to efficient computa-
tion of nearest neighbours for all words in the cor-
pus while providing comparable precision (Riedl,
2016). For each noun in the corpus we retain the
200 most similar nouns.

3.2 Noun Sense Induction

Similar to (Pantel and Lin, 2002) and (Biemann,
2006), we induce a sense inventory which rep-
resents senses with word clusters. For instance,
the the sense “tablet (device)” can be represented
by the cluster “smartphone, notebook, scroll,
manuscript, inscription”, see Figure 1. To compute
the clustering, first we construct an ego-network
G of a word t and then perform graph clustering
of this network. An ego-network (Everett and
Borgatti, 2005) contains all nodes connected to
the target node, called “ego”. The identified clus-
ters are interpreted as senses. Figure 1 depicts an
ego-network of “tablet”. Panchenko et al. (2013)
proposed a system for dynamic visualization of
word ego-networks similar to those used in our
method.2 The key property of word ego-networks
is that the words with similar senses tend to be con-
nected, while having fewer connections to words
from other senses, therefore forming clusters.

The sense induction processes one word t of the
distributional thesaurus T per iteration. First, we
retrieve nodes of the ego-network G being the N
most similar words V of t according to T . Note
that the target word t itself is not part of the ego-
network. Second, we connect the nodes in G to

2http://www.serelex.org

their n most similar words from T . Finally, the ego-
network is clustered with the Chinese Whispers
algorithm (Biemann, 2006).

The sense induction algorithm has two meta-
parameters: the ego-network size (N) of a target
ego word t; and the ego-network connectivity (n)
each neighbour v is allowed to have within the net-
work. The parameter n regulates the granularity of
the inventory. In our experiments we set N and n
to 200 to obtain a coarse-grained inventory. In pre-
liminary experiments, we found inventories based
on dependency features superior to other invento-
ries, which is why we use only dependency-based
similarities in our WSI experiments.

3.3 Disambiguation of Induced Noun Senses

The goal of this step is to construct a disambigua-
tion model P(si|C) for each of the induced senses
si ∈ S, where C is a feature representation of the
target word w in a context. We approximate the
conditional probability of the sense si in the context
C = {c1, ...,cm} with the Naı̈ve Bayes model:

P(si|C) =
P(si)∏

|C|
j=1 P(c j|si)

P(c1, ...,cm)
, (1)

where the best sense given C is chosen as follow-
ing: s∗i = argmaxsi

P(si)∏
|C|
j=1 P(c j|si). To learn

this model we use the assumption that words from
a sense cluster S are, to some extent, semantically
substitutable. For example, consider the sense clus-
ter that represents the “fish” sense of the word
“bass”: {trout, catfish, eel, perch} and the following
sentence: “Most fish such as • live in freshwater
lakes and rivers”. As can be observed in this exam-
ple, similar words usually occur in similar contexts
and thus often have similar context features. As
it will be clear from our experiments, in spite of
inherent noise in such training data one can use
these data for training a disambiguation model.

Based on this assumption, it is possible to extract
sense representations by aggregation of features
from all words of the cluster si: we simply count in
the training corpus the number of co-occurrences
f (wk,c j) and the cluster word wik with the context
feature c j across all words belonging to the sense
cluster si: {w1, ...,wn}.

We cannot directly count any sense frequencies
f (si) or joint sense-feature frequencies f (si,c j)
from an unlabeled text corpus. To estimate these
frequencies we utilize an implication of our hy-
pothesis: since two similar words are assumed to



be substitutable, we assume any occurrence of the
i-th word from the k-th cluster, denoted as wk, to be
interchangeable with an occurrence of sense si. The
frequency of si is then given by f (si) = ∑

|si|
i f (wk),

where |si| is the number of words in the sense clus-
ter si. The same principle can be applied to de-
termine a joint frequency f (si,c j). To estimate
the probability of a sense feature given a cluster
word, we normalize the joint frequency by word
frequency. This solves the problem of dominating
high frequency cluster words:

P(c j|wk) =
f (wk,c j)

f (wk)
. (2)

A sense cluster usually contains a large number
of similar words (up to N = 200 in our case). Often
there is a high discrepancy among the similarities
of the cluster words to the target word. Thus, some
words better represent the sense than the others. To
account for this effect, we introduce an additional
weighting coefficient λk that is equal to the simi-
larity between k-th cluster word wk and the target
word w being disambiguated.

