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Abstract In this article, we demonstrate the impact of

interactive machine learning: we develop biomedical entity

recognition dataset using a human-into-the-loop approach.

In contrary to classical machine learning, human-in-the-

loop approaches do not operate on predefined training or

test sets, but assume that human input regarding system

improvement is supplied iteratively. Here, during annota-

tion, a machine learning model is built on previous anno-

tations and used to propose labels for subsequent

annotation. To demonstrate that such interactive and iter-

ative annotation speeds up the development of quality

dataset annotation, we conduct three experiments. In the

first experiment, we carry out an iterative annotation

experimental simulation and show that only a handful of

medical abstracts need to be annotated to produce sug-

gestions that increase annotation speed. In the second

experiment, clinical doctors have conducted a case study in

annotating medical terms documents relevant for their

research. The third experiment explores the annotation of

semantic relations with relation instance learning across

documents. The experiments validate our method qualita-

tively and quantitatively, and give rise to a more person-

alized, responsive information extraction technology.

Keywords Interactive annotation � Machine learning �
Knowledge discovery � Data mining � Human in the loop �
Biomedical entity recognition � Relation learning

1 Introduction and motivation

The biomedical domain is increasingly turning into a data-

intensive science, and one challenge with regard to the

ever-increasing body of medical literature is not only to

extract meaningful information from this data, but to gain

knowledge, insight, and to make sense of the data [1]. Text

is a very important type of data within the biomedical

domain and in other domains: it is estimated that over 80 %

of electronically available information is encoded in

unstructured text documents [2]. As an example in the

medical domain, patient records contain large amounts of

text which have been entered in a non-standardized format,

consequently posing a lot of challenges to processing of

such data and for the clinical doctor the written text in the

medical findings is still the basis for any decision making

[3, 4]. Further, scientific results are communicated in text

form, consequently for the biomedical domain text is an

indispensable data type for gaining knowledge [5].

Modern automated information extraction (IE) systems

usually are based on machine-learning models, which

require large amount of manually annotated data to specify

the model according to the task at hand. Unfortunately,
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particularly in the medical domain, experts have obliga-

tions with higher priorities, thus it is very expensive and

cumbersome to annotate a large number of training

examples. In order to alleviate this problem, there is a need

for an approach where human annotators are facilitated to

annotate faster than the traditional way, in order to produce

required annotations in less time.

A further complication, not only but especially in the

medical domain, is the general difficulty with standard-

ization in the light of genericity of the standard and

specificity of the application scenario. While large-scale

taxonomies ontologies exist both for the general [6, 7] and

the medical domain (e.g. UMLS)1., their sheer size impose

a high burden on anyone that tries to make knowledge in

text explicit: annotators would have to learn these ontolo-

gies or at least relevant parts of these ontologies in order to

properly carry out their task. Further, as [8] points out,

ontologies are usually created in an author-centric fashion:

without a particular application at hand, authors of

ontologies have to discretize the space of things into con-

cepts. This discretization, however might or might not be

suitable and might or might not yield practical conceptu-

alizations for a particular task or application. While auto-

matically inducing ontologies from text [9] or other

statistical methods to induce conceptualizations and tax-

onomies have the premise to alleviate the author-centricity

by yielding a resource that neatly fits the domain as defined

by the corpus, they are still hard to tune towards particular

modelling goals of users, which might only find a small

fraction of the textual material relevant for their task.

While we have seen tremendous efforts in the past years

to standardize and link lexical taxonomies and ontologies2,

there has not been a widespread use of such structured

resources for the formal representation of the semantics of

text. We attribute this to their excessive size and their

author-centricity as outlined above, as well as to the lack of

information for being able to assign their concepts to

respective terms in unstructured text: just because e.g. all

viruses are known in a database, it does not follow from

this that it is possible to find their occurrences in text (e.g.

because of ambiguous abbreviations, short forms and

variants, idiosynchracies of the subfield etc.). Here, we

propose a radical break with this traditional way of

knowledge representation: instead, users should be able to

choose their own set of categories per given task or prob-

lem, and thus should be able to grow their own local

ontology without the need (but eventually with the possi-

bility) of connecting it to existing upper ontologies, and

users should ground their conceptualization in the respec-

tive texts of their current interest.

