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Abstract

In this paper we present a word decom-
pounding method that is based on distribu-
tional semantics. Our method does not re-
quire any linguistic knowledge and is initial-
ized using a large monolingual corpus. The
core idea of our approach is that parts of com-
pounds (like “candle” and “stick”) are seman-
tically similar to the entire compound, which
helps to exclude spurious splits (like “candles”
and “tick”). We report results for German
and Dutch: For German, our unsupervised
method comes on par with the performance of
a rule-based and a supervised method and sig-
nificantly outperforms two unsupervised base-
lines. For Dutch, our method performs only
slightly below a rule-based optimized com-
pound splitter.

1 Introduction

Germanic and agglutinative languages (e.g. German,
Swedish, Finnish, Korean) have a productive mor-
phology that allows the formation of not space-
separated compounds in a much larger extent than
e.g. in English. The task of separating such com-
pounds into their corresponding single word (sub-)
units is called compound splitting or decompound-
ing.

Decompounding showed impact in several NLP
applications, e.g. ASR (Adda-Decker and Adda,
2000), MT (Koehn and Knight, 2003) or IR (Monz
and de Rijke, 2001), and is generally perceived as
a crucial component for the processing of respec-
tive languages. However, most existing systems rely

on dictionaries or are trained in a supervised fash-
ion. Both approaches require substantial manual
work and do not adapt to vocabulary change. In this
paper we introduce an unsupervised method for de-
compounding that relies on distributional semantics.
For the computation of the semantic model we solely
rely on a tokenized monolingual corpus and do not
require any further linguistic processing. Most pre-
vious research on compound splitting concentrates
on the detection of lemmas that form the compound.
Whereas this is important for several tasks, in this
work we focus on the splitting of a compound into
its word units without any base form reduction, ar-
guing that lemmatization is either part of the task
pipeline anyways (e.g. IR) or not required (e.g. for
ASR).

2 Related Work

Approaches to automatic decompounding can be
classified into corpus-driven approaches and super-
vised approaches. Corpus-driven approaches are
usually informed by a frequency list (Koehn and
Knight, 2003), by a probabilistic model (Schiller,
2005), by parallel corpora (Koehn and Knight, 2003;
Macherey et al., 2011) or by the existence of pe-
riphrases (i.e. reformulations) in large monolingual
corpora (Holz and Biemann, 2008). As with other
tasks, supervised approaches are usually superior to
unsupervised approaches if sufficient training ma-
terial is provided. A straightforward yet effective
supervised decompounding system is contained in
the ASV Toolbox (Biemann et al., 2008), which
uses trie-based datastructures for recursively split-
ting compounds based on learned splits. Alfonseca



et al. (2008) combine several signals, including web
anchor text, in an SVM-based supervised splitter. A
widely used German decompounder is JWordSplit-
ter1, which is based on word lists of compound parts
as well as manually crafted blacklists and whitelists.
The NL Splitter2 uses similar technology for Dutch
compound decomposition. An unsupervised ap-
proach is presented in (Koehn and Knight, 2003):
out of several splits as given by matching parts of
the compound to a vocabulary list, they pick the
split with the highest geometric mean of word fre-
quencies, which is entirely corpus-driven but ignores
semantic relations between the compound and its
parts. Another unsupervised system is proposed by
Daiber et al. (2015). They propose an analogy-based
approach, which relies on word embeddings.

Decompounding is evaluated either intrinsically
or in a task that benefits from it, e.g. IR (Monz
and de Rijke, 2001), MT (Koehn and Knight, 2003;
Macherey et al., 2011) or ASR (Adda-Decker and
Adda, 2000; Ordelman et al., 2003).

3 Method

The introduced method, called SECOS (SEman-
tic COmpound Splitter)3, is based on the hypothe-
sis that compounds are similar to their constituting
word units. Our method is based on a distributional
thesaurus (DT) that is computed, based on the dis-
tributional hypothesis (Harris, 1951), using a mono-
lingual background corpus and does not require any
language-specific rules or preprocessing. We ex-
emplify the method based on the compound noun
Bundesfinanzministerium (federal finance ministry),
which is assembled of the words Bundes (federal),
Finanz (finance) and Ministerium (ministry).