While cluster words may be ambiguous, this
issue is compensated by the fact that most clus-
ter words have common features, while the noisy
features of ambiguous words are specific to these
words: they are not confirmed by noisy features of
other ambiguous words. In some cases this assump-
tion does not hold, e.g. the word “Chelsea” is simi-
lar to other words such as “Milan” or “Barcelona”
that can represent both either a club or a city.

To normalize the score we divide it by the sum
of all the weights Λi = ∑

|si|
k λk:

P(c j|si) =
1−α

Λi

|si|

∑
k

λk
f (wk,c j)

f (wk)
+α, (3)

where α is a small number, e.g. 10−5, added for
smoothing.

The prior probability of each sense is computed
based on the largest cluster heuristic:

P(si) =
|si|

∑si∈S |si|
. (4)

We also explored estimation of the prior by a
weighted average of cluster word counts, but this
method provided lower results:

P(si) =
1
Λi

|si|

∑
k

λk f (wk). (5)

Note that to calculate the sense models we
only need (1) the distributional thesaurus T ; (2)

sense clusters; and (3) word-feature frequencies:
f (wk) = fn∗, and f (wk,c j) = fnm, where n is the
index of the word wk and m is the index of the
feature c j in a word-feature matrix. Finally, sense
features are pruned: in our experiments, each sense
si is represented with its most significant 20,000
context features in terms of P(c j|si).

3.4 Feature Extraction and Combination

Our method learns separate models P(si|C) for
each type of context features. During classification,
we either use these single-featured models directly
or combine them at the feature- or meta-levels as
described below.

Single features. We use four groups of word-
feature counts f (wk,c j) listed below to estimate
probability of the feature given a sense P̂(c j|si). A
single-sense model is then trained for each of these
feature types. Note that our framework allow using
of any other context features if one can estimate
f (wk,c j) for it.

• Cluster features directly use words from the
induced sense clusters, i.e. the P̂(c j|si) is
equal to the similarity score λk j between the
target word wk and the context word c j.

• Dependency features of a target word wk are
all syntactic dependencies attached to it. For
instance, the word “tablet” has features such
as “subj(•,type)” or “amod(digital,•)”, where
“•” represents the position of the target word.
During disambiguation, we use this kind of
features in two modes: the first one, denoted
as Deptarget, represents the context C as a set
of all dependencies attached to the target word
being disambiguated; the second mode, de-
noted as Depall represents the context C with
dependencies of all words in the sentence, not
just the target word. This is an expansion of
the feature representation aiming to compen-
sate the sparsity of the dependency represen-
tation.

• Dependency word features, denoted as Dep-
word, are extracted from all syntactic depen-
dencies attached to a target word wk. Namely,
we reduce dependency features to dependent
words. For instance, the feature “subj(•,write)”
would result in the feature “write”. We also
experimented with word co-occurrences, but
they provided lower results.



• Trigram features are pairs of left and right
words around the target word wk. For instance,
the word “tablet” has features such as “typ-
ing • or” and “digital • .”. Similarly to the
dependency features, we use two modes to
build the context C: the Trigramtarget rep-
resents the target word with one trigram ex-
tracted from its context; the Trigramall repre-
sents the target word with trigrams extracted
from all words in the sentence.

Feature-level combination of features. This
method builds the set of context features C unit-
ing different context features under combination,
such as dependencies and trigrams. Next, we use
the Naı̈ve Bayes model based on this extended con-
text representation to estimate P̂(si|C), using condi-
tional probabilities P̂(c j|si) depending on the type
of the corresponding feature c j ∈C.

Meta-level combination of features. This
method starts by performing independent sense
classifications with the combined models. After-
wards, these predictions are aggregated using one
of the three following strategies:

• Majority selects the sense si selected by the
largest number of single models.

• Ranks. First, results of single model classifi-
cation are ranked by their confidence P̂(si|C):
the most suitable sense to the context obtains
rank one and so on. Finally, we assign the
sense with the least sum of ranks.

• Sum. This strategy assigns the sense with
the largest sum of classification confidences
i.e., ∑i P̂(si|Ci

k), where i is the number of the
single model.

4 Results

We evaluate our method on three complementary
datasets: (1) a small-scale collection of homonyms
used for convenient interpretation of results; (2)
a large-scale collection of homonyms and pol-
ysemous senses used for development of meta-
parameters; and (3) a mid-scale SemEval dataset
used for comparison with other systems.3

In the experiments described below, we trained
models on two corpora commonly used for train-
ing distributional models: ukWaC (Ferraresi et al.,

3The datasets and the evaluation scripts: http://
github.com/tudarmstadt-lt/context-eval.