In this article, we tackle the extractions of entity men-

tions and their relations from biomedical texts, specifically

from MEDLINE abstracts3, using a recent human-into-the-

loop automation strategy that has not been applied in the

medical domain before. Unlike named entity recognition

(NER) systems on e.g. the news domain, entity recognition

on medical domains comprises of extractions of technical

terms in the broader medical and biological arena such as

name of diseases, proteins, substances and so on, see e.g.

[10, 11].

Such an automation approach is specifically very

important for the medical domain, as a full manual anno-

tation is extremely expensive. Medical professionals in

turn, however, are willing to perform this task only dili-

gently if it matches their current field of interest. The

human-into-the-loop automation approach enables users to

start the automation process without pre-existing annota-

tions, and works by suggesting annotations as soon as the

users have annotated a rather small number of documents.

This annotate-little and predict-little strategy is deemed

adequate for biomedical domains as it (1) produce quality

annotation in a very short period of time, (2) the approach

is adaptive in such a way that newly evolving concepts or

entities will not be ignored by an old and static prediction

classification model, and 3) the conceptualization (i.e.

entity types and their typed relations) can be chosen and

extended by the user during the annotation process. Thus,

this human-in-the-loop approach follows the principles of

the recently emerging cognitive computing paradigm that

proposes more adaptive, iterative and interactive human-

machine interaction [12, 13].

Note that while models trained on a small number of

entity mentions cannot be expected to produce high-quality

automatic labels, however their annotation suggestions

might still be useful for the task at hand, in turn, help to

produce more annotations in a short time that eventually

improve the quality of the automatic labels.

We conduct three experiments to exemplify and evalu-

ate our human-into-the-loop approach of entity mention

annotation for the medical domain. In the first experiment

(Sect. 5.1), we simulate the interactive machine learning

approach by incrementally processing the BioNLP-NLPBA

2004 named entity annotated data set [14]. During the

simulation, a classifier model is first trained on very few

annotations and we measure the number and quality of

correctly predicted annotations in the next chunk of the

data, which subsequently is added to the training, simu-

lating the annotation process. With this simulation, we can

learn whether annotating very few documents already

produces reasonable and faithful predictions so that it

1 https://www.nlm.nih.gov/research/umls/.
2 see http://www.w3.org/wiki/LinkedData. 3 www.ncbi.nlm.nih.gov/pubmed.
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relieves users from annotating every document in the data

set.

In the second experiment (Sect. 5.2), we put our

approach to practice and apply it in a use case where

medical professionals annotate documents in order to

support research on their particular question of interest.

Specifically, the task used for this study is focused towards

the investigations of the causes of the B-chronic lympho-

cytic leukemia (B-CLL) on MEDLINE abstracts and users

annotate terms with their respective entity classes with so-

called span annotations, which means that annotators

assign an entity label to a word or a subsequent set of

words in the text. Here, we compare two setups where

annotators are presented, or not presented with suggestions

from the classifier in the interactive annotation interface.

This experiment sets out to clarify whether medical pro-

fessionals perceive our human-in-the-loop approach as

appropriate and helpful in quantitative terms and in a

qualitative assessment.

The third experiment (also in Sect. 5.2) extend this

notion further: here, we focus on the relations between such

entities, which is a more interesting type of knowledge

from an application perspective, but also poses more

challenging problem for incremental machine learning.

Here, we let our medical expert annotate e.g. interactions

between proteins or relations between antibodies and

antigenes. We notice that the system quickly picks up on

user-defined relations, and found that our medical expert

had to define additional relations to relations given in a

standard dataset in order to model her requirements.

The main contributions of this article are three-fold:

first, we show how using the human-in-the-loop approach,

we can outperform an approach that relies only on expert

annotation without the human in the loop. Second, we

demonstrate that even with a little amount of annotation, a

good performance for annotation suggestion can be

reached, resulting in a substantial annotation speedup.

