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Abstract

We present a simple yet effective approach
for learning word sense embeddings. In
contrast to existing techniques, which ei-
ther directly learn sense representations
from corpora or rely on sense invento-
ries from lexical resources, our approach
can induce a sense inventory from ex-
isting word embeddings via clustering of
ego-networks of related words. An in-
tegrated WSD mechanism enables label-
ing of words in context with learned sense
vectors, which gives rise to downstream
applications. Experiments show that the
performance of our method is comparable
to state-of-the-art unsupervised WSD sys-
tems.

1 Introduction

Term representations in the form of dense vectors
are useful for many natural language processing
applications. First of all, they enable the com-
putation of semantically related words. Besides,
they can be used to represent other linguistic units,
such as phrases and short texts, reducing the inher-
ent sparsity of traditional vector-space representa-
tions (Salton et al., 1975).

One limitation of most word vector models,
including sparse (Baroni and Lenci, 2010) and
dense (Mikolov et al., 2013) representations, is
that they conflate all senses of a word into a single
vector. Several architectures for learning multi-
prototype embeddings were proposed that try to
address this shortcoming (Huang et al., 2012; Tian
et al., 2014; Neelakantan et al., 2014; Nieto Piña
and Johansson, 2015; Bartunov et al., 2016). Li
and Jurafsky (2015) provide indications that such
sense vectors improve the performance of text pro-

cessing applications, such as part-of-speech tag-
ging and semantic relation identification.

The contribution of this paper is a novel method
for learning word sense vectors. In contrast to pre-
viously proposed methods, our approach relies on
existing single-prototype word embeddings, trans-
forming them to sense vectors via ego-network
clustering. An ego network consists of a single
node (ego) together with the nodes they are con-
nected to (alters) and all the edges among those
alters. Our method is fitted with a word sense dis-
ambiguation (WSD) mechanism, and thus words
in context can be mapped to these sense represen-
tations. An advantage of our method is that one
can use existing word embeddings and/or exist-
ing word sense inventories to build sense embed-
dings. Experiments show that our approach per-
forms comparably to state-of-the-art unsupervised
WSD systems.

2 Related Work

Our method learns multi-prototype word embed-
dings and applies them to WSD. Below we briefly
review both strains of research.

2.1 Multi-Prototype Word Vector Spaces
In his pioneering work, Schütze (1998) induced
sparse sense vectors by clustering context vectors
using the EM algorithm. This approach is fitted
with a similarity-based WSD mechanism. Later,
Reisinger and Mooney (2010) presented a multi-
prototype vector space. Sparse TF-IDF vectors
are clustered using a parametric method fixing the
same number of senses for all words. Sense vec-
tors are centroids of the clusters.

While most dense word vector models repre-
sent a word with a single vector and thus conflate
senses (Mikolov et al., 2013; Pennington et al.,
2014), there are several approaches that produce
word sense embeddings. Huang et al. (2012) learn
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Figure 1: Schema of the word sense embeddings learning method.

dense vector spaces with neural networks. First,
contexts are represented with word embeddings
and clustered. Second, word occurrences are re-
labeled in the corpus according to the cluster they
belong to. Finally, embeddings are re-trained on
this sense-labeled terms. Tian et al. (2014) intro-
duced a probabilistic extension of the Skip-gram
model (Mikolov et al., 2013) that learns multi-
ple sense-aware prototypes weighted by their prior
probability. These models use parametric clus-
tering algorithms that produce a fixed number of
senses per word.

Neelakantan et al. (2014) proposed a multi-
sense extension of the Skip-gram model that was
the first one to learn the number of senses by itself.
During training, a new sense vector is allocated if
the current context’s similarity to existing senses is
below some threshold. Li and Jurafsky (2015) use
a similar idea by integrating the Chinese Restau-
rant Process into the Skip-gram model. All men-
tioned above sense embeddings were evaluated on
the contextual word similarity task, each one im-
proving upon previous models.

Nieto and Johansson (2015) presented another
multi-prototype modification of the Skip-gram
model. Their approach outperforms that of Nee-
lakantan et al. (2014), but requires as an input the
number of senses for each word.