# Tokens Size Text Type

Wikipedia 1.863 · 109 11.79 Gb encyclopaedic
ukWaC 1.980 · 109 12.05 Gb Web pages

Table 1: Corpora used for training our models.

2008) and Wikipedia4. Table 1 presents statistics
about these two text collections.

4.1 Evaluation on PRJ
The goal of this evaluation is to make sure the
method performs as expected in case of homonyms.

Dataset. This dataset consists of 60 contexts
of the words “python”, “ruby” and “jaguar”, hence
the name of the dataset (PRJ). Each word has two
homonymous senses, respectively “snake” or “pro-
gramming language”, “gem” or “programming lan-
guage”, and “animal” or “car”, respectively. Con-
texts were randomly sampled from the first three
paragraphs of the corresponding Wikipedia articles.
Each sense is represented with 10 contexts. We
manually assigned senses from the induced inven-
tory derived from the ukWaC corpus. We used the
model trained on the ukWaC corpus.

Evaluation metrics. The contexts are labeled
with the induced senses, so we directly use preci-
sion and recall without mapping of inventories.

Discussion of results. Agirre and Soroa (2007)
suggest that the WSD of homonyms is an almost
solved problem for supervised systems, reaching
F-scores above 0.90. Our results summarized in
Table 2 confirm this for the unsupervised approach.
Our method reaches a precision up to 0.953 and an
F-score of 0.950.

The three misclassified samples by the system
that reached an F-score of 0.950 are the following.
The first one is from the article about “ruby (gem)”
which describes possible colors of ruby gems. It
was wrongly labeled with the “ruby (color)” sense.
The second misclassified example from the “jaguar
(animal)” article contains multiple named entities,
such as ”USA” that strongly relate to economic ac-
tivities such as car production. Finally, the reason
of misclassification of the third context from the
“python (snake)” article is that the “molurus” fea-
ture received a high score in the “language” sense.
We attribute this learning error to the unbalanced

4We used a dump of Wikipedia of October 2015:
http://panchenko.me/data/joint/corpora/
en59g/wikipedia.txt.gz



Figure 2: Performance of our method on the PRJ dataset. The models based on the meta-combinations are
not shown for brevity as they did not improve performance of the presented models in terms of F-score.

nature of the ukWaC, as in the model trained on
Wikipedia this feature has a higher score for the
“snake” sense. Thus, we conclude that our approach
performs as expected in simple cases, yielding only
few errors.

Combinations of the single predictors neither
provide extra improvement in these simple settings:
none of the combined models improve the overall
results, nor do they introduce any extra errors (see
Figure 2).

4.2 Evaluation on TWSI
The goal of this evaluation is to test performance
of our method on a large scale dataset that contains
both homonyms and polysemous senses.

Dataset. This test collection is based on a large-
scale crowdsourced resource (Biemann, 2012) that
comprises 1,012 frequent nouns with average pol-
ysemy of 2.33 senses per word. For these nouns,
145,140 annotated sentences are provided. Besides,
a sense inventory is explicitly provided, where each
sense is represented with a list of words that can
substitute target noun in a given sentence. The
sense distribution across sentences in the dataset
is highly skewed resulting in 79% of contexts as-
signed to the most frequent senses.

Evaluation metrics. To compute performance
we create an explicit mapping between the system-
provided sense inventory and the TWSI senses:
senses are represented as bag of words vectors,
which are compared using cosine similarity. Every
induced sense gets assigned at most one TWSI
sense. Once the mapping is completed, we can
calculate precision and recall of the sense labeling
with respect to the original TWSI labeling.

Note that performance of a disambiguation
model depends on quality of the sense mapping.
Therefore, we use five baselines that facilitate in-
terpretation of the results:

1. MFS of the TWSI inventory assigns the
most frequent sense in the TWSI dataset.

2. Random sense of the TWSI inventory.

3. MFS of the induced inventory assigns the
identifier of the largest sense cluster.

4. Upper bound of the induced vocabulary se-
lects the correct sense for the context, but only
if the mapping exist for this sense.