Third, we exemplify how the human-in-the-loop approach

in text annotation allows the customization of entities and

relation types for the user’s need. Part of this article was

already presented in a shorter form in [15].

2 Related work

This section gives a brief overview of related work in

adaptive machine learning as well as named entity tagging

and relation learning for the medical domain in general.

2.1 Human into the loop

Automated machine learning algorithms work well in

certain environments. However, biomedical data are full of

probability, uncertainty, incompleteness, vagueness, noise,

etc., which makes the application of automated approaches

difficult, yet often impossible. Moreover, the complexity of

current machine learning algorithms has discouraged

medical professionals from the application of such solu-

tions. There is also the issue of acceptability and prove-

nance, cf. [16]: since their decisions might be life-critical,

medical professionals will not accept automatic systems,

even with high precision, which cannot justify the rationale

for the automatic decision. While there exist rather simple

learning algorithms (e.g. memory-based learning, [17]) that

provide reasonable explanations (e.g. in form of similar

examples or situations), they need more training data to

reach the same performance level as more advanced and

complex algorithms (e.g. deep learning [18]). However,

most complex approaches fail to give interpretable reasons

for their automatic classification, which calls for facilita-

tion of training data creation, especially for sensitive and

life-critical domains; a further drawback with complex

machine learning approaches is that their training is done in

epochs over the whole dataset and there is no straightfor-

ward way to add additional labeled examples to the model.

However, for increasing the quality of such approaches,

the integration of the expert’s domain knowledge is

indispensable. The interaction of the domain expert with

the data would greatly enhance the whole knowledge dis-

covery process chain. Interactive machine learning (IML)

puts the human into the loop to enable what neither a

human nor a computer could do on their own, cf. [1]. For

this, only machine learning algorithms are suitable that

support online learning. In this work, we will use a per-

ceptron-based online learning algorithm to generate sug-

gestions for manual text annotation in the medical domain.

These annotations are subsequently used to generate better

suggestions, as the model continuously updates based on

human interaction with our annotation tool.

2.2 Interactive and adaptive learning

Static machine learning assumes that the actual state of the

‘‘domain universe’’ can be sufficiently acquired by listing

all available data sets at particular time. In the contrast,

adaptive machine learning assumes the possibility that

there might exist unrecorded facts at particular time, which

can only be appear at some point in the future. This,

however, is rather the standard situation than the exception:

think e.g. of a recommendation system for an online

shopping platform: if it was static, there would be no

recommendations for any product that was launched after

the system was set up. Authors of [19] address an industrial

case study (tile manufacturing process) and found out that

the classical machine learning setup faced difficulties such

as (1) feedback is usually obtained after a process is
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completed, which might help the system, (2) some vari-

ables can change through time, and (3) error correction is

always done after observation. The research by [20] on

clustering a large number of documents using an interac-

tive recommender system shows that users can sort docu-

ments into clusters significantly faster with an interactive

recommender system than correcting the output of a static

automated method. On top of simple user feedback in [21],

such as accepting and rejecting suggestions, complex

feedback like choosing the best features, suggestions for

the re-weighting of features, proposing new features and

combining features remarkably improve the system.

Moreover, experiments in [22] examine the effect of

allowing end users to do feature labeling, instead of

annotating instances of training data: especially for small

amounts of training, the feature labeling approach was

shown to be effective. In our work, we do not incorporate

feature labeling, but we will consider it in our future work.

2.3 NER for medical domains

Recent years have seen a surge on biomedical text pro-

cessing (see [23] for a survey), most of which rely on the

GENIA corpus [24], which is a collection of biomedical

abstracts. It is mainly annotated for linguistic structures

such POS tagging and syntax annotation, semantic anno-

tation of entities and so on [25, 26]. The work of [27]

focuses on the automatic detections of multiple biomedical

entities using a single-word classification approach in

contrast to earlier works in the area focusing on single

entity types such as proteins or genes. In this approach,

they use features such as word attributes and contextual

information. To alleviate the bottleneck of manual named

entity annotation for medical texts, [28] have set up a

crowdsourcing project on Amazon Mechanical Turk

(www.mturk.com) to annotate three entity types. The

research shows that using crowdsourcing is a viable alter-

native to annotate medical texts at scale for entity types

that are understood by laymen like ‘‘medication’’. How-

ever, for a more complex and fine-grained distinction that

requires domain knowledge, medical professionals are

required.