Li and Jurafsky (2015) show that sense embed-
dings can significantly improve the performance
of part-of-speech tagging, semantic relation iden-
tification and semantic relatedness tasks, but yield
no improvement for named entity recognition and
sentiment analysis.

Bartunov et al. (2016) introduced AdaGram, a
non-parametric method for learning sense embed-
dings based on a Bayesian extension of the Skip-
gram model. The granularity of learned sense em-
beddings is controlled by the parameter α. Com-
parisons of their approach to (Neelakantan et al.,
2014) on three SemEval word sense induction and

disambiguation datasets show the advantage of
their method. For this reason, we use AdaGram
as a representative of the state-of-the-art methods
in our experiments.

Several approaches rely on a knowledge base
(KB) to provide sense information. Bordes et
al. (2011) propose a general method to represent
entities of any KB as a dense vector. Such repre-
sentation helps to integrate KBs into NLP systems.
Another approach that uses sense inventories of
knowledge bases was presented by Camacho-
Collados et al. (2015). Rothe and Schütze (2015)
combined word embeddings on the basis of Word-
Net synsets to obtain sense embeddings. The ap-
proach is evaluated on lexical sample tasks by
adding synset embeddings as features to an exist-
ing WSD system. They used a weighted pooling
similar to the one we use, but their method is not
able to find new senses in a corpus. Finally, Nieto
Piña and Johansson (2016) used random walks on
the Swedish Wordnet to generate training data for
the Skip-gram model.

2.2 Word Sense Disambiguation (WSD)

Many different designs of WSD systems were pro-
posed, see (Agirre and Edmonds, 2007; Navigli,
2009). Supervised approaches use an explicitly
sense-labeled training corpus to construct a model,
usually building one model per target word (Lee
and Ng, 2002; Klein et al., 2002). These ap-
proaches demonstrate top performance in compe-
titions, but require considerable amounts of sense-
labeled examples.

Knowledge-based approaches do not learn a
model per target, but rather derive sense represen-
tation from information available in a lexical re-
source, such as WordNet. Examples of such sys-
tem include (Lesk, 1986; Banerjee and Pedersen,
2002; Pedersen et al., 2005; Moro et al., 2014)

Unsupervised WSD approaches rely neither
on hand-annotated sense-labeled corpora, nor on
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Figure 2: Visualization of the ego-network of “ta-
ble” with furniture and data sense clusters. Note
that the target “table” is excluded from clustering.

handcrafted lexical resources. Instead, they auto-
matically induce a sense inventory from raw cor-
pora. Such unsupervised sense induction meth-
ods fall into two categories: context clustering,
such as (Pedersen and Bruce, 1997; Schütze,
1998; Reisinger and Mooney, 2010; Neelakantan
et al., 2014; Bartunov et al., 2016) and word (ego-
network) clustering, such as (Lin, 1998; Pantel
and Lin, 2002; Widdows and Dorow, 2002; Bie-
mann, 2006; Hope and Keller, 2013). Unsuper-
vised methods use disambiguation clues from the
induced sense inventory for word disambiguation.
Usually, the WSD procedure is determined by the
design of sense inventory. It might be the high-
est overlap between the instance’s context words
and the words of the sense cluster, as in (Hope
and Keller, 2013) or the smallest distance between
context words and sense hubs in graph sense rep-
resentation, as in (Véronis, 2004).

3 Learning Word Sense Embeddings

Our method consists of the four main stages de-
picted in Figure 1: (1) learning word embeddings;
(2) building a graph of nearest neighbours based
on vector similarities; (3) induction of word senses
using ego-network clustering; and (4) aggregation
of word vectors with respect to the induced senses.

Our method can use existing word embeddings,
sense inventories and word similarity graphs. To
demonstrate such use-cases and to study the per-
formance of the method in different settings, as
variants of the complete pipeline presented in Fig-
ure 1, we experiment with two additional setups.
First, we use an alternative approach to compute

the word similarity graph, which relies on depen-
dency features and is expected to provide more
accurate similarities (therefore, the stage (2) is
changed). Second, we use a sense inventory con-
structed using crowdsourcing (thus, stages (2) and
(3) are skipped). Below we describe each of the
stages of our method in detail.