5. Random sense of the induced inventory.

Discussion of results. Table 2 presents evalua-
tion of our method trained on the Wikipedia corpus
(comparison of these results with the ukWaC cor-
pus is provided in Figure 3). First, one can observe
that, similarly to the PRJ dataset, the Cluster fea-
tures yield a precise results up to P = 0.719. Yet,
recall of these feature is inherently limited by the
size of these clusters (15 to 200 words as compared
to up to 20,000 for other types of features). Besides,
Trigramtarget features yield even higher precision
of 0.729, but their recall of 0.193 is even less than
that of clusters. The single model based on the
Deptarget features balances precision and recall,
reaching F-measure of 0.571 at P = 0.709.

Several models based on feature- and meta-level
combinations clearly outperform single-feature
models. The best scores in terms of F-score (0.696-
0.698) are obtained by a combination of four fea-
ture types (Deptarget, Depword, Cluster, Trigram-
target) at the feature level or using the sum meta-



combination. Similar results (F-score of 0.694-
0.695) can be obtained via combination of the same
features without the Trigramtarget. In terms of
precision, the best results are delivered by a meta-
combination of the above-mentioned features, com-
bined by summing their ranks. In these settings, the
combined models yield precision of 0.713-0.720.

Figure 3 compares the performance of our
models trained on the Wikipedia corpus and the
ukWaC corpus. The Wikipedia-based models con-
sistently outperform their counterparts trained on
the ukWaC. This can be attributed to the fact that
the TWSI contexts were originally sampled from
the Wikipedia. Besides, Wikipedia is a more bal-
anced and “clean” corpus than ukWaC.

All our models outperform the random sense
baselines and the most frequent sense (MFS) base-
line of the induced inventory in terms of precision
and most of them outperforms these baselines in
terms of F-score. These results show that the fea-
tures used in our technique indeed provide a strong
signal for word sense disambiguation. However,
none of our models was able to outperform the
most frequent sense of the TWSI.

We assumed that this is due to the highly skewed
nature of the dataset where 79% of contexts are
associated with the most frequent sense. To val-
idate the hypothesis that our system yields state-
of-the-art performance in spite of this result we
compared its performance to a recent unsuper-
vised WSD system based on sense embeddings,
called AdaGram (Bartunov et al., 2016). This
is a multi-prototype extension of the Skip-gram
model (Mikolov et al., 2013), which relies on
Bayesian inference to perform sense disambigua-
tion. We chosen this method as it yields state-
of-the-art results, outperforming other approaches
based on sense embeddings, such as (Neelakan-
tan et al., 2014). We tried several models varying
the α parameter that controls granularity of the
induced sense inventory. The best AdaGram con-
figuration with the α = equals 0.05 yields F-score
on of 0.656, which is below the most frequent sense
of the TWSI, similarly to our model DeptargetDe-
pwordClusterTrigramtarget that reaches F-score of
0.698.

4.3 Evaluation on SemEval-2013 Task 13

The goal of this evaluation is to compare perfor-
mance of our method to the state-of-the-art unsu-
pervised WSD systems.

Dataset. The SemEval-2013 task 13 “Word
Sense Induction for Graded and Non-Graded
Senses” (Jurgens and Klapaftis, 2013) provides
20 nouns, 20 verbs and 10 adjectives in WordNet-
sense-tagged contexts. It contains 20-100 contexts
per word, and 4,664 contexts in total, which were
drawn from the Open American National Corpus.
In our experiments, we use the 1,848 noun-based
contexts. Participants were asked to cluster these
4,664 instances into groups, with each group cor-
responding to a distinct word sense. We report
result on the 20 nouns as our method is designed
for modelling of noun senses.

Evaluation metrics. Performance is measured
with three measures that require a mapping of sense
inventories (Jaccard Index, Tau and WNDCG) and
two cluster comparison measures (Fuzzy NMI and
Fuzzy B-Cubed).5 During evaluation the test data
is divided into five segments: four of which are
used to build the mapping, and one for evaluation.

Discussion of results. Participating teams
in this task were AI-KU (Baskaya et al., 2013),
Unimelb (Lau et al., 2013), UoS (Hope and Keller,
2013) and La Sapienza. The latter relies on Word-
Net as sense inventory and uses a knowledge-rich
approach to disambiguation. Only the UoS used an
induced sense inventory, similarly to us, while all
other participating teams performed sense cluster-
ing directly on the disambiguation instances, thus
not being able to classify additional instances with-
out re-clustering the whole dataset.