2.4 Relation learning in the medical domain

EDGAR [29] is a natural language processing system that

extracts information about drugs and genes relevant to

cancer from the biomedical literature. The entities that

EDGAR focuses on are genes, cells and drugs extracted

from the MEDLINE abstracts. The system uses a statistical

part-of-speech tagger for word class recognition and sub-

sequently uses semantic and pragmatic information to

construct possible relations. The entity relations (REL)

task, a supporting task of the BioNLP shared task 2011

[30], deals with the extraction of two types of part-of

relations between a gene or protein and an associated

entity. The task focused on two specific types of object-

component relations, that holding between a gene or pro-

tein and its part (domain, regions, promoters, amino acids,

etc.) and that between a protein and a complex that it is a

subunit of, namely protein-component and subunit-com-

plex. The highest performing system achieves an F-score of

57.7 %. The work of [31] addresses the problem of auto-

matic extractions of protein interactions from bioscience

texts. Using graphical models and a neural network, it was

possible to achieve a comparably high accuracy (64%) in

extracting relations from biosmedical text. For training, a

domain specific database of the HIV-1 human protein

interaction database containing two types of interactions,

protein interactions, and human gene knock-downs (repli-

cation interactions) was employed.

While described works constitute the state of the art of

biomedical relation extraction, their level of performance is

not sufficient for automatic processing. In our approach, we

add the human in the loop to the equation, ensuring high

accuracy on the specific relations of interest to our human

annotator.

3 Methodology

3.1 Annotation learning

The development of large amounts of high quality training

data at one shot is hard and even undesirable [32]. Instead,

an interactive machine learning methodology is more

applicable where the machine-learning model is enhanced

not using the prevailing train-learn-evaluate technique, but

improving the model in a more iterative fashion.

Interactive learning focuses on enhancing an existing

machine-learning model based on newly acquired infor-

mation, which is not possible in a classical machine

learning setting. The benefit of interactive learning is

many-fold, such as (1) the classifier model gets better and

better as new training examples are added to the training

data, (2) when there is a sudden change to the underlying

data set, what is known as concept drift, the machine-

learning model gets updated accordingly [33], and (3) it

largely reduces the total annotation time required to

annotate the whole dataset. Most importantly, such

approach will (4) not require a pre-existing annotation

dataset so that it is truly responsive and incremental, fully

adaptive to the user’s need, and it makes such approach

more affordable when integrated into a larger IE system.

While it is possible to use pre-existing sets of labels for

entities and their relations in interactive learning, this
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incremental methodology (5) also allows to define and

extend these label sets at any point in time during the

annotation. This might be an especially effective feature

for avoiding the mismatch between the ontology or tax-

onomy of labels and the text collection.

As the machine-learning model can be enriched incre-

mentally, applications employing this model will not be

affected, as the system can still draw suggestions from the

old model while building the new model. This approach

overcomes the limitations where systems have to wait until

full training and prediction cycles are completed,

decreasing deployment time.

3.2 The WebAnno annotation tool

To conduct our study, we have slightly extended WebAnno

[34], which is a general purpose web-based annotation tool

for a wide range of linguistic annotations. WebAnno allows

to freely configure different span and relation annotations

and is widely used for the creation of linguistic datasets in

the natural language processing community as wenn as in

the digital humanities.

WebAnno features an in-build automation mechanism

as described in [35]. In this so-called ‘‘automation mode’’,

users can see automatic suggestions made by the system,

where they can either accept or ignore. WebAnno [34]

features a split-pane visualization, where annotation is

performed in the upper pane by selecting text and choosing

a label. In the lower pane, suggestions are displayed, which

can be accepted and appear as annotations in the upper

pane upon clicking on them, cf. Fig. 3.