3.1 Learning Word Vectors

To learn word vectors, we use the word2vec
toolkit (Mikolov et al., 2013), namely we train
CBOW word embeddings with 100 or 300 dimen-
sions, context window size of 3 and minimum
word frequency of 5. We selected these param-
eters according to prior evaluations, e.g. (Baroni
et al., 2014), and tested them on the develop-
ment dataset (see Section 5.1). Initial experiments
showed that this configuration is superior to oth-
ers, e.g. the Skip-gram model, with respect to
WSD performance.

For training, we modified the standard imple-
mentation of word2vec1 so that it also saves con-
text vectors needed for one of our WSD ap-
proaches. For experiments, we use two commonly
used corpora for training distributional models:
Wikipedia2 and ukWaC (Ferraresi et al., 2008).

3.2 Calculating Word Similarity Graph

At this step, we build a graph of word similari-
ties, such as (table, desk, 0.78). For each word we
retrieve its 200 nearest neighbours. This num-
ber is motivated by prior studies (Biemann and
Riedl, 2013; Panchenko, 2013): as observed, only
few words have more strongly semantically re-
lated words. This graph is computed either based
on word embeddings learned during the previous
step or using semantic similarities provided by the
JoBimText framework (Biemann and Riedl, 2013).

Similarities using word2vec (w2v). In this
case, nearest neighbours of a term are terms with
the highest cosine similarity of their respective
vectors. For scalability reasons, we perform sim-
ilarity computations via block matrix multiplica-
tions, using blocks of 1000 vectors.

Similarities using JoBimText (JBT). In this
unsupervised approach, every word is represented

1https://code.google.com/p/word2vec
2We used an English Wikipedia dump of Octo-

ber 2015: http://panchenko.me/data/joint/
corpora/en59g/wikipedia.txt.gz
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as a bag of sparse dependency-based features ex-
tracted using the Malt parser and collapsed using
an approach similar to (Ruppert et al., 2015). Fea-
tures are normalized using the LMI score (Church
and Hanks, 1990) and further pruned down ac-
cording to the recommended defaults: we keep
1000 features per word and 1000 words per fea-
ture. Similarity of two words is equal to the num-
ber of common features.

Multiple alternatives exist for computation of
semantic relatedness (Zhang et al., 2013). JBT has
two advantages in our case: (1) accurate estima-
tion of word similarities based on dependency fea-
tures; (2) efficient computation of nearest neigh-
bours for all words in a corpus. Besides, we ob-
served that nearest neighbours of word embed-
dings often tend to belong to the dominant sense,
even if minor senses have significant support in
the training corpus. We wanted to test if the same
problem remains for a principally different method
for similarity computation.

Algorithm 1: Word sense induction.
input : T – word similarity graph, N –

ego-network size, n – ego-network
connectivity, k – minimum cluster size

output: for each term t ∈ T , a clustering St of its
N most similar terms

foreach t ∈ T do
V ← N most similar terms of t from T
G← graph with V as nodes and no edges E

foreach v ∈ V do
V ′ ← n most similar terms of v from T
foreach v′ ∈ V ′ do

if v′ ∈ V then add edge (v, v′) to E
end

end
St ← ChineseWhispers(G)
St ← {s ∈ St : |s| ≥ k}

end

3.3 Word Sense Induction

We induce a sense inventory using a method sim-
ilarly to (Pantel and Lin, 2002) and (Biemann,
2006). A word sense is represented by a word
cluster. For instance the cluster “chair, bed, bench,
stool, sofa, desk, cabinet” can represent the sense
“table (furniture)”. To induce senses, first we con-
struct an ego-network G of a word t and then per-
form graph clustering of this network. The iden-

Vector Nearest Neighbours

table
tray, bottom, diagram, bucket, brackets, stack,
basket, list, parenthesis, cup, trays, pile, play-
field, bracket, pot, drop-down, cue, plate

table#0
leftmost#0, column#1, randomly#0, tableau#1,
top-left0, indent#1, bracket#3, pointer#0,
footer#1, cursor#1, diagram#0, grid#0

table#1
pile#1, stool#1, tray#0, basket#0, bowl#1,
bucket#0, box#0, cage#0, saucer#3, mirror#1,
birdcage#0, hole#0, pan#1, lid#0

Table 1: Neighbours of the word “table” and its
senses produced by our method. The neighbours
of the initial vector belong to both senses, while
those of sense vectors are sense-specific.

tified clusters are interpreted as senses (see Ta-
ble 2). Words referring to the same sense tend to
be tightly connected, while having fewer connec-
tions to words referring to different senses.

