
EmpiriST: AIPHES
Robust Tokenization and POS-Tagging for Different Genres

Steffen Remus†§ and Gerold Hintz†§ and Darina Benikova‡§ and Thomas
Arnold†§ and Judith Eckle-Kohler†§ and Christian M. Meyer†§ and Margot

Mieskes∗§ and Chris Biemann†§

†Computer Science Dept.
Technische Universität Darmstadt

‡Computer Science and Applied
Cognitive Science Dept.

Universität Duisburg-Essen

∗Information Science
University of Applied Sciences, Darmstadt

§Research Training Group AIPHES
Heidelberg University and

Technische Universität Darmstadt

§www.aiphes.tu-darmstadt.de

Abstract

We present our system used for the
AIPHES team submission in the context
of the EmpiriST shared task on “Auto-
matic Linguistic Annotation of Computer-
Mediated Communication / Social Me-
dia”. Our system is based on a rule-
based tokenizer and a machine learning se-
quence labelling POS tagger using a va-
riety of features. We show that the sys-
tem is robust across the two tested gen-
res: German computer mediated commu-
nication (CMC) and general German web
data (WEB). We achieve the second rank
in three of four scenarios. Also, the pre-
sented systems are freely available as open
source components.

1 Introduction

Tokenization and part-of-speech (POS) tagging
are considered core tasks in a standard Natural
Language Processing (NLP) pipeline. NLP tasks,
such as summarization, information extraction,
event detection, machine translation, and many
others, are typically based on machine learning
algorithms which use the outcome of lower level
NLP tasks, such as tokens or intermediate linguis-
tic phenomena including parts-of-speech or gram-
matical relations, as features. Though tokenization
and part-of-speech tagging are considered simple
tasks, it is highly important to achieve high-quality
results, as errors propagate to downstream applica-
tions, where they are hard to repair and may cause
notable consequential errors. Thus, a major goal

is the minimization of the propagation of errors by
using methods that perform as accurate as possi-
ble in lower level tasks on a diversity of texts and
genres.

In this paper we present a simple, yet flex-
ible and universally applicable system for tok-
enization and POS tagging German text. Our
system participated in the EmpiriST shared
task on “Automatic Linguistic Annotation of
Computer-Mediated Communication / Social Me-
dia” (Beißwenger et al., 2016). For this task, we
applied our solution to texts from two different
genres: a) general, html-stripped web data and
b) colloquial language from social media texts.

The paper is organized as follows: We first de-
scribe the shared task and related work Section 2.
Our systems for tokenization and POS tagging are
laid out in Section 3 and evaluated in Section 4,
which includes a detailed error analysis. Section 5
concludes.

2 Task Description & Related Work

The main goal of the GSCL Shared Task
“Automatic Linguistic Annotation of Computer-
Mediated Communication / Social Media” was
to encourage adaptation and development of
language processing tools for German texts of
computer-mediated communication genres. The
shared task was divided into two subtasks, tok-
enization and POS tagging, which made use of an
extended STTS-EmpiriST tag set. For both tasks,
two data sets were provided for trial and training
purposes.

• A computer-mediated communication data

set (CMC) that included chat texts, tweets,
blogs and Wikipedia talk pages.

• A Web data set (WEB) with various web text
genres.

The training data set includes 5,109 (WEB)
and 6,034 (CMC) manually annotated and expert-
checked tokens. System submissions for the tasks
were evaluated by the organizers on 7,800 (WEB)
and 6,142 (CMC) tokens of blind test data.

2.1 Tokenization

Tokenization is usually the first step in a NLP sys-
tem. Even systems that do not follow the classical
NLP pipeline architecture still mostly operate on
the basis of tokens, including unified architectures
starting from scratch (Collobert et al., 2011). This
is common, since tokens – either directly or indi-
rectly – are usually considered to bear the infor-
mation in a text eventually. However, the impor-
tance of tokenization is often neglected, as simple
methods like whitespace segmentation can yield
acceptable accuracies for many languages at first
sight (Webster and Kit, 1992). But errors in an
early phase of an NLP pipeline can have severe
effects to higher level tasks and influence their per-
formance by a large margin.