We have extended WebAnno for this study to not only

suggests span annotations but also relations between spans.

While the span suggestion mechanism is very generic and

relies on perceptron-based online learning of sequence

tagging [36], the relation suggestion is restricted to the

scenario where both spans are suggested and the relation

between the terms of the two spans has been annotated

before in the same or a previously annotated document.

This restriction on relation learning produces highly pre-

cise suggestions, but fails to propose yet unseen relations.

3.3 Medical NER tagging and relation extraction

Medical named entity mention recognition is a well-re-

searched area with a large number of datasets used in

competitions [14, 37–40]. These mainly focus on entity or

mention and chunk detections and relation extraction.

Unfortunately, biomedical annotation tasks are still chal-

lenging unlike other language processing tasks due to the

fact that most of the annotations require highly experienced

professional annotators, as discussed above.

To demonstrate the effect of interactive learning on

biomedical entity tagging, we used thee BioNLP-NLPBA

2004 corpus and train a classifier using a rather generic

sequence tagging system developed for German named

entity recognition [41] based on CRF suite [42]. The sys-

tem is highly configurable regarding features and data

formats. For this study, we use basic standard features to

characterize the text: Character and word features, which

consists of the first and last character n grams (n=3) of the

current token as affixes, considered in a time-shifted win-

dow of two tokens around the word token in focus. We also

incorporated automatically induced part-of-speech (POS)

tag clusters as features, which are based on the system by

[43] trained on a medline 2004 dataset. For unseen tokens

in the cluster, the pretree multi-purpose word classifier tool

from the ASV toolbox [44] is used to approximate the

unsupervised POS tags, which are induced following the

principles of structure discovery [45]. Furthermore, word

shape features that reflect capitalization and character

classes (e.g. numbers vs. letters), were found to be relevant

for biomedical mentions, as the shape of such entities often

differs from non-entity tokens.

4 Annotation problem use case

4.1 Entity annotation

In this section, the use case of our medical research pro-

fessionals is laid out. It focuses on understanding the

interplay between risk factors and genetic presuppositions

with a leukemia cancer.

B-chronic lymphocytic leukemia (B-CLL), a malignant

hematopoetic neoplasm of B-lymphocytes (B cells), is the

most common leukemia in the westernized world [46]. Yet,

its risk factors and underlying mechanisms are still

unknown. Some features of this malignancy, such as the

incidence increasing with age and low proliferative

capacity combined with impaired apoptosis (homeostatic

cell death), categorize this disorder more as a chronic aging

disease, than as a ‘‘real’’ leukemia, known to arise from the

primary genetic defect and the subsequent block in immune

cell differentiation [47]. On the other hand, accumulated

evidence indicate that the pathogenesis of some commonly

occurring cancers, such as breast, or colon cancer, as well

as of some types of lymphomas (malignant neoplasms of

the lymphoid tissue), can be explained by the complex

interplay of age-related and lifestyle-related mechanisms,

operating mainly through chronic inflammation and

impaired insulin dependent metabolism, known as insulin

resistance condition (decreased insulin action in target

tissues followed by chronic hyperglycemia) [48–50].

An adaptive annotation approach for biomedical
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Biological links towards cancerogenesis and lym-

phomagenesis go via impaired cell homeostasis mecha-

nisms, including apoptosis and proliferation, as well as

inter-cellular and intra-cellular signaling [51, 52]. Medical

expert posed a hypothesis that the same risk factors and

mechanisms stay also in the background of the pathogen-

esis of B-CLL. Exact evidence in the literature is absent.

Literature search and reasoning could be demanding,

because of the need to revealing many complex relation-

ships between the numerous sets of entities and the syn-

tagmatic constructs.

In order to alleviate the efforts of meaningful literature

searching, we used the tool of adaptive annotation learning.

Firstly, the medical expert prepared a set of selected

abstracts, downloaded from the medline. Then, based on a

limited number of specific medical entities, including cell,

condition, disorder, gene, molecule, protein, molecular

pathway and substance, she annotated the important struc-

tures throughout the entire text body and made them visible.