The sense induction presented in Algorithm 1
processes one word t of the word similarity graph
T per iteration. First, we retrieve nodes V of
the ego-network G: these are the N most similar
words of t according to T . The target word t itself
is not part of the ego-network. Second, we con-
nect the nodes in G to their n most similar words
from T . Finally, the ego-network is clustered with
the Chinese Whispers algorithm (Biemann, 2006).
This method is parameter free, thus we make no
assumptions about the number of word senses.

The sense induction algorithm has three meta-
parameters: the ego-network size (N ) of the tar-
get ego word t; the ego-network connectivity (n)
is the maximum number of connections the neigh-
bour v is allowed to have within the ego-network;
the minimum size of the cluster k. The n param-
eter regulates the granularity of the inventory. In
our experiments, we set theN to 200, n to 50, 100
or 200 and k to 5 or 15 to obtain different granu-
lates, cf. (Biemann, 2010).

Each word in a sense cluster has a weight which
is equal to the similarity score between this word
and the ambiguous word t.

3.4 Pooling of Word Vectors

At this stage, we calculate sense embeddings for
each sense in the induced inventory. We assume
that a word sense is a composition of words that
represent the sense. We define a sense vector as
a function of word vectors representing cluster
items. Let W be a set of all words in the train-
ing corpus and let Si = {w1, . . . , wn} ⊆ W be
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TWSI JBT w2v

table (furniture)
counter, console, bench, dinner
table, dining table, desk, sur-
face, bar, board

chair, room, desk, pulpit,
couch, furniture, fireplace,
bench, door, box, railing, tray

tray, bottom, bucket, basket,
cup, pile, bracket, pot, cue,
plate, jar, platter, ladder

table (data)
chart, list, index, graph,
columned list, tabulation,
standings, diagram, ranking

procedure, system, datum, pro-
cess, mechanism, tool, method,
database, calculation, scheme

diagram, brackets, stack, list,
parenthesis, playfield, drop-
down, cube, hash, results, tab

table (negotiations)
surface, counter, console, bar-
gaining table, platform, nego-
tiable, machine plate, level

— —

table (geo)
level, plateau, plain, flatland,
saturation level, water table, ge-
ographical level, water level

— —

Table 2: Word sense clusters from inventories derived from the Wikipedia corpus via crowdsourcing
(TWSI), JoBimText (JBT) and word embeddings (w2v). The sense labels are introduced for readability.

a sense cluster obtained during the previous step.
Consider a function vecw : W → Rm that maps
words to their vectors and a function γi : W → R
that maps cluster words to their weight in the clus-
ter Si. We experimented with two ways to cal-
culate sense vectors: unweighted average of word
vectors:

si =
∑n

k=1 vecw (wk)
n

;

and weighted average of word vectors:

si =
∑n

k=1 γi(wk)vecw (wk)∑n
k=1 γi(wk)

.

Table 1 provides an example of weighted pool-
ing results. While the original neighbours of the
word “table” contain words related to both furni-
ture and data, the neighbours of the sense vectors
are either related to furniture or data, but not to
both at the same time. Besides, each neighbour of
a sense vector has a sense identifier as we calculate
cosine between sense vectors, not word vectors.

4 Word Sense Disambiguation

This section describes how sense vectors are used
to disambiguate a word in a context.

Given a target word w and its context words
C = {c1, . . . , ck}, we first map w to a set of its
sense vectors according to the inventory: S =
{s1, . . . , sn}. We use two strategies to choose
a correct sense taking vectors for context words
either from the matrix of context embeddings or
from the matrix of word vectors. The first one is
based on sense probability in given context:

s∗ = arg max
i

P (C|si) = arg max
i

1
1 + e−c̄c·si

,

where c̄c is the mean of context embeddings:
k−1

∑k
i=1 vecc(ci) and functions vecc : W → Rm

map context words to context embeddings. Us-
ing the mean of context embeddings to calculate
sense probability is natural with the CBOW be-
cause this model optimises exactly the same mean
to have high scalar product with word embeddings
for words occurred in context and low scalar prod-
uct for random words (Mikolov et al., 2013).