Existing tokenizers can be organized into three
categories: a) rule-based methods, b) supervised
methods, c) unsupervised methods. Manning et al.
(2014)1, for example, internally use JFlex2, which
is a meta language for rules based on regular ex-
pressions and procedures to execute when a rule
matches. In contrast, Jurish and Würzner (2013)
present a supervised system for joint tokenization
and sentence splitting, which employs a Hidden
Markov Model on character features for bound-
ary detection. Kiss and Strunk (2006) introduce
Punkt, providing an unsupervised model for sen-
tence splitting and tokenization. Kiss and Strunk
(2006) use the fact that most ambiguous token or
sentence boundaries happen around punctuation
characters, such as periods/full stops. Punkt finds
collocations of characters before and after punctu-
ations, assuming that these collocations are typical
abbreviations, initials, or ordinal numbers which
can be maintained as a simple list of non-splittable
tokens.

1As of the current version v3.6 of the Stanford Core Utils,
the default PTBTokenizer uses JFlex.

2http://jflex.de/

Automatically learned models, both supervised
and unsupervised, are typically hard to debug and
the results might need post cleaning, e.g. post-
merging or splitting of common mistakes, because
modifying learned models is usually not trivial but
need to be re-learned with different parameter set-
tings or training data. However, it is important to
offer the possibility to easily debug and change the
outcome of the tokenization, hence, our goal is to
implement a small and reasonable ruleset.

2.2 POS Tagging

Existing POS taggers for German primarily rely
on the Stuttgart-Tübingen Tagset (STTS, Schiller
et al. (1999)), which consists of 54 POS tags
and distinguishes between eleven main parts of
speech, which are further divided into various sub-
categories. The STTS tagset has become a de
facto standard for German, as it is also used in
major German treebanks, such as the Tiger tree-
bank (Brants et al., 2004), called Tiger henceforth.
Tiger consists of approx. 900,000 tokens of Ger-
man newspaper text (taken from the Frankfurter
Rundschau), and the POS annotations have been
added semi-automatically. For this, the TnT tagger
(Brants, 2000) was used, because it also outputs
probabilities that can be used as confidence scores.
Only POS tags with a low confidence score were
checked for correctness by human annotators.

As the basis for the development of the STTS-
tagset were newspaper corpora, STTS only con-
tains six POS tags that describe categories other
than the standard grammatical word categories
(e.g., non-words or punctuation marks). In con-
trast, the extended version of STTS used in
the EmpiriST shared task contains 18 additional
tags for elements that are specific for computer-
mediated communication, for example, tags for
emoticons, hashtags and URLs, or tags for phe-
nomena which are typical for spoken language.

State-of-the-art POS taggers use supervised ma-
chine learning to train a model from corpora anno-
tated with POS tags. While there are several ways
to model POS tagging as a machine learning prob-
lem, casting it as a sequence labeling problem is a
frequent approach, used already for the early TnT
tagger by Brants (2000). In sequence tagging, the
learning algorithm – e.g. Hidden Markov Models
or Conditional Random Fields (CRFs) – optimizes
the most likely tags over the sequence, while tak-
ing interdependencies of tags into account – as op-

posed to a mere token-based classification.
Another annotation task that is a typical exam-

ple of sequence labeling, is named entity recog-
nition. For example, the GermaNER toolkit
(Benikova et al., 2015) uses CRFs for learning to
tag named entities. GermaNER has been built in a
modular fashion and is highly configurable, which
allows users to easily train it with new data and
features sets, and hence we chose to build upon the
GermaNER system for POS tagging in this shared
task.

3 System Description

The systems we describe in the following sub-
sections are available as open source components
under the Apache v2 license.3 For tokenization,
we have not attempted to create different variants
for the two text genres of the shared task, but
rather provide a robust generic solution, since we
would not want to adopt subsequent processing
steps when applying them to a different genre.

3.1 Tokenization

We present a rule-based tokenizer where the rules
describe merging routines of two or more conser-
vatively segmented tokens. Rules are defined in
terms of a list of common non-splittable terms and
simple regular expressions. The tokenizer is con-
figured with a set of configuration files, which we
call a ruleset. A ruleset can be easily adapted or
changed depending on a particular language. In
the following we present the tokenizer’s configu-
ration options and show selected toy examples.