4.2 Entity automation and relation copy annotator

In this second setup, we took datasets from the BioNLP

2011 shared task [40] (entity relations supporting task

(REL)). Our tasks include (a) train a classifier for entity

annotation, (b) correct suggestions provided by the classi-

fier and when appropriate add new annotation to the

dataset, and (c) create a relation annotation between the

existing entity annotations. In addition to the relation types

specified in the BioNLP shared task, our medical expert

annotated additional relation types since the existing ones

were not deemed sufficient for her research question.

Table 1 shows the relation types specified at the shared task

and our newly added relation types.

Already at this point, we can conclude that an adaptive

approach to relation extraction is more adequate to the

scenario of biomedical annotation and knowledge man-

agement: Only through an adaptive approach where users

can freely addd new types of entities and relations it is

possible to tune the explicified information towards the

user’s needs: while the general-purpose setting in the

BioNLP 2011 task has provided some useful relation types,

it did not cover some of the relations of interest and a static

approach would have left the user no choice but to disre-

gard these or leave them in unstructured form.

For rapid relation annotation, we have incorporated a

relation copy annotator into WebAnno where relation sug-

gestions are provided (at the lower pane in Fig. 1) as soon as

annotators create relation annotations (in the upper pane in

Fig. 1). This functionality has the following advantages:

(a) more occurrences of the same relation are automatically

suggested for the remaining parts of the document and for

subsequent documents, and (b) an annotator can easily copy

suggestions to the annotation view if the suggestions pro-

vided are correct. The impact of the relation copy annotation

will be explained in the following section.

5 Experiments and evaluation

5.1 Simulating interactive learning

In order to prove that interactive machine learning can

yield a quality-annotated data set in a short training loop,

Table 1 Relation types from (a) the BioNLP shared task 2011 and (b) identified during the relation annotation process by our medical expert

Descriptions

(a) Relation types from BioNLP 2011

Equivalent Two protein or cell components are equivalent

Protein-

component

The protein-component is a less specific object-component relation that holds between a gene or protein and its component,

such as a protein domain or the promoter of a gene.

Subunit-

complex

Subunit-complex is a component-object relation that holds between a protein complex and its subunits, individual proteins

(b) New relation types

Activator-

reactor

Two proteins linked with the same reaction; the first one is responsible for starting the reaction and the second one

responsible for its sustainability

Antibody–

antigen

An immune protein with the ability to specifically bound the antigen, a foreign substance, and to neutralise its toxicity

Cell-marker A set of surface proteins typical for a cell lineage or a stage of development

Cell-variant The main cell lineage and the subtypes which are the parts of this larger cell family

DNA-transcript DNA and its mRNA (messenger RNA) which translate the gene‘s message to a protein product

Ligand–

receptor

Two proteins or molecules which can bind to each other because oft he complementarity of the binding site

Protein-variant Two proteins with the similar structure and function

S. M. Yimam et al.
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we conduct our first experiment based on the BioNLP-

NLPBA 2004 data set. The data set is divided into an

increasing size of documents simulating interactive anno-

tation. As it can be seen from Table 2 and Fig. 2, a (sim-

ulated) annotation of only 40 sentences already predicted

an adequate amount of suggestions where users can quickly

accept or modify and proceed to the next iteration. Aiming

at maximizing F-score as the harmonic mean of precision

and recall, we can clearly observe in Table 2 that, after

simulated annotating of about 500 sentences, the gain in

performance decreases, which implies that only annotating

small portion of the sentences produces reasonable sug-

gestions that are mostly acceptable by the annotator. Also,

we can see that more annotations beyond 5000–10000

sentences are subject to diminishing returns, i.e. it takes an

increasing number of annotations to achieve the same

amount of relative improvements, the more annotations are

used for training. In a human-in-the-loop setting, this can

be detected during the process, and could be a sign for

requiring more advanced features in the machine learning

setup. This confirms our findings described in [53], where

we have reached a speedup of factor 3 already with mod-

erately accurate annotation suggestions.