Our method consists of three stages: First we ex-
tract a candidate word set that defines the possible
word units of compounds. We present several ap-
proaches to generate such candidates. Second, we
use a general method that splits the compound based
on a candidate word set. Using the different candi-
date sets, we obtain different compound splits. Fi-

1https://github.com/danielnaber/
jwordsplitter

2http://ilps.science.uva.nl/resources/
compound-splitter-nl/

3An implementation and models for German and Dutch are
available at: https://github.com/riedlma/SECOS

nally, we define a mechanism that ranks these splits
and returns the top-ranked one.

3.1 Candidate Extraction
For the extraction of all candidates in C, we use a
distributional thesaurus (DT) that is computed on a
background corpus. We present three approaches for
the generation of candidate sets.

When we retrieve the l most similar terms for a
word w from a DT, we observe well-suited candi-
dates that are nested in w. For example Bundesfi-
nanzministerium is similar to Bund, Bundes and Fi-
nanzministerium. Extracting the most similar terms
that are nested in w results in the first split candidate
set, called similar candidate units.

However, only for few terms we observe nested
candidates in the most similar words. Thus, we re-
quire methods to generate “back-off” candidates.

First, we introduce the extended similar candidate
units. Here, we extract the l most similar terms for
w and then grow this set by again adding their re-
spective l most similar words. Based on these terms,
we extract all words that are nested in w. This re-
sults into more but less precise decompounding can-
didates.

As the coverage might still be insufficient to
decompound all words (e.g. entirely unseen com-
pounds), we propose a method to generate a global
dictionary of single atomic word units. For this, we
iterate over the entire vocabulary of the background
corpus, apply the compound splitter (see Section
3.2) to all words where we find similar candidate
units. Then, we add these detected units to the dic-
tionary. Finally, for word w subject to decompound-
ing, we first extract all nested words NW from this
dictionary. Then, we remove all words in NW that
are nested itself in NW , resulting in the candidate
set we call generated dictionary.

3.2 Compound Splitting
Here, we introduce the decompounding algorithm
for a given candidate set. For decompounding the
word w, we require a set of candidate words C.
Each word in the candidate set needs to be a sub-
string of w. We do not include candidates in C that
have less than ml characters. Additionally, we ap-
ply a frequency threshold of wc. These mechanisms
are intended to rule out spurious parts and ‘words’



word w Bundesfinanzministerium
candidates C Finanzministerium, Ministerium,
w. ml=3 Bunde, Bund, Bundes, Minister
split possibilities Bund-e-s-finanz-minister-ium

Merging character n-grams
suffix-prefix Bundes-finanz-ministerium
prefix-suffix Bund-esfinanz-ministerium

Table 1: Examples of the output of our algorithms for the ex-

ample term Bundesfinanzministerium.

that are in fact short abbreviations. We show can-
didates, extracted from the similar candidate unit,
with ml = 3 for the example term in Table 1. Then,
we iterate over each candidate ci ∈ C and add its
beginning and ending position within w to the set
S. This set is then used to identify possible split po-
sitions of w. For this, we iterate from left to right
and add all split possibilities to the word w. This
approach over-generates split points, as can be ob-
served for the example word, which is split into 6
units: Bund-e-s-finanz-minister-ium.

To merge character n-grams, we use a suffix- and
prefix-based method. The suffix merging method
appends all character n-grams with n below ms to
the left word. The prefix method merges all charac-
ter n-grams with n belowmp to the word on the right
side. To avoid remaining prefixes/suffixes, we ap-
ply the opposite method afterwards. For the German
language, the suffix-prefix ordering mostly yields
the best output. The suffix-prefix-based approach
results to Bundes-finanz-ministerium and the prefix-
suffix method to Bund-esfinanz-ministerium. How-
ever for some words, the prefix-suffix generates the
correct compound split, e.g. for the word Zuschauer-
er-wartung (audience + he + service), which is cor-
rectly decompounded as Zuschauer-erwartung (au-
dience+expectation).

In order to select the correct split, we compute the
geometric mean of the joint probability for each split
variation. For this we use word counts from a back-
ground corpus. In addition to the geometric mean
formula introduced in (Koehn and Knight, 2003),
we apply a smoothing factor4 ε to each frequency
in order to assign non-zero values to unknown units.
This yields the following formula for a compound

4We set ε = 0.01. Using values in the range of ε =
[0.0001, 1] we observe marginally higher scores using smaller
values.

w, which is decomposed into the units wi, . . . , wN :

p(w) =

(
N∏
i

wordcount(wi) + ε

total wordcount+ ε ∗#words

) 1
N

(1)

Here, #word denotes the total number of words in
the background corpus and total wordcount is the
sum of all word counts. Then, we select the split
variation with the highest geometric mean.5 In our
example, this is the prefix-suffix-merged candidate
Bundes-finanz-ministerium.