The main building blocks of the tokenizer are
the following:

Conservative splits: A base tokenizer provides
the initial tokens that are refined in the next
steps. We chose a robust tokenizer that oper-
ates on general unicode character categories,
i.e. a stream of characters is processed and for
each character its general unicode category is
retrieved. Based on the transition from the
current character’s unicode category to the
next character’s unicode category new token
segments are created by some specified rules.
More specifically, new token segments are
created for empty space4 to non-empty space

3https://github.com/AIPHES
4general unicode categories Zl, Zs, Zp

transitions, letter5 to non-letter and number6

to non-number transitions or vice versa.

Merge list: We maintain a list of common ab-
breviations, which contains words or expres-
sions with non-letter characters such as dots
or hyphens. Additionally, this list contains
a collection of common text-based emojis.
Some selected examples are listed in List-
ing 1. The file was manually compiled
from various sources in the web, including
Wikipedia.

Merge rules: Since merge lists contain only fixed
tokens that must match entirely and hence
do not allow for modifications within to-
kens, we additionally maintain a list of merge
rules which are specified as regular expres-
sions. This is particularly important for ex-
pressions involving digits, such as date ex-
pressions, usernames, etc. Rules are pro-
cessed in the order of their definition. Un-
fortunately, as with potentially every rule-
based system, too many handwritten rules
start to interfere and introduce unwanted be-
havior. This is especially true if rules are
too general, i.e. they match more examples
than they should. We balance this trade-off
between rule complexity and rule interaction
by introducing global and local reject rules,
i.e. merge rules are rejected iff a reject rule
also matches. The scope of these reject rules
can be defined globally, matching tokens that
should never be considered for merging, or
locally, matching tokens that should not be
considered for merging only if a particular
merge rule matched. Multiple consecutive re-
ject rules are possible. Listing 2 shows a snip-
pet of the respective configuration file.

The tokenizer is implemented in Java using the
Java default regular expression engine. It was de-
veloped as part of the lt-segmenter7 and is pro-
vided as a branch8.

3.2 POS Tagging

For POS tagging, we have adapted the GermaNER
system, an open-source named entity recognition

5general unicode categories Lu, Ll, Lt, Lm, Lo
6general unicode categories Nd, Nl, No
7https://tudarmstadt-lt.github.io/seg/
8https://github.com/AIPHES/tokenizer

lookahead-list.txt
C-Jugend
Ü-Ei
altgriech.
24/7
2B~not2B
a-z
a.k.a.
>_<
:-}
X8-{}
...

Listing 1: Examples of fixed entries, i.e. non-
splitable tokens in the tokenizer’s look-ahead list.
Comments begin with a # character.

lookahead-rules.txt
reject) followed by ; globally
- \);

email a@b.com
+ [\.+\w\-]+@([\w\-]+\.)+[\w]{2,6}

reverse emoticons (-:
+ (\[\]\)\(DP*)\1{0,}-?’?[:;8B=]
reject):
- \) ?:

...

Listing 2: Examples for merge rules defined as
regular expressions. Merge rules are defined with
an initial ’+’ in the beginning of the line, whereas
reject rules are defined with an initial ’-’. Global
reject rules are defined before any positive rule and
comments begin with a # character. A description
of the rules can be found as comment before the
actual rule.

tool written in Java. GermaPOS9 is a fork of
the software, adapting the framework for this pur-
pose. As a machine learning algorithm, a CRF
sequence tagger (Lafferty et al., 2001) is used.
Specifically the implementation provided by CRF-
suite (Okazaki, 2007), as is in the clearTK frame-
work is employed.