Table 3 compares the performance of our method
to other approaches. As one may observe, most of
the combined models only sightly improve over
the single-feature models according to Jaccard In-
dex and Fuzzy NMI. However, one class of com-
bined models that achieves a consistent improve-
ment over the single-feature systems is the meta-
combination based on the sum of ranks. Similarly
to the TWSI experiment, the two best combined
models are based either on four (Deptarget, Dep-
word, Cluster, Trigramtarget) or three (Deptarget,
Depword, Cluster) features. These two models
perform comparably to the best participants of the
SemEval challenge or outperform them, depending
on the metric. On one hand, the top SemEval sys-
tem (AI-KU remove5-add1000) reaches a Jaccard
Index of 0.229 while our approach obtains scores

5Detailed interpretation of the five performance metrics:
https://www.cs.york.ac.uk/semeval-2013/
task13/index.php%3Fid=results.html



Model #Senses Precision Recall F-score

TWSI baselines MFS of the TWSI inventory 2.31 0.787 0.787 0.787
Random sense of the TWSI inventory 2.31 0.535 0.535 0.535

Induced baselines Upper bound of the induced inventory 1.64 1.000 0.746 0.855
MFS of the induced inventory 1.64 0.642 0.642 0.642
Random Sense of the induced inventory 1.64 0.559 0.558 0.558

Sense embeddings AdaGram, α = 0.05, upper bound of induced inv. 4.33 1.000 0.865 0.928
AdaGram, α = 0.05 4.33 0.656 0.656 0.656

Single models Cluster 1.64 0.719 0.405 0.518
Depword 1.64 0.684 0.684 0.684
Deptarget 1.64 0.709 0.571 0.633
Depall 1.64 0.689 0.689 0.689
Trigramtarget 1.64 0.729 0.193 0.305
Trigramall 1.64 0.670 0.561 0.611

Feature comb. DeptargetDepwordClusterTrigramtarget 1.64 0.698 0.698 0.698
DepallDepwordClusterTrigramall 1.64 0.697 0.697 0.697
DeptargetDepword Cluster 1.64 0.694 0.694 0.694
DepallDepwordCluster 1.64 0.691 0.691 0.691

Meta comb. Cluster+Deptarget+Depword+Trigramtarget: majority 1.64 0.718 0.605 0.656
Cluster+Deptarget+Depword+Trigramtarget: ranks 1.64 0.687 0.360 0.472
Cluster+Deptarget+Depword+Trigramtarget: sum 1.64 0.696 0.696 0.696
Cluster+Depall+Depword+Trigramall: majority 1.64 0.692 0.685 0.688
Cluster+Depall+Depword+Trigramall: ranks 1.64 0.715 0.420 0.529
Cluster+Depall+Depword+Trigramall: sum 1.64 0.693 0.693 0.693
Cluster+Deptarget+Depword: majority 1.64 0.704 0.630 0.665
Cluster+Deptarget+Depword: ranks 1.64 0.713 0.410 0.521
Cluster+Deptarget+Depword: sum 1.64 0.695 0.695 0.695
Cluster+Depall+Depword: majority 1.64 0.689 0.688 0.688
Cluster+Depall+Depword: ranks 1.64 0.720 0.406 0.519
Cluster+Depall+Depword: sum 1.64 0.693 0.693 0.693

Table 2: Performance of our method on the TWSI dataset trained on the Wikipedia corpus. Top 5 scores
of our approach per section are set in boldface; the best scores are underlined.

Figure 3: Effect of the corpus choice on the WSD performance: 10 best models according to the F-score
on the TWSI dataset trained on Wikipedia and ukWaC corpora.

of up to 0.219. The second best SemEval system
according to this metric (UoS top-3) has a score
of 0.220. On the other hand, according to the Tau
and Fuzzy B-Cubed scores, our best systems out-
perform the SemEval participants. Therefore, we
conclude that performance of our approach is com-
parable to the other unsupervised state-of-the-art
word sense disambiguation approaches.

Finally, note that none of the unsupervised WSD
methods discussed in this paper, including the top-
ranked SemEval submissions and the method based
on sense embeddings (AdaGram (Bartunov et al.,
2016) and SenseGram (Pelevina et al., 2016)), were
able to beat the most frequent sense baselines of the
respective datasets. Similar results are observed for
other recently proposed unsupervised word sense

disambiguation methods (Nieto Piña and Johans-
son, 2016).