5.2 Automation and relation copy annotator

Using the BioNLP 2011 shared task dataset, we have

conducted experiments constituting two phases, i.e. entity

automation and correction as well as relation annotation

and suggestion.

5.2.1 Entity automation

We have randomly selected 20 documents from the given

training dataset (from a total of 780 documents) and train

the in-built classifier of WebAnno (cf. Sect. 5.2). These

documents contain 312 entity annotations and our classifier

produced 687 annotation suggestions. Later we have pre-

sented the suggestions to our medical expert to re-annotate

the documents using the suggestion. Our annotator pro-

duces a total of 752 entity annotations, which contains in

addition to the protein and Entity annotations, a third type

of entity called cell. Table 3 shows the performance of our

automation system and expert annotator against the 20

documents (with gold annotations) form the BioNLP2011

REL shared task dataset.

5.2.2 Relation copy annotator

Once the entity annotation is completed, we have con-

ducted relation annotation with the help of WebAnno copy

annotator. The copy annotator produces relation sugges-

tions in the same document where the source and target

entity annotations as well as the covered texts match. The

gold dataset contains 102 relation annotations while our

annotator produces 397 relation annotations. Table 4 shows

the average number of relation suggestions per document

and across all documents.

We note that we are able to attain F-scores comparable

to the state of the art, which validates out approach in

comparison to previous approaches. More importantly, we

expect a significant increase in performance when the

system is used productively and can continuously extend

its capabilities in long-running deployments.

Fig. 1 Relation copy annotator: upper pane: relation annotation by the annotator. Lower pane: relation suggestions that can be copied by the user

to the upper pane

Table 2 Evaluation result for the BioNLP-NLPBA 2004 task using

an interactive online learning approach with different sizes of training

dataset (in number of sentences) measured in precision, recall and

F-measure on the fixed development dataset

Sentence Recall Precision F-score

40 27.27 39.05 32.11

120 37.74 44.01 40.63

280 46.68 51.39 48.92

600 53.23 54.89 54.05

1240 57.83 57.74 57.78

2520 59.35 61.26 60.29

5080 62.32 64.03 63.16

10,200 66.43 67.50 66.96

18,555 69.48 69.16 69.32
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5.3 Qualitative Assessment

In addition to the quantitative experimental simulation

done in Sect. 5.1, we have conducted practical annotation

and automation experiments using a total of 10 MEDLINE

abstracts that were chosen in the context of our use case

described in Sect. 4, using WebAnno as described in Sect.

5.2. The experiment was conducted in two rounds. In the

first round, medical experts have annotated 5 abstracts

comprising a total of 86 sentences for specific medical

entities as described in Sect. 4. Once the first round of

annotations was completed, the automation was started

using WebAnno’s automation component in order to pro-

vide initial suggestions. As displayed in Fig. 3, the

automation component already suggests some entity

annotations immediately after the first round. Using the

automation suggestions, the expert continued annotating.

After another 9 annotated abstracts that serve as training

for the sequence tagging model, the quality and quantity of

suggestions have again increased, see Fig. 3.

Qualitatively, annotators found that using the automa-

tion component, they perceived a significant increase in

annotation speed. This confirms results in [53], where

adaptive annotation automation in WebAnno can speed up

the annotation process by a factor of 3 to 4 in comparison

to a traditional annotation interface without suggestions.

On a further note, the WebAnno tool was perceived as

adequate and useable by our medical professionals,

requiring only very limited usage instructions.

5.4 Analysis of the automation and relation copy

annotator

As it can be seen from Table 3, on one hand, the machine

learning automation produces better performance on the

general entity annotation types than our expert annotator.

This indicates that the entities annotated in this dataset are

very coarse level which should be re-annotated, specifically

designed to meet domain and task requirements. On the

other hand, our expert annotator outperforms the automa-

tion system on protein annotation types. This is because

protein annotations are more specific and unambiguous to

annotate.

The relation copy annotator behaves as expected, as

shown in Table 4, where it is possible to produce more

Fig. 2 Learning curve showing

the performance of interactive

automation for BioNLP-

NLPBA 2004 data set using

different sizes of training data.