The architecture of GermaPOS is a highly ex-
tensible UIMA10 pipeline (Ferrucci and Lally,
2004), providing a simple interface to both train-
ing a new tagger based on user-provided training
data, as well as running a pretrained model on
simple text files. The pipeline first reads a tab-

9GermaPOS is available at https://github.com/
AIPHES/GermaPOS

10Unified Information Management Architecture,
https://uima.apache.org/

separated input file. In a subsequent step, feature
extraction is performed per token, using additional
information from external sources, e.g. word lists.
Feature extraction can further take into account
any surrounding context of the current token, e.g.
time-shifted features of relative position −2, −1,
0, +1, +2. In training mode, a CRF model is then
built on the basis of feature annotations; at run-
time the model provides POS tags as UIMA an-
notations. An optional output step in the pipeline
produces a POS-annotated file. Alternatively, the
pipeline can be used within UIMA projects out of
the box. We perform a post-hoc assignment of
POS tags based on a subset of our mapping rules
that cover EmpiriST-specific conventions. For ex-
ample a token emojiQsmilingFace will be assigned
the tag EMOIMG, regardless of the output of the
sequence tagger.

Features We adapt nearly the full feature set of
GermaNER, with the exception of POS features.
In the following list, we give a brief overview
– a more detailed description can be found in
(Benikova et al., 2015).

1. Character n-grams First and last character
n-grams for n ∈ {1, 2, 3} of the current to-
ken, as well as time-shifted versions of this
feature with offset from−2 to 2 are extracted.

2. Gazetteers and word lists We adapt
most gazetteers from GermaNER, containing
mostly named entities (NE). As we gained no
performance increase from a higher coverage
of NEs in our datasets through Freebase (Bol-
lacker et al., 2008), we omit this resource in
favor of a more lightweight system. In ad-
dition, we incorporate word lists. We em-
ploy a small list of English words11, as well
as hand-crafted lists12 of onomatopoeia, dis-
course markers, Internet abbreviations, inten-
sity markers, as well as various types of par-
ticles.

3. Similar words JoBimText (Biemann and
Riedl, 2013) to obtain a distributional the-
saurus (DT) from which the four most similar
words for the current token are used. The un-
derlying motivation is to be able to correctly

11We use a list of English words as these cover most oc-
currences of foreign language tags

12Partially compiled from Wikipedia and enriched by data
from various internet sites e.g. internetslang.com.

tag infrequent or unseen targets, by expand-
ing them with a frequent similar term, most
likely sharing the same part of speech.

4. Topic clusters LDA topic modeling was ap-
plied on the DT defined above, resulting in a
fixed number of topic clusters. For each to-
ken, and time-shifted context tokens, its topic
index is extracted as a feature. We again build
on existing work of GermaNER and use a
precomputed set of 200 clusters.

5. Syntax We use simple syntactic features,
such as the word position and casing of to-
kens. We generalize the original GermaPOS
setup to use arbitrary regular expressions as
binary features. We then use all regular ex-
pressions designed for tokenization as fea-
tures. This way, we also cover most casing
information.

Furthermore, we extract the character range of
each token as a feature, in case all characters fall
into the same class. Hence, if all characters are
from the same Unicode code block, this block is
extracted as a feature. This feature allows, for ex-
ample, to capture Unicode emoticons, not specifi-
cally preprocessed as in the EmpiriST data.

Training In the context of the EmpiriST shared
task, we train a separate model for both the CMC
and WEB datasets. As the training data is com-
paratively small for the purpose of POS tagging,
we add the Tiger dataset to the respective training
sets. The Tiger corpus is annotated using the stan-
dard STTS tagset, whereas the task at hand pro-
vided an extended tagset. In order to make learn-
ing from Tiger feasible, we have manually con-
verted the Tiger data to the extended tagset using
a set of simple rules, which aim at covering most
of the easy cases.

As with GermaNER, the selection of resources
and software components was done in favor of
choosing a permissive license rather than focusing
on system performance. Although it is plausible
to improve POS tagging performance by integrat-
ing high-quality resources, we have opted to re-
lease GermaPOS with only free components, i.e.
those already employed in GermaNER as well as
manual additions not encumbered with restrictive
usage rights. Where applicable, the system can be
customized to utilize additional resources. A pos-
sible extension is the integration of another third-
party POS tagger to be utilized as a feature.