5 Conclusions

Performance of the state-of-the-art knowledge-
based and supervised WSD systems reached sat-
isfactory levels, but they inherently suffer from
inevitable out of vocabulary terms in any “non-
standard” domain or language. We presented a new
unsupervised knowledge-free approach to word
sense induction and disambiguation that addresses
these problems as it can be trained on domain-
specific texts. The method takes as input a text
corpus and learns an interpretable coarse-grained
sense inventory, where each sense has a rich feature



Model Jacc. Ind. Tau WNDCG Fuzzy NMI Fuzzy B-Cubed

Baselines One sense for all 0.171 0.627 0.302 0.000 0.631
One sense per instance 0.000 0.953 0.000 0.072 0.000
Most Frequent Sense (MFS) 0.579 0.583 0.431 – –

SemEval systems AI-KU (add1000) 0.176 0.609 0.205 0.033 0.317
AI-KU 0.176 0.619 0.393 0.066 0.382
AI-KU (remove5-add1000) 0.228 0.654 0.330 0.040 0.463
Unimelb (5p) 0.198 0.623 0.374 0.056 0.475
Unimelb (50k) 0.198 0.633 0.384 0.060 0.494
UoS (#WN senses) 0.171 0.600 0.298 0.046 0.186
UoS (top-3) 0.220 0.637 0.370 0.044 0.451
La Sapienza (1) 0.131 0.544 0.332 – –
La Sapienza (2) 0.131 0.535 0.394 – –

Sense embeddings AdaGram, 100 dim., α = 0.05, 0.274 0.644 0.318 0.058 0.470
SenseGram, 100 dim., w2v – weighted – sim. – filter (p = 2) 0.197 0.615 0.291 0.011 0.615
SenseGram, 100 dim., JST – weighted – sim. – filter (p = 2) 0.205 0.624 0.291 0.017 0.598

Single models Cluster 0.196 0.652 0.319 0.032 0.610
Depword 0.196 0.652 0.319 0.032 0.610
Deptarget 0.189 0.655 0.314 0.025 0.610
Depall 0.188 0.650 0.313 0.029 0.608
Trigramtarget 0.179 0.632 0.303 0.009 0.616
Trigramall 0.182 0.650 0.302 0.015 0.594

Feature comb. DeptargetDepwordClusterTrigramtarget 0.188 0.654 0.317 0.032 0.611
DepallDepwordClusterTrigramall 0.197 0.652 0.317 0.034 0.611
DeptargetDepwordCluster 0.189 0.655 0.318 0.033 0.611
DepallDepwordCluster 0.197 0.651 0.317 0.034 0.611

Meta comb. Cluster+Deptarget+Depword+Trigramtarget: majority 0.197 0.645 0.317 0.037 0.600
Cluster+Deptarget+Depword+Trigramtarget: ranks 0.219 0.657 0.309 0.034 0.487
Cluster+Deptarget+Depword+Trigramtarget: sum 0.204 0.646 0.320 0.040 0.607
Cluster+Depall+Depword+Trigramall: majority 0.196 0.646 0.315 0.035 0.601
Cluster+Depall+Depword+Trigramall: ranks 0.216 0.654 0.316 0.042 0.526
Cluster+Depall+Depword+Trigramall: sum 0.193 0.651 0.317 0.034 0.605
Cluster+Deptarget+Depword: majority 0.200 0.647 0.317 0.039 0.601
Cluster+Deptarget+Depword: ranks 0.217 0.659 0.324 0.048 0.533
Cluster+Deptarget+Depword: sum 0.204 0.647 0.319 0.040 0.607
Cluster+Depall+Depword: majority 0.200 0.647 0.317 0.039 0.601
Cluster+Depall+Depword: ranks 0.200 0.646 0.317 0.039 0.601
Cluster+Depall+Depword: sum 0.197 0.655 0.318 0.038 0.607

Table 3: Performance of our method on the nouns contexts from the SemEval 2013 Task 13 dataset. The
models were trained on the ukWaC corpus. Top scores of the state-of-the-art systems (SemEval participants
and the AdaGram) and of our systems are set in boldface; the best scores overall are underlined.

representation used for disambiguation.

The novel element of our approach is the use
of an induced sense inventory as a pivot for aggre-
gation and combination of heterogeneous context
clues. This framework let us easily incorporate
various context features in a single model. In our
experiments we demonstrated combinations of four
classes of features, but the framework can easily
accommodate other types of features.