3.3 Split Ranking

We have examined schemes of priority ordering
for integrating information from different candidate
sets, e.g. using the similar candidate units first and
only apply the other candidate sets if no split was
found. However, preliminary experiments revealed
that it was always beneficial to generate splits based
on all three candidate sets and use the geometric
mean scoring as outlined above to select the best
split as decomposition of a word.

4 Datasets

For testing the performance of our method, we chose
four datasets. The first dataset was manually label-
ed by Holz and Biemann (2008) and consists of
700 German nouns from different frequency bands.
The second dataset consists of 158,653 nouns from
the German newspaper magazine c’t6 and was cre-
ated by Marek (2006). As third dataset we use a
noun compound dataset of 54,571 nouns from Ger-
maNet7, which has been constructed by Henrich and
Hinrichs (2011).8 While converting these datasets
for the task of compound splitting, we do not sep-
arate words in the gold standard, which comprise
of prepositions, e.g. the word Abgang (outflow) is
not split into Ab-gang (off walk). To show the lan-
guage independency of our method, we apply it to a

5Whereas our method mostly does not assume language
knowledge, we uppercase the first letter of each wi, when we
apply our method on German texts.

6http://heise.de/ct
7available at: http://www.sfs.uni-tuebingen.

de/lsd/documents/compounds/split_
compounds_from_GermaNet10.0.txt

8We follow Schiller (2005) and remove all words including
dashs. This only affects the GermaNet dataset and reduces the
effective test set to 53,118 nouns.



Dutch compound dataset proposed by van Zaanen et
al. (2014). This dataset comprises of 21,997 nouns.

5 Experimental Setting

The corpus-based DT is computed following the ap-
proach by Biemann and Riedl (2013). For each
word, we use the left and the right neighboring word
as context representation to compute the DT. For
the generation of the split candidates we rely on the
l = 200 most similar entries for each word.

The German DT is computed based on 70 mil-
lion newspaper sentences, which are extracted from
the Leipzig Corpora Collection (LCC) (Richter et
al., 2006). For the generation of the Dutch DT, we
use the Dutch web corpus (Schäfer and Bildhauer,
2013), which is composed from 259 million sen-
tences.9

We evaluate the performance of the algorithms us-
ing precision and recall as defined by Koehn and
Knight (2003). As unsupervised baselines we use
the split ranking by (Koehn and Knight, 2003),
called KK, and the semantic analogy-based splitter
(SAS) from Daiber et al. (2015).10 As advanced sys-
tems we apply the lexicon- and rule-based JWord-
Splitter (JWS) and the supervised decompounding
algorithm (ASV), introduced by Holz and Biemann
(2008).11 For all algorithms, we converted the splits
to capture all characters in the words, reverting base
forms to full forms. For Dutch, we apply the KK
baseline and the NL Splitter.

6 Method Tuning

We use the small dataset with the 700 German nouns
to find the best parameter settings of our method.
The highest F1-scores are obtained using candidates
with a frequency above 50 (wc=50) and that have
more than 4 characters (ml=5). Further we append
only prefixes and suffixes equal or shorter than 3
characters (ms=3 and mp=3).

The highest precision is achieved with the similar
candidate units (see Table 2). However, the recall
is lowest as for many words no information is avail-
able. Using the extended similarities, the precision

9available at: http://webcorpora.org/.
10https://github.com/jodaiber/semantic_

compound_splitting
11http://wortschatz.uni-leipzig.de/

˜cbiemann/software/toolbox/.

P R F1
similar cand. 0.9880 0.6798 0.8054
ext. sim. cand. 0.9617 0.7304 0.8303
gen. dictionary 0.9576 0.9199 0.9384
geom. mean scoring 0.9698 0.9338 0.9515

Table 2: Precision (P), Recall (R) and F1-Measure (F1) for the

700 compound nouns using different split candidates.

decreases and the recall increases. The best overall
performance is achieved with the generated dictio-
nary, which yields an F1-measure of 0.9384. The
selection mechanism using the geometric mean scor-
ing brings F1-measure up to 0.9515 on this dataset.

7 Results

In this section we compare the performance of our
method against the unsupervised baselines and the
knowledge-based systems (see Table 3).