Usage GermaPOS is provided as a runnable
jar file with a pre-bundled model trained on the
data described above. The training format is –
equivalent to the EmpiriST training data – a tab-
separated file of one token-tag pair per line and
sentences being separated by an empty line.

4 Evaluation

Following the EmpiriST task setup, we evaluate
our tokenizer by measuring precision P , recall R,
and the F1 score as in Jurish and Würzner (2013).
Precision denotes the proportion of correctly iden-
tified token boundaries over the total number of to-
ken boundaries proposed by our tokenizer and re-
call denotes the proportion of correctly identified
token boundaries over the total number of token
boundaries in the gold standard. The F1 score is
the harmonic mean of precision and recall.

For our POS tagger, we report the tagging accu-
racy. That is, we measure the fraction of correct
tag guesses over the total number of tokens to tag.
To enable a comparison of our tagger’s results with
previous work on German, we additionally use the
STTS mapping provided by the shared task orga-
nizers and measure the tagging accuracy using the
mapped tags.

Below, we first discuss our results according
to these standardized metrics and then conduct a
careful analysis of the most prominent errors of
our tools.

4.1 Results

We present results according to the tasks evalua-
tion. Table 1 shows the results for the tokenization
task for the two datasets CMC and WEB. Without
adapting the rules for the particular sub-tasks, we
achieved good performance on both sets such that
we positioned on rank two in both categories.

The results for the POS tagging task are shown
in Table 2. We achieve clearly better results on
the WEB dataset (second best results) than on the
CMS dataset. One possible reason for that is the
distribution of the new POS tag labels in the test
set. As can be seen in Table 3, the CMC data
make more use of the new labels. Another rea-
son might be the adaption of our system to the text
style, which is dominated by the much larger Tiger
training set.

Genre Rec Prec F1 Rank
CMC 99.30 98.62 98.96 2
WEB 99.63 99.89 99.76 2

Table 1: Tokenization results. We achieved
rank two of six submissions in both categories.
Two submissions were non-competitive but do not
change our rank.

Genre Acc Rank
CMC 84.22 5
CMC (STTS Map) 87.10 2
Web 93.27 2
Web (STTS Map) 94.30 2

Table 2: POS tagging results. Among 17 submis-
sions from eight teams, of which two were out of
competition, we ranked second on the web data
and fifth on the CMC data.

Tag CMC Web
ONO 2
DM 6
PTKIFG 72 61
PTKMA 74 11
PTKMWL 10 14
VVPPER 6
VAPPER 4
KOUSPPER 1 1
PPERPPER 1 1
ADVART 3
EMOASC 71
EMOIMG 63
AKW 60
HST 42
ADR 48
URL 16
EML 1

Table 3: Distribution of new POS tag labels in the
test sets.

4.2 Common Errors

We identified three main sources of tokenization
errors. Examples in the following show gold to-
kenization on the left and system tokens on the
right, errors are marked with an asterisk.

1. Rules are underspecified, which means that
certain rules were not specified or the look-
ahead list did not contain the particular ab-
breviation. Also, note that we deviated from
the annotation guidelines and did not perform
token splitting at camel case boundaries.

Examples:

* Eingetr.
Lebenspartnersch.

* die
* Feststellung

der
* 1.

Teil
meiner

* Eingetr
* .

* dieFeststellung
,

war
* der1
* .

Teil

2. Rules are overspecified, which means that
rules are specified in our ruleset although
they were not specified in the annotation
guidelines.
Example:

Backlinks
:

* [[
* sec

:
verschl

Backlinks
:

* [[sec:verschl]]
Navigation
Passwort-
generator

3. Current scheme cannot capture certain
phenomena, which happens on phenomena
that are syntactically hard to distinguish. For
instance, section listings that get identified as
a date, e.g.

* 1.3.
Kekse

* 1.
* 3.