While other systems already used some features
employed in our approach (e.g., the UoS system
relies on dependency features), according to our
knowledge, before there was no general methodol-
ogy for incorporation of heterogenous features in
an unsupervised WSD model.

The single-feature model based on dependency
words proved to be most robust across tested
datasets. As to the combination variants, we found
it advantageous to combine all four types of fea-
tures considered in our experiments. Combining
models on the feature level yields highest F-scores

in comparison to the meta-combinations. However,
the meta-combination based on sum of confidences
yields the most robust results across the datasets.
Besides, the meta-combination based on sum of
ranks provides higher precision at the cost of re-
call.

Experiments on a SemEval dataset show that
our approach performs comparably to the state-of-
the-art unsupervised systems. Besides, the method
performs almost no errors in the case of coarse-
grained homonymous senses.

An implementation of our approach with several
pre-trained models is available online.6

Acknowledgments

We acknowledge the support of the Deutsche For-
schungsgemeinschaft (DFG) foundation under the
project ”JOIN-T: Joining Ontologies and Seman-
tics Induced from Text”.

6https://github.com/tudarmstadt-lt/
JoSimText



References
Eneko Agirre and Philip Edmonds. 2007. Word sense

disambiguation: Algorithms and applications, vol-
ume 33. Springer Science & Business Media.

Satanjeev Banerjee and Ted Pedersen. 2002. An
adapted Lesk algorithm for word sense disambigua-
tion using WordNet. In Proceedings of the Third In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 136–145,
Mexico City, Mexico.

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,
and Dmitry Vetrov. 2016. Breaking sticks and ambi-
guities with adaptive skip-gram. In Proceedings of
the AISTATS Conference, Granada, Spain.

Osman Baskaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. AI-KU: Using Substitute Vectors and
Co-Occurrence Modeling for Word Sense Induction
and Disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
volume 2, pages 300–306, Atlanta, GA, USA.

Chris Biemann and Martin Riedl. 2013. Text: Now
in 2D! A framework for lexical expansion with con-
textual similarity. Journal of Language Modelling,
1(1):55–95.

Chris Biemann. 2006. Chinese Whispers: An Efficient
Graph Clustering Algorithm and Its Application to
Natural Language Processing Problems. In Proceed-
ings of the First Workshop on Graph Based Meth-
ods for Natural Language Processing, pages 73–80,
New York City, NY, USA.

Chris Biemann. 2010. Co-Occurrence Cluster Fea-
tures for Lexical Substitutions in Context. In Pro-
ceedings of the 5th Workshop on TextGraphs in con-
junction with ACL, pages 55–59, Uppsala, Sweden.

Chris Biemann. 2012. Turk Bootstrap Word Sense
Inventory 2.0: A Large-Scale Resource for Lexical
Substitution. In Proceedings of the 8th International
Conference on Language Resources and Evaluation,
pages 4038–4042, Istanbul, Turkey.

Martin Everett and Stephen P Borgatti. 2005. Ego net-
work betweenness. Social networks, 27(1):31–38.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukWaC, a very large web-derived corpus of English.
In Proceedings of the 4th Web as Corpus Workshop
(WAC-4): Can we beat Google, pages 47–54, Mar-
rakech, Morocco.

David Hope and Bill Keller. 2013. MaxMax: A Graph-
based Soft Clustering Algorithm Applied to Word
Sense Induction. In Proceedings of the 14th Interna-
tional Conference on Computational Linguistics and
Intelligent Text Processing - Volume Part I, pages
368–381, Samos, Greece. Springer-Verlag.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the ACL, pages 873–
882, Jeju Island, Korea.

David Jurgens and Ioannis Klapaftis. 2013. Semeval-
2013 task 13: Word sense induction for graded and
non-graded senses. In Second Joint Conference on
Lexical and Computational Semantics (*SEM), Vol-
ume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
volume 2, pages 290–299, Atlanta, GA, USA.

Dan Klein, Kristina Toutanova, H. Tolga Ilhan, Sepa-
ndar D. Kamvar, and Christopher D. Manning.
2002. Combining Heterogeneous Classifiers for
Word-Sense Disambiguation. In Proceedings of the
ACL-02 Workshop on Word Sense Disambiguation:
Recent Successes and Future Directions, volume 8,
pages 74–80, Philadelphia, PA, USA.

