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Abstract

In this paper we define two parallel data
sets based on pseudowords, extracted from
the same corpus. They both consist of
word-centered graphs for each of 1225 dif-
ferent pseudowords, and use respectively
first-order co-occurrences and second-
order semantic similarities. We propose
an evaluation framework on these data
sets for graph-based Word Sense Induc-
tion (WSI) focused on the case of coarse-
grained homonymy: We compare differ-
ent WSI clustering algorithms by measur-
ing how well their outputs agree with the a
priori known ground-truth decomposition
of a pseudoword. We perform this eval-
uation for four different clustering algo-
rithms: the Markov cluster algorithm, Chi-
nese Whispers, MaxMax and a gangplank-
based clustering algorithm. To further im-
prove the comparison between these algo-
rithms and the analysis of their behaviours,
we also define a new specific evaluation
measure. As far as we know, this is the first
large-scale systematic pseudoword evalu-
ation dedicated to the induction of coarse-
grained homonymous word senses.

1 Introduction and Related Work

Word Sense Induction (WSI) is the branch of Natu-
ral Language Processing (NLP) concerned with the
unsupervised detection of all the possible senses
that a term can assume in a text document. It could
also be described as “unsupervised Word Sense
Disambiguation” (Navigli, 2009). Since ambigu-
ity and arbitrariness are constantly present in nat-
ural languages, WSI can help improve the analysis
and understanding of text or speech (Martin and
Jurafsky, 2000). At its core we find the notion of
distributional semantics, exemplified by the state-

ment by Harris (1954): “Difference of meaning
correlates with difference of distribution.”

In this paper, we focus on graph-based methods.
Graphs provide an intuitive mathematical repre-
sentation of relations between words. A graph can
be defined and built in a straightforward way, but
allows for a very deep analysis of its structural
properties. This and their discrete nature (contrary
to the continuous generalizations represented by
vector spaces of semantics, cf. Turney and Pan-
tel (2010)) favour the identification of significa-
tive patterns and subregions, among other things
allowing the final number of clusters to be left un-
predetermined, an ideal condition for WSI.

The main contribution of this paper is three-
fold: We present two parallel word graph data sets
based on the concept of pseudowords, both for the
case of semantic similarities and co-occurrences;
on them, we compare the performances of four
WSI clustering algorithms; and we define a new
ad hoc evaluation measure for this task, called
TOP2.

Pseudowords were first proposed by Gale et
al. (1992) and Schütze (1992) as a way to cre-
ate artificial ambiguous words by merging two (or
more) random words. A pseudoword simulates
homonymy, i.e. a word which possesses two (or
more) semantically and etymologically unrelated
senses, such as count as “nobleman” as opposed to
“the action of enumerating”. The study of Nakov
and Hearst (2003) shows that the performances
of WSI algorithms on random pseudowords might
represent an optimistic upper bound with respect
to true polysemous words, as generic polysemy
implies some kind of correlation between the cate-
gories and the distributions of the different senses
of a word, which is absent from randomly gener-
ated ones. We are aware of the approaches pro-
posed in (Otrusina and Smrž, 2010) and (Pile-
hvar and Navigli, 2013), used e.g. in (Başkaya



and Jurgens, 2016), for a pseudoword generation
that better models polysemous words with an ar-
bitrary degree of polysemy. Both works imply
the emulation of existing polysemous words, fol-
lowing the semantic structure of WordNet (Miller,
1995): pseudosenses (the components of a pseu-
doword) corresponding to the synsets of a word
are represented by the closest monosemous terms
on the WordNet graph, according to Personal-
ized PageRank (Haveliwala, 2002) applied to the
WordNet graph. However, we want to remark the
different nature of our paper. Here we compare
the behaviours of different clustering algorithms
on two data sets of pseudowords built to emu-
late homonymy, and relate these behaviours to the
structure of the word graphs relative to these pseu-
dowords. As homonymy is more clear-cut than
generic polysemy, we deem that the efficacy of a
WSI algorithm should be first measured in this case
before being tested in a more fine-grained and am-
biguous situation. Also, the task we defined does
not depend on the arbitrary granularity of an ex-
ternal lexical resource1, which might be too fine-
grained for our purpose. Further, the sense distinc-
tions e.g. in WordNet might not be mirrored in the
corpus, and conversely, some unforeseen senses
might be observed. Instead, our work can be seen
as an expansion of the pseudoword evaluation pre-
sented in (Bordag, 2006), albeit more focused in
its goal and implementation.