POS tagging error analysis We have per-
formed a post-hoc error analysis on the EmpiriST
data. Table 4 shows a confusion matrix regarding
classes of POS tags by their prefix (first charac-
ter). Note that this matrix only lists tagging errors,
so that the diagonal of the matrix denotes incor-
rect tagging within the same prefix class. It can
be seen that the majority of errors happen within
these classes, such as N*. The most common tag-
ging error is in fact mistagging NE and NN, which

$* AD* AKW* AP* AR* EML* EMO* N* P* PPER* PT* V*
$* 68 0 0 1 1 0 0 0 1 0 1 0 1

AD* 2 49 1 9 0 1 0 81 21 3 159 21 34
AKW* 0 1 0 0 0 0 0 1 0 0 0 0 3

AP* 2 0 0 4 0 0 0 0 1 0 6 2 10
AR* 0 1 0 0 0 0 0 0 22 0 2 0 0

EML* 0 0 0 0 0 0 0 0 0 0 0 0 0
EMO* 1 0 0 0 0 0 0 0 0 0 0 0 0

N* 1 25 2 3 3 0 2 163 3 2 6 16 43
P* 0 3 0 1 10 0 0 4 37 4 1 1 10

PPER* 0 0 0 0 0 0 0 0 7 0 0 0 0
PT* 0 34 0 5 0 0 0 1 7 0 16 0 0
V* 0 16 3 4 1 0 0 30 1 0 0 137 7

other 11 10 5 9 1 0 1 28 9 1 5 1 25

Table 4: Confusion matrix for POS tag prefixes (errors only)

Error class count (%)
1. missed extended tagset 28 17.6
2. incorrectly assigned new tag 4 2.5
3. confusion of function word tags 22 13.6
4. mistagged NN due to lower case 23 14.4
5. mistagged NE as NN & vice-versa 20 12.5
6. mistagged NE as other 12 10.0
7. unknown emoticon 1 0.6
8. unknown foreign language word 2 1.3
9. error due to abbreviation 2 1.3
10. incorrect punctuation tag 20 12.5
11. other 26 16.3

Table 5: POS tagging error classes

is sometimes also difficult to discriminate for hu-
man annotators.

We define a number of error classes to better
quantify the types of errors introduced by our tag-
ger. For this, we construct an ordered list from
which we select the first item that applies as the
error class:

1. missed extended tagset

A tag from the extended set was required, but
a standard STTS tag was assigned. Example:
wohl PTKMA wohl ADV

2. incorrectly assigned new tag

A tag from the extended set was assigned in-
correctly. Example:
mal ADV
gucken VVINF

mal PTKMA
gucken VVINF

3. confusion of function word tags

Incorrect tag within the class of function
words. Example:
den ART
Irrsinn NN
nicht PTKNEG
endlich ADJD
beenden VVINF

den ART
Irrsinn NN
nicht PTKNEG
endlich ADV
beenden VVINF

4. mistagged NN due to lower case

A lower-case noun was not captured. Exam-
ple:
ihre PPOSAT
entscheidung
NN

ihre PPOSAT
entscheidung VVFIN

5. mistagged NE as NN and vice versa

Incorrect tagging of named entities and
nouns. Example:
HErr NN
Ozdemir NE

HErr NE
Ozdemir NE

6. mistagged NE as other

A named entity was not recognized and
tagged with a tag other than NN. Example:
Frage NN
von APPR
@DieMaJa22 NE

Frage NN
von APPR
@DieMaJa22 ADR

7. unknown emoticon

An emoticon was not identified as such (due
to not being covered by regular expressions).
Example:

*<:-) EMOASC *<:-) NE

8. unknown foreign language word

A foreign word was not tagged as FM. Exam-
ple:
meinst VVFIN
du PPER
bazdmeg FM

meinst VVFIN
du PPER
bazdmeg VVFIN

9. error due to abbreviation

Word abbreviations leading to incorrect tag-
ging. Example:
Anerkennung NN
der ART
Eingetr. ADJA
Partnerschaft NN

Anerkennung NN
der ART
Eingetr. NN
Partnerschaft NN

10. incorrect punctuation tag

Errors within the class of punctuation tags.
Example:
Thema NN
: $(
Drogenpolitik NN
... $.