Jey Han Lau, Paul Cook, and Timothy Baldwin. 2013.
unimelb: Topic Modelling-based Word Sense In-
duction. In Second Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 2:
Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), volume 2,
pages 307–311, Atlanta, GA, USA.

Yoong Keok Lee and Hwee Tou Ng. 2002. An em-
pirical evaluation of knowledge sources and learn-
ing algorithms for word sense disambiguation. In
Proceedings of the ACL-02 conference on Empirical
methods in natural language processing - EMNLP

’02, volume 10, pages 41–48, Philadelphia, PA,
USA.

Michael Lesk. 1986. Automatic Sense Disambigua-
tion Using Machine Readable Dictionaries: How to
Tell a Pine Cone from an Ice Cream Cone. In Pro-
ceedings of the 5th annual international conference
on Systems documentation, pages 24–26, Toronto,
ON, Canada. ACM.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP’2015, pages 1722–1732,
Lisboa, Portugal.

Dekang Lin. 1998. An information-theoretic defini-
tion of similarity. In Proceedings of ICML, vol-
ume 98, pages 296–304, Madison, WI, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word repre-
sentations in vector space. In Workshop at Inter-
national Conference on Learning Representations
(ICLR), pages 1310–1318, Scottsdale, AZ, USA.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross T. Bunker. 1993. A Semantic Concordance. In
Proceedings of the Workshop on Human Language
Technology - HLT ’93, pages 303–308, Stroudsburg,
PA, USA.



George A Miller. 1995. WordNet: a lexical
database for English. Communications of the ACM,
38(11):39–41.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys (CSUR), 41(2):10.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1059–1069, Doha, Qatar.

Luis Nieto Piña and Richard Johansson. 2016. Embed-
ding senses for efficient graph-based word sense dis-
ambiguation. In Proceedings of TextGraphs-10, Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL, pages 1–5, San Diego, USA.

Alexander Panchenko, Pavel Romanov, Olga Moro-
zova, Hubert Naets, Andrey Philippovich, Alexey
Romanov, and Cédrick Fairon. 2013. Serelex:
Search and visualization of semantically related
words. In European Conference on Information Re-
trieval, pages 837–840, Moscow, Russia. Springer.

Patrick Pantel and Dekang Lin. 2002. Discovering
word senses from text. In Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, volume 41, pages
613–619, Edmonton, AB, Canada. ACM Press.

Ted. Pedersen and Rebecca Bruce. 1997. Distinguish-
ing word senses in untagged text. In Proceedings
of the Second Conference on Empirical Methods in
Natural Language Processing, pages 197–207, Prov-
idence, RI, USA.

Ted Pedersen, Satanjeev Banerjee, and Siddharth Pat-
wardhan. 2005. Maximizing semantic relatedness
to perform word sense disambiguation. University
of Minnesota supercomputing institute research re-
port UMSI, 25:2005.

Maria Pelevina, Nikolay Arefiev, Chris Biemann, and
Alexander Panchenko. 2016. Making sense of word
embeddings. In Proceedings of the 1st Workshop on
Representation Learning for NLP, pages 174–183,
Berlin, Germany, August. Association for Compu-
tational Linguistics.

Martin Riedl. 2016. Unsupervised Methods for Learn-
ing Semantics of Natural Language. Ph.D. thesis,
Technische Universität Darmstadt, Darmstadt, Ger-
many.

Hinrich Schütze. 1998. Automatic Word Sense Dis-
crimination. Computational Linguistics, 24(1):97–
123.

Yee Whye Teh, Michael I Jordan, Matthew J Beal, and
David M Blei. 2006. Hierarchical Dirichlet Pro-
cesses. Journal of the American Statistical Associ-
ation, 101(476):1566–1581.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In COLING, pages 151–160, Dublin, Ireland.

Heng Low Wee. 2010. Word Sense Prediction Us-
ing Decision Trees. Technical report, Department
of Computer Science, National University of Singa-
pore.

Dominic Widdows and Beate Dorow. 2002. A graph
model for unsupervised lexical acquisition. In Pro-
ceedings of the 19th international conference on
Computational linguistics, pages 1–7, Taipei, Tai-
wan.

Deniz Yuret. 2012. FASTSUBS: An efficient and ex-
act procedure for finding the most likely lexical sub-
stitutes based on an n-gram language model. IEEE
Signal Processing Letters, 19(11):725–728.