In our opinion, current WSI tasks present
some shortcomings. A fundamental problem is
the vagueness regarding the granularity (fine or
coarse) of the senses that have to be determined.
As a consequence, the definition of an adequate
evaluation measure becomes difficult, as many of
them have been showed to be biased towards few
or many clusters2. Further, small data sets often
do not allow obtaining significant results. Pseu-
doword evaluation, on the contrary, presents an
objective and self-contained framework where the
classification task is well characterized and gives
the opportunity to define an ad hoc evaluation
measure, at the same time automating the data
set creation. Therefore, we tackle the following
research questions: What are the limitations of a

1As was also the case for task 13 of SemEval 2013, cf.
(Jurgens and Klapaftis, 2013)

2See for example the results at task 14 of SemEval 2010
(Manandhar et al., 2010), where adjusted mutual information
was introduced to correct the bias: https://www.cs.york.
ac.uk/semeval2010_WSI/task_14_ranking.html.

pseudoword evaluation for homonymy detection?
How does the structure of a pseudoword’s word
graph depend on its components? How do dif-
ferent clustering strategies compare on the same
data set, and what are the most suited measures to
evaluate their performances?

The paper is structured as follows. In Section 2
we give a definition of the ego word graph of a
word and present our starting corpus. Section 3
details our evaluation setting and describes our
proposed measure TOP2. Section 4 introduces the
four graph clustering algorithms chosen for eval-
uation. Lastly, Section 5 comments the results of
the comparisons, and Section 6 concludes the pa-
per.

2 Word Graphs and Data Set

For our evaluation we will use word graphs
based both on semantic similarities (SSIM) and
on co-occurrences. We define both as undirected,
weighted graphs G = (V,E) whose nodes corre-
spond to a given subset V of the vocabulary of
the considered corpus, and where two nodes v, w
are connected by an edge if and only if v and w
co-occur in the same sentence (co-occurrences) or
share some kind of context (semantic similarities).
In either case, we express the strength of the con-
nection between two words through a weight map-
ping p : E −→ R+, for which we can take indica-
tors such as raw frequency or pointwise mutual in-
formation. The higher the value on an edge, the
more significant we deem their connection.
We will consider word-centered graphs, called ego
word graphs. Both kinds of ego word graphs
will be induced by the distributional thesauri com-
puted on a corpus consisting of 105 million En-
glish newspaper sentences3, using the JoBimText
(Biemann and Riedl, 2013) implementation. In the
case of co-occurrences, for a given word v we use
a frequency-weighted version of pointwise mutual
information called lexicographer’s mutual infor-
mation (LMI) (Kilgarriff et al., 2004; Evert, 2004)
to rank all the terms co-occurring with v in a sen-
tence and to select those that will appear in its ego
word graph. Edge weights are defined by LMI and
the possible edge between two nodes u and w will
be determined by the presence of u in the distribu-

3A combination of the Leipzig Corpora Collection (LCC),
http://corpora.uni-leipzig.de (Richter et al., 2006)
and the Gigaword corpus (Parker et al., 2011).



tional thesaurus of w, or viceversa.
The process is similar in the case of SSIMs,

but here LMI is computed on term-context co-
occurrences based on syntactic dependencies ex-
tracted from the corpus by means of the Stanford
Parser (De Marneffe et al., 2006).

In both cases, the word v itself is removed from
G, since we are interested just in the relations
between the words more similar to it, following
(Widdows and Dorow, 2002). The clusters in
which the node set of G will be subdivided will
represent the possible senses of v. We remark that
co-occurrences are first-order relations (i.e. in-
ferred directly by data), whereas SSIMs are of sec-
ond order, as they are computed on the base of co-
occurrences4. For this reason, two different kinds
of distributional thesauri might have quite differ-
ent entries even if they pertain to the same word.
Further, the ensuing word graphs will show a com-
plementary correlation: co-occurrences represent
syntagmatic relations with the central word, while
SSIMs paradigmatic ones5, and this also deter-
mines different structures, as e.g. co-occurrences
are denser than SSIMs.