(Color figure online)

Table 3 Machine learning automation and expert annotator perfor-

mance for BioNLP 2011 REL shared task dataset

Mode Annotator type Recall Precsion F-score

Automation

Entity 61.94 49.31 54.91

Protein 57.31 50.97 53.95

Expert

Entity 29.11 22.90 25.63

Protein 71.94 59.28 65.00

Table 4 Analysis of relation suggestions. For a total of 20 randomly

selected BioNLP2011 REL shared task documents, there has been a

total of 397 relations annotated. In the process, the system produces

on average 2.1 suggestions per relations and 19.85 suggestions per

document. The last column shows an average number of relation

suggestions across several documents

Docs All Rels Perrel Perdoc Acrossdocs

20 397 193 2.1 19.85 0.18
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similar relation suggestion on the same document than

across several documents. We can learn from this process

that (1) the low number of relation suggestion across sev-

eral documents (randomly selected from the dataset) indi-

cates that we should employ human experts in the selection

of documents which fit the domain of interest so that our

system behaves as expected, and (2) a simple relation copy

annotator fails to meet the need of producing adequate

relation suggestions hence a proper machine learning

algorithm for relation suggestion should be designed.

6 Conclusion and future outlook

In this work, we investigated the impact of adaptive

machine learning for the annotation of quality training

data. Specifically, we tackled medical entity recognition

and relation annotation on texts from MEDLINE, the lar-

gest collection of medical literature on the web. Identifying

the need of entity tagging for applications such as IE,

document summarization, fact exploring and relation

extraction, and identifying the annotation acquisition

Fig. 3 Automation suggestions using the WebAnno automation component after annotating 5 (b) initial response 9 (c) additional abstracts.
Correct suggestions are marked in grey, while wrong suggestions are marked in red. a is the correct annotation by a medical expert. (Color

figure online)
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bottleneck which is especially severe in the medical

domain, we have carried out three experiments that show

the utility of a human-in-the-loop approach for suggesting

annotations in order to speed up the process and thus to

widen this bottleneck. In the first experimental setup, we

have used an existing BioNLP-NLPBA 2004 data set and

run experimental simulation by incrementally processing

the dataset to simulate the human in the loop. Using a

generic sequence tagger, we showed that annotating very

few sentences already produces enough correct predictions

to be useful, suggesting that interactive annotation is a

worthwhile enterprise from the beginning of an annotation

project. In the second setup, we have engaged medical

professionals in the annotation of medical entities in doc-

uments that were deemed relevant for the investigation of

the cause of malignant B-CLL. The freely available

WebAnno annotation tool (github.com/webanno) has been

used for the annotation and automation process and anno-

tators found that the adaptive annotation approach (1)

makes it fast and easy to annotate medical entities, and (2)

useful entity suggestions were already obtained after the

annotation of only five medline abstracts, and suggestions

subsequently improved tremendously after having anno-

tated another nine abstracts, reducing the annotation effort.

The third experiment extends the same notion to relation

annotation, resulting in a graph of entities and their rela-

tions per document, which gives rise to a more formalized

notion of medical knowledge representation and personal

knowledge management.

On a larger perspective, our results demonstrate that a

paradigm change in machine learning is feasible and

viable. Whereas the mantra of the past has been ’there is no

(annotated) data like more (annotated) data’ for supervised

machine learning, suggesting large annotation efforts

involving many human annotators, it becomes clear from

our experiments that these efforts can be sped up tremen-

dously by switching to an approach where the human can

continuously improve the model by annotation while using

the model to extract information, with the especially good

news that the largest model improvements are achieved

already very early in the process, as long as the domain is

confined.

While such an adaptive approach to machine learning

that factors in the user into the equation still calls for new

evaluation methodologies to be assessed in all its aspects, it

is deemed more adequate, more immediate and quicker

deployable. It also fits better the shift towards an interac-

tive, more natural, more adaptive, more contextualized and

iterative approach under the umbrella of cognitive

computing.
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