The second disambiguation strategy is based on
similarity between sense and context:

s∗ = arg max
i

sim(si, C) = arg max
i

c̄w · si

‖c̄w‖ ·‖si‖ ,

where c̄w is the mean of word embeddings:
k−1

∑k
i=1 vecw(ci). The latter method uses only

word vectors (vecw) and require no context vec-
tors (vecc). This is practical, as the standard im-
plementation of word2vec does not save context
embeddings and thus most pre-computed models
provide only word vectors.

To improve WSD performance we also apply
context filtering. Typically, only several words in
context are relevant for sense disambiguation, like
“chairs” and “kitchen” are for “table” in “They
bought a table and chairs for kitchen.” For each
word cj in context C = {c1, . . . , ck} we calculate
a score that quantifies how well it discriminates
the senses:

max
i
f(si, cj)−min

i
f(si, cj),

where si iterates over senses of the ambiguous
word and f is one of our disambiguation strate-
gies: either P (cj |si) or sim(si, cj). The p most
discriminative context words are used for disam-
biguation.
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Full TWSI Balanced TWSI
w2v JBT w2v JBT

no filter 0.676 0.669 0.383 0.397
filter, p = 5 0.679 0.674 0.386 0.403
filter, p = 3 0.681 0.676 0.387 0.409
filter, p = 2 0.683 0.678 0.389 0.410
filter, p = 1 0.683 0.676 0.390 0.410

Table 4: Influence of context filtering on disam-
biguation in terms of F-score. The models were
trained on Wikipedia corpus; the w2v is based
on weighted pooling and similarity-based disam-
biguation. All differences between filtered and un-
filtered models are significant (p < 0.05).

5 Experiments

We evaluate our method on two complementary
datasets: (1) a crowdsourced collection of sense-
labeled contexts; and (2) a commonly used Se-
mEval dataset.

5.1 Evaluation on TWSI

The goal of this evaluation is to test different
configurations of our approach on a large-scale
dataset, i.e. it is used for development purposes.

Dataset. This test collection is based on a large-
scale crowdsourced resource by Biemann (2012)
that comprises 1,012 frequent nouns with aver-
age polysemy of 2.26 senses per word. For these
nouns the dataset provides 145,140 annotated sen-
tences sampled from Wikipedia. Besides, it is ac-
companied by an explicit sense inventory, where
each sense is represented with a list of words that
can substitute target noun in a given sentence.

The sense distribution across sentences in the
dataset is skewed, resulting in 79% of contexts as-
signed to the most frequent senses. Therefore, in
addition to the full TWSI dataset, we also use a
balanced subset that has no bias towards the Most
Frequent Sense (MFS). This dataset features 6,165
contexts with five contexts per sense excluding
monosemous words.

Evaluation metrics. To compute WSD perfor-
mance, we create an explicit mapping between the
system-provided sense inventory and the TWSI
senses: senses are represented as bag of words
vectors, which are compared using cosine similar-
ity. Every induced sense gets assigned to at most
one TWSI sense. Once the mapping is completed,
we can calculate precision and recall of sense pre-
diction with respect to the original TWSI labeling.

Performance of a disambiguation model de-
pends on quality of the sense mapping. These
baselines facilitate interpretation of results:

• Upper bound of the induced inventory se-
lects the correct sense for the context, but
only if the mapping exist for this sense.

• MFS of the TWSI inventory assigns the
most frequent sense in the TWSI dataset.

• MFS of the induced inventory assigns the
identifier of the largest sense cluster.

• Random sense baseline of the TWSI and in-
duced sense inventories.

Discussion of results. Table 2 presents exam-
ples of the senses induced via clustering of nearest
neighbours generated by word embeddings (w2v)
and JBT as compared to the inventory produced
via crowdsourcing (TWSI). The TWSI contains
more senses (2.26 on average), while induced ones
have less senses (1.56 and 1.64, respectively). The
senses in the table are arranged in the way they are
mapped to TWSI during evaluation.