P R F1

700

JWS 0.9328 0.9037 0.9180
ASV 0.9584 0.9238 0.9408
SAS 0.8723 0.6224 0.7265
KK 0.9532 0.7513 0.8403
SECOS 0.9698 0.9338 0.9515

c’t

JWS 0.9557 0.9045 0.9294*
ASV 0.9571 0.8980 0.9266
SAS 0.9303 0.5428 0.6856
KK 0.9432 0.8114 0.8723
SECOS 0.9606 0.8809 0.9190

Germa-
Net

JWS 0.9248 0.8734 0.8983
ASV 0.9346 0.8866 0.9100
SAS 0.8861 0.6188 0.7287
KK 0.9486 0.7361 0.8289
SECOS 0.9543 0.8773 0.9142*

Dutch
NL Splitter 0.9706 0.8694 0.9172*
KK 0.9579 0.7735 0.8559
SECOS 0.9624 0.8272 0.8897

Table 3: Results for three German datasets and for one Dutch

dataset. The significantly best results are marked with an aster-

isk (*).

For the 700 nouns we achieve the highest preci-
sion, recall and F1-measure using our method. How-
ever, we have tuned our parameters on this dataset.
Our improvement in terms of F-score is not signifi-
cant12 with respect to the ASV system, but with re-

12We perform a Wilcoxon signed-rank test between the F1-



spect to all other systems on this dataset. Never-
theless, JWS is based on a manually created dictio-
nary and ASV uses a supervised algorithm. On this
dataset, ASV outperforms JWS. Due to their low
recall, both unsupervised baselines (SAS and KK)
achieve significantly lower F1-scores than SECOS.

Using the c’t dataset we observe a different trend.
Here, the best results are observed by using JWS fol-
lowed by ASV and our method. Nevertheless, our
method yields the highest precision value. Again,
SAS and KK score lowest.

For the GermaNet dataset, our method signifi-
cantly outperforms all others. Similar to the evalu-
ation with the 700 nouns, JWS performs lower than
the decompounding method from the ASV toolbox.
Whereas our method obtains lower recall than ASV
and JWS, it still significantly outperforms the un-
supervised baselines and yields the overall highest
precision.

In a last experiment, we show the performance on
the Dutch dataset. As no trained models for JWS
and ASV are available, we did not use these tools
but compare to NL splitter, achieving a competitive
precision but lower recall. This is caused by many
short split candidates that are not detected due to the
ml parameter. However, our method still beats the
KK baseline significantly.

8 Error Analysis

In order to understand the errors of our method,
we analyzed the compounds that have been split
incorrectly. Considering the 700 German com-
pounds our method splits 12.17% incorrectly, for the
Dutch dataset, we observe the highest percentage of
32.60% incorrectly split compounds (see Table 4).

In addition, we analyzed how many compounds
have been split in fewer parts (under-split), more
parts (over-split) than the gold data or have the
same number of splits, which, however, are incor-
rect (wrongly-split). For all datasets we observe a
general trend: our method tends to suppress splitting
compounds, due to the parameters ms and mp that
suppress very short parts. Compounds that are split
at entirely incorrect positions constitute the lowest
error class. We also analyzed for incorrectly split
compounds how often our method missed a split,

scores of each candidate assuming p < 0.01.

dataset 700 c’t GermaNet Dutch
number of compounds

# incorrect 85 35177 12532 7258
% incorrect 12.17 22.17 23.26 32.60
under-split 47 23773 7972 5849
over-split 33 7843 3578 806
wrongly-split 5 3561 982 603

number of splits
missed 55 29213 8968 6612
wrong 43 12703 4669 1520
correct 43 20381 3777 1743

Table 4: Number of compounds that have been split incorrectly

with respect to the gold data. We report numbers of how many

of these compounds are split fewer (under-split), more often

(over-split) or equally (wrongly-split) in comparison to the gold

standard. In addition, we show the total number of missed,

wrong and correct splits for these compounds.

performed a wrong split and split correctly (see bot-
tom three lines in Table 4). This analysis supports
the previous finding: most errors of our SECOS
method consist of missed splits.

9 Conclusion

In this paper we have introduced an unsupervised
method for decompounding words that is based on
distributional semantics. We show the impact of its
components and tune its parameters on a small Ger-
man dataset. On two large German datasets, we
demonstrate a performance of our method that is
competitive to supervised and rule-based tools and
outperforms two unsupervised baselines by a large
margin. Further, we demonstrated its language-
independence by achieving a good performance on a
Dutch dataset. In the future, we would like to assess
the impact of SECOS in task-based settings as well
as apply it to other compounding languages.
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