3 Pseudoword Evaluation Framework

The method of pseudoword evaluation was first
independently proposed in (Gale et al., 1992) and
(Schütze, 1992). Given two words appearing in a
corpus, e.g. cat and window, we replace all their
occurrences therein with an artificial term formed
by their combination (represented in our example
as cat window), a so-called pseudoword that
merges the contexts of its components (also called
pseudosenses). The original application of this
evaluation assumes that all the components of a
pseudoword are monosemous words, i.e. possess
only one sense. Ideally, an algorithm trying to
induce the senses of a monosemous word from
the corresponding word graph should return only
one cluster, and we would expect it to find exactly
two clusters in the case of a pseudoword with
two components. This makes evaluation more
transparent, and we are restricting ourselves to
monosemous words for this reason.

For the purpose of our evaluation, we ex-
tract monosemous nouns from the 105 million

4About relations of second and higher orders, cf. (Bie-
mann and Quasthoff, 2009).

5A fundamental source on this topic is (De Saussure, 1995
1916).

sentences of the corpus described in Section
2, over which we compute all SSIM- and co-
occurrence-based distributional thesauri. We
divide all the nouns into 5 logarithmic frequency
classes identified with respect to the frequency of
the most common noun in the corpus. For each
class, we extract random candidates: We retain
only those that possess one single meaning, i.e.
for which Chinese Whispers (see Section 4.2)6

yields one single cluster, additionally checking
that they have only one synset in WordNet (which
is commonly accepted to be fine-grained). We
repeat this process until we obtain 10 suitable
candidates per frequency class. In the end, we
obtain a total of 50 words whose combinations
give rise to 1225 different pseudowords. We then
proceed to create two kinds of pseudoword ego
word graph data sets, as described in Section
2: one for co-occurrences and one for semantic
similarities. In both cases we limit the graphs to
the topmost 500 terms, ranked by LMI.
The evaluation consists in running the clustering
algorithms on the ego word graphs: since we
know the underlying (pseudo)senses of each pseu-
doword A B, we also know for each node in its
ego word graph if it belongs to the distributional
thesaurus, and thus to the subgraph relative to A,
B or both, and thus we already know our ground
truth clustering T = (TA,TB). Clearly, the propor-
tion between TA and TB might be very skewed,
especially if A and B belong to very different
frequency classes. Despite the criticism of the
pseudoword evaluation for being too artificial and
its senses not obeying the true sense distribution
of a proper polysemic word, we note that this is a
very realistic situation for homonymy, since sense
distributions tend to be skewed and dominated by
a most frequent sense (MFS). In coarse-grained
Word Sense Disambiguation evaluations, the
MFS baseline is often in the range of 70% - 80%
(Navigli et al., 2007).
Our starting assumption for very skewed cases is
that a clustering algorithm will be biased towards
the more frequent term of the two, that is, it will
tendentially erroneously find only one cluster. It
could also be possible that all nodes relative to A
at the same time also appear in the distributional
thesaurus of B, so that the word A is overshadowed
by B. We call this a collapsed pseudoword. We

6We use the implementation from https:
//sourceforge.net/projects/jobimtext/ with pa-
rameters: -n 200 -N 200.



decided not to take collapsed pseudowords into
account for evaluation, since in this case the initial
purpose of simulating a polysemous does not
hold: we are left with an actually monosemous
pseudoword.

We measure the quality of the clustering of a
pseudoword ego graph in terms of the F-score of
the BCubed metric (Bagga and Baldwin, 1998;
Amigó et al., 2009), alongside with normalized
mutual information7 (NMI) (Strehl, 2002) and a
measure developed by us, TOP2, loosely inspired
by NMI. We define TOP2 as the average of the har-
monic means of homogeneity and completeness of
the two clusters that better represent the two com-
ponents of the pseudoword.
More formally, suppose that the pseudoword A B
is the combination of the words A and B. We de-
note the topmost 500 entries in the distributional
thesauri of A and B respectively as DA and DB, and
we write D′A = DA∩V and D′B = DB∩V , where V
is the node set of GAB, the pseudoword’s ego word
graph. We can express V as