Table 3 illustrates how the granularity of the in-
ventory influences WSD performance. The more
granular the sense inventory, the better the match
between the TWSI and the induced inventory can
be established (mind that we map every induced
sense to at most one TWSI sense). Therefore, the
upper bound of WSD performance is maximal for
the most fine-grained inventories.

However, the relation of actual WSD perfor-
mance to granularity is inverse: the lower the num-
ber of senses, the higher the WSD performance
(in the limit, we converge to the strong MFS base-
line). We select a coarse-grained inventory for our
further experiments (n=200, k = 15).

Table 4 illustrates the fact that using context fil-
tering positively impacts disambiguation perfor-
mance, reaching optimal characteristics when two
context words are used.

Finally, Figure 3 presents results of our ex-
periments on the full and sense-balanced TWSI
datasets. First of all, our models significantly out-
perform random sense baseline of both TWSI and
induced inventories. Secondly, we observe that
pooling vectors using similarity scores as weights
is better than unweighted pooling. Indeed, some
clusters may contain irrelevant words and thus
their contribution should be discounted. Third, we
observe that using similarity-based disambigua-
tion mechanism yields better results as compared
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Inventory #Senses Upper-bound of Inventory Probability-based WSD
Prec. Recall F-score Prec. Recall F-score

TWSI 2.26 1.000 1.000 1.000 0.484 0.483 0.484

w2v wiki, k = 15 1.56 1.000 0.479 0.648 0.367 0.366 0.366
JBT wiki, n = 200, k = 15 1.64 1.000 0.488 0.656 0.383 0.383 0.383
JBT ukWaC, n = 200, k = 15 1.89 1.000 0.526 0.690 0.360 0.360 0.360
JBT wiki, n = 200, k = 5 2.55 1.000 0.598 0.748 0.338 0.338 0.338
JBT wiki, n = 100, k = 5 3.59 1.000 0.671 0.803 0.305 0.305 0.305
JBT wiki, n = 50, k = 5 5.13 1.000 0.724 0.840 0.275 0.275 0.275

Table 3: Upper-bound and actual value of the WSD performance on the sense-balanced TWSI dataset,
function of sense inventory used for unweighted pooling of word vectors.

Figure 3: WSD performance of our method trained on the Wikipedia corpus on the full (on the left) and
on the sense-balanced (on the right) TWSI dataset. The w2v models are based on the CBOW with 300
dimensions and context window size 3. The JBT models are computed using the Malt parser.

to the mechanism based on probabilities. Indeed,
cosine similarity between embeddings proved to
be useful for semantic relatedness, yielding state-
of-the-art results (Baroni et al., 2014), while there
is less evidence about successful use-cases of the
CBOW as a language model.

Fourth, we confirm our observation that filter-
ing context words positively impacts WSD perfor-
mance. Finally, we note that models based on JBT-
and w2v-induced sense inventories yield compa-
rable results. However, the JBT inventory shows
higher performance (0.410 vs 0.390) on the bal-
anced TWSI, indicating the importance of a pre-
cise sense inventory. Finally, using the ”gold”
TWSI inventory significantly improves the per-
formance on the balanced dataset outperforming
models based on induced inventories.

5.2 Evaluation on SemEval-2013 Task 13

The goal of this evaluation is to compare the per-
formance of our method to state-of-the-art unsu-
pervised WSD systems.

Dataset. The SemEval-2013 task 13 “Word
Sense Induction for Graded and Non-Graded
Senses” (Jurgens and Klapaftis, 2013) provides 20
nouns, 20 verbs and 10 adjectives in WordNet-
sense-tagged contexts. It contains 20-100 contexts
per word, and 4,664 contexts in total, which were
drawn from the Open American National Corpus.
Participants were asked to cluster these 4,664 in-
stances into groups, with each group correspond-
ing to a distinct word sense.

Evaluation metrics. Performance is measured
with three measures that require a mapping
of sense inventories (Jaccard Index, Tau and
WNDCG) and two cluster comparison measures
(Fuzzy NMI and Fuzzy B-Cubed).