Thema NN
: $.
Drogenpolitik NN
... $(

11. other

if none of the other criteria apply

We then annotate the first 160 errors from the
CMC test set with their respective error classes.
The results are shown in Table 5. It can be ob-
served that most errors are related to nouns or
named entities. The tagger commonly confuses
these two. For CMC data, a very common er-
ror which throws off the tagger are nouns writ-
ten in lower case, which generally get assigned
a completely different POS. As we have trained
our tagger on a standard STTS-annotated corpus
(with minimal postprocessing), some errors also
stem from not capturing the new rules introduced
by the extended EmpiriST tagset. There are also
a few errors resulting from unknown foreign lan-
guage words or emoticons not captured by our reg-
ular expressions, but regarding their quantity this
is much less of a problem and they only account
for a tiny percentage of errors.

5 Conclusion

We have presented our submission to the Em-
piriST shared task on “Automatic Linguistic An-
notation of Computer Mediated Communication /
Social Media”, comprising a rule-based tokenizer

and a machine-learning-based POS tagger. Over-
all, we achieved a very good, but not the best per-
formance amongst the participating systems, rank-
ing second throughout except for CMC POS tag-
ging with the extended tagset. Our submission
was aimed at robustness; we have not tuned our
tokenizer per genre, and show good POS tagging
performance throughout. Both systems are freely
available as open source under a permissive li-
cense.

Acknowledgments

This work has been supported by the German
Research Foundation as part of the Research
Training Group “Adaptive Preparation of Infor-
mation from Heterogeneous Sources” (AIPHES)
under grant No. GRK 1994/1 and by the German
Institute for Educational Research (DIPF) under
the KDSL program.

References
Michael Beißwenger, Sabine Bartsch, Stefan Evert,

and Kay-Michael Würzner. 2016. Empirist 2015:
A shared task on the automatic linguistic annotation
of computer-mediated communication, social media
and web corpora. In Proceedings of the 10th Web as
Corpus Workshop (WAC-X), Berlin, Germany.

Darina Benikova, Seid Muhie Yimam, and Chris Bie-
mann. 2015. GermaNER: Free open German
named entity recognition tool. In International
Conference of the German Society for Computa-
tional Linguistics and Language Technology (GSCL-
2015), Essen, Germany.

Chris Biemann and Martin Riedl. 2013. Text: Now
in 2D! a framework for lexical expansion with con-
textual similarity. Journal of Language Modelling,
1(1):55–95.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A
collaboratively created graph database for structur-
ing human knowledge. In Proceedings of the 2008
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’08, pages 1247–1250,
New York, NY, USA. ACM.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen, Esther König, Wolfgang Lezius, Chris-
tian Rohrer, George Smith, and Hans Uszkoreit.
2004. TIGER: linguistic interpretation of a German
corpus. Research on Language and Computation,
2(4):597–620.

Thorsten Brants. 2000. TnT: A Statistical Part-of-
speech Tagger. In Proceedings of the Sixth Con-
ference on Applied Natural Language Processing,
pages 224–231, Seattle, Washington.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

David Ferrucci and Adam Lally. 2004. UIMA: An
architectural approach to unstructured information
processing in the corporate research environment.
Natural Language Engineering, 10(3-4):327–348.

Bryan Jurish and Kay-Michael Würzner. 2013. Word
and sentence tokenization with Hidden Markov
Models. Journal for Language Technology and
Computational Linguistics (JLCL), 28(2):61–83.

T. Kiss and J. Strunk. 2006. Unsupervised multilin-
gual sentence boundary detection. Computational
Linguistics, 32(4):485–525.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, MD.

Naoaki Okazaki. 2007. CRFsuite: a fast im-
plementation of conditional random fields (CRFs).
http://www.chokkan.org/software/crfsuite/.

Anne Schiller, Simone Teufel, Christine Stöckert, and
Christine Thielen. 1999. Guidelines für das
Tagging deutscher Textcorpora mit STTS (Kleines
und großes Tagset). Technical Report, Univer-
sität Stuttgart, Institut für Maschinelle Sprachverar-
beitung.

Jonathan J. Webster and Chunyu Kit. 1992. Tokeniza-
tion as the initial phase in NLP. In The 15th Inter-
national Conference on Computational Linguistics
(COLING), pages 1106–1110, Nantes, France.