V = α∪β∪ γ∪δ, (1)

where α = D′A\D′B, β = D′B\D′A, γ = D′A ∩D′B,
δ = V\(D′A ∪D′B). So, elements in α and β are
nodes in V that relate respectively only to A or
B, elements of γ are nodes of V that appear in
both distributional thesauri and elements in δ are
not among the topmost 500 entries in the distribu-
tional thesauri of either A or B, but happened to
have a significant enough relation with the pseu-
doword to appear in V . We note that we will not
consider nodes in δ, and we will neither consider
nodes of γ, since they act as neutral terms. Con-
sequently, we take TA = α, TB = β as the ground
truth clusters of V\(γ∪ δ), which we will com-
pare with C\(γ∪δ) = {C\(γ∪δ) |C ∈ C}, where
C = {C1, . . . ,Cn} is any clustering of V . It is pos-
sible that either α = /0 or β = /0, which means that
in GAB the relation D′A ⊂ D′B or D′B ⊂ D′A holds.
In this case one word is totally dominant over the
other, and the pseudoword actually collapses onto
one sense. As already mentioned, we decided to
exclude collapsed pseudowords from evaluation.
To compute the BCubed F-score and NMI, we
compare the ground truth clustering T = {α,β} to
the clustering C\(γ∪ δ) that we obtain from any

7NMI is equivalent to V-measure, as shown by Remus and
Biemann (2013).

algorithm under consideration. However, for the
TOP2 score we want to look only at the two clus-
ters CA and CB that better represent component A
and B respectively. We define them as:

CA = argmax
C∈C

|C∩α| , CB = argmax
C∈C

|C∩β| .

For CA (respectively CB) we define its precision
or purity pA (pB) and its recall or completeness cA

(cB) with respect to α (β) as

pA =
|CA∩α|
|CA|

, cA =
|CA∩α|
|α|

.

We take the respective harmonic means h(pA,cA)
and h(pB,cB) and define the TOP2 score as their
macro-average:

TOP2 =
h(pA,cA)+h(pB,cB)

2
.

If it happens that CA =CB, we keep the best clus-
ter for one component and take the second best for
the other, according to which choice maximizes
TOP2. If the clustering consists of only one clus-
ter, we define either CA = /0 or CB = /0 and put
the harmonic mean of its purity and completeness
equal to 0. Therefore, in such case the TOP2 will
never be greater than 1

2 . The motivation for the
TOP2 score is that we know what we are look-
ing for: namely, for two clusters that represent A
and B. The TOP2 score then gives us a measure
of how well the clustering algorithm succeeds in
correctly concentrating all the information in ex-
actly two clusters with the least dispersion; this
can be generalized to the case of more than two
pseudosenses.

4 The Algorithms

In our experimental setting we will compare four
graph-based clustering algorithms commonly ap-
plied in, or especially developed for, the task of
WSI. They are: the Markov cluster algorithm
(MCL) (van Dongen, 2000); Chinese Whispers
(CW) (Biemann, 2006); MaxMax (MM) (Hope and
Keller, 2013); and the gangplank clustering al-
gorithm (GP) (Cecchini and Fersini, 2015). They
are detailed in the following subsections. We re-
mark that none of these algorithms sets a prede-
fined number of clusters to be found. This is a
critical property of WSI algorithms, since it is not
known a priori whether a word is ambiguous in the
underlying data collection and how many senses it
might have.



4.1 Markov Cluster Algorithm

The Markov cluster algorithm (van Dongen, 2000)
uses the concept of random walk on a graph, or
Markov chain: the more densely intra-connected
a region in the graph, the higher the probability to
remain inside it starting from one of its nodes and
moving randomly to another one. The strategy of
the algorithm is then to perform a given number
n of steps of the random walk, equivalent to tak-
ing the n-th power of the graph’s adjacency matrix.
Subsequently, entries of the matrix are raised to
a given power to further increase strong connec-
tions and weaken less significant ones. This cy-
cle is repeated an arbitrary number of times, and,
as weaker connections tend to disappear, the re-
sulting matrix is interpretable as a graph cluster-
ing. Not rooted in the NLP community, MCL was
used for the task of WSI on co-occurrence graphs
in (Widdows and Dorow, 2002). Our implementa-
tion uses an expansion factor of 2 and an inflation
factor of 1.4, which yielded the best results.