Discussion of results. We compare our ap-
proach to SemEval participants and the AdaGram
sense embeddings. The AI-KU system (Baskaya et
al., 2013) directly clusters test contexts using the
k-means algorithm based on lexical substitution
features. The Unimelb system (Lau et al., 2013)
uses a hierarchical topic model to induce and dis-
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Supervised Evaluation Clustering Evaluation
Model Jacc. Ind. Tau WNDCG F.NMI F.B-Cubed

Baselines One sense for all 0.171 0.627 0.302 0.000 0.631
One sense per instance 0.000 0.953 0.000 0.072 0.000
Most Frequent Sense (MFS) 0.579 0.583 0.431 – –

SemEval AI-KU (add1000) 0.176 0.609 0.205 0.033 0.317
AI-KU 0.176 0.619 0.393 0.066 0.382
AI-KU (remove5-add1000) 0.228 0.654 0.330 0.040 0.463
Unimelb (5p) 0.198 0.623 0.374 0.056 0.475
Unimelb (50k) 0.198 0.633 0.384 0.060 0.494
UoS (#WN senses) 0.171 0.600 0.298 0.046 0.186
UoS (top-3) 0.220 0.637 0.370 0.044 0.451
La Sapienza (1) 0.131 0.544 0.332 – –
La Sapienza (2) 0.131 0.535 0.394 – –

Sense emb. AdaGram, α = 0.05, 100 dim. vectors 0.274 0.644 0.318 0.058 0.470

Our models w2v – weighted – sim. – filter (p = 2) 0.197 0.615 0.291 0.011 0.615
w2v – weighted – sim. – filter (p = 2): nouns 0.179 0.626 0.304 0.011 0.623
JBT – weighted – sim. – filter (p = 2) 0.205 0.624 0.291 0.017 0.598
JBT – weighted – sim. – filter (p = 2): nouns 0.198 0.643 0.310 0.031 0.595
TWSI – weighted – sim. – filter (p = 2): nouns 0.215 0.651 0.318 0.030 0.573

Table 5: The best configurations of our method selected on the TWSI dataset on the SemEval 2013 Task
13 dataset. The w2v-based methods rely on the CBOW model with 100 dimensions and context window
size 3. The JBT similarities were computed using the Malt parser. All systems were trained on the
ukWaC corpus.

ambiguate word senses. The UoS system (Hope
and Keller, 2013) is most similar to our approach:
to induce senses it builds an ego-network of a word
using dependency relations, which is subsequently
clustered using a simple graph clustering algo-
rithm. The La Sapienza system (Agirre and Soroa,
2009), relies on WordNet to get word senses and
perform disambiguation.

Table 5 shows a comparative evaluation of our
method on the SemEval dataset. Like above,
dependency-based (JBT) word similarities yield
slightly better results than word embedding sim-
ilarity (w2v) for inventory induction. In addi-
tion to these two configurations, we also built a
model based on the TWSI sense inventory (only
for nouns as the TWSI contains nouns only). This
model significantly outperforms both JBT- and
w2v-based models, thus precise sense inventories
greatly influence WSD performance.

As one may observe, performance of the best
configurations of our method is comparable to
the top-ranked SemEval participants, but is not
systematically exceeding their results. AdaGram
sometimes outperforms our method, sometimes it
is on par, depending on the metric. We interpret
these results as an indication of comparability of
our method to state-of-the-art approaches.

Finally, note that none of the unsupervised
WSD methods discussed in this paper, includ-

ing the top-ranked SemEval submissions and Ada-
Gram, were able to beat the most frequent sense
baselines of the respective datasets (with the ex-
ception of the balanced version of TWSI). Similar
results are observed for other unsupervised WSD
methods (Nieto Piña and Johansson, 2016).

6 Conclusion

We presented a novel approach for learning of
multi-prototype word embeddings. In contrast to
existing approaches that learn sense embeddings
directly from the corpus, our approach can oper-
ate on existing word embeddings. It can either in-
duce or reuse a word sense inventory. Experiments
on two datasets, including a SemEval challenge on
word sense induction and disambiguation, show
that our approach performs comparably to the state
of the art.

An implementation of our method with several
pre-trained models is available online.3
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