4.2 Chinese Whispers

The Chinese Whispers algorithm was first de-
scribed in (Biemann, 2006). It is inspired by MCL

as a simplified version of it and similarly simulates
the flow of information in a graph. Initially, every
node in the graph starts as a member of its own
class; then, at each iteration every node assumes
the prevalent class among those of its neighbours,
measured by the weights on the edges incident to
it. This algorithm is not deterministic and may
not stabilize, as nodes are accessed in random or-
der. However, it is extremely fast and quite suc-
cessful at distinguishing denser subgraphs. The
resulting clustering is generally relatively coarse.
Besides its use for word sense induction, in (Bie-
mann, 2006) CW was also used for the tasks of
language separation and word class induction.

4.3 MaxMax

MaxMax was originally described in (Hope and
Keller, 2013) and applied to the task of WSI on
weighted word co-occurrence graphs. It is a soft-
clustering algorithm that rewrites the word graph
G as an unweighted, directed graph, where edges
are oriented by the principle of maximal affinity:
the node u dominates v if the weight of (u,v) is
maximal among all edges departing from v. Clus-
ters are then defined as all the maximal quasi-
strongly connected subgraphs of G (Ruohonen,

2013), each of which is represented by its root.
Clusters can overlap because a node could be the
descendant of two roots at the same time. The al-
gorithm’s complexity is linear in the number of the
edges and its results are uniquely determined.

4.4 Gangplanks

The gangplank clustering algorithm was intro-
duced in (Cecchini and Fersini, 2015), where its
use for the task of WSI on co-occurrence graphs
is shown. There, the concept of gangplank edges
is introduced: they are edges that can be seen as
weak links between nodes belonging to different,
highly intra-connected subgraphs of a graph, and
thus help deduce a cluster partitioning of the node
set. In its proposed implementation, the computa-
tion of gangplank edges and the subsequent clus-
tering of G is actually performed on a second-
order graph of G, a distance graph DG which
represents the distances between nodes of G ac-
cording to a weighted version of Jaccard distance
adapted to node neighbourhoods. The gangplank
algorithm is deterministic and behaves stably also
on very dense or scale-free graphs. The resulting
clustering tends to be relatively fine-grained.

5 Results and Data Set Analysis

Table 2 summarizes the scores of BCubed F-
measure (BC-F), NMI and TOP2 as mean scores
over each possible pseudoword class, and Table
1 the overall mean scores per algorithm for the
SSIM- and the co-occurrence-based data sets. The
class of a pseudoword is the combination of the
frequency classes of its two components, labelled
from 1, comprising the least frequent words, to 5,
comprising the most frequent words in the corpus.
A total of 15 combinations are possible. Each
has 45 pseudowords if the two words are of the
same frequency class, and 100 otherwise. The
case of having a collapsed pseudoword, discussed
in Section 3, is more frequent for SSIMs than
for co-occurrences. Formally, in the notation of
(1), we say that one component of a pseudoword
totally dominates the other one when either α = /0

or β = /0. This happens 249 times for SSIM-based
graphs and 143 times for co-occurrence-based
ones. We excluded all such pseudowords from
evaluation, since they actually possess only one
sense and thus can not really be disambiguated.
There is a clear and expected tendency for col-
lapsed pseudowords to appear for very uneven



BC-F NMI TOP2
SSIM COOC SSIM COOC SSIM COOC

MCL 93.0±0.6 69.1±0.9 53.0±2.6 5.4±0.3 72.4±1.8 333999...333±0.7
CW 999444...777±0.5 88.7±0.5 555333...222±2.7 4.1±0.4 777333...999±1.6 25.6±1.1
MM 18.8±0.5 35.2±0.7 27.3±0.9 111111...111±0.4 39.7±0.8 34.2±0.6
GP 55.0±1.2 58.2±2.0 30.4±1.4 4.2±0.4 58.6±1.2 35.4±0.5
BSL 85.1±0.7 999000...555±0.4 0.0±0 0.0±0 41.1±0.4 38.8±0.5

Table 1: Mean scores in percentages over all pseudowords for each clustering algorithm and the baseline,
for our three metrics and for both data sets. The 95% confidence interval is also reported for each mean
value. The best values on each data set and for each measure are boldfaced.

combinations of frequency classes, like the
extreme case 1-5, where out of 100 pseudowords
this happens 72 times for similarities and 84
times for co-occurrences. On the contrary, when
the components belong to the same frequency
class, this phenomenon never arises. This can
be explained by the fact that LMI (see Section 2)
is proportional to the frequency of a particular
context or co-occurrence, so that highly frequent
words tend to develop stronger similarities in
their distributional thesauri, relegating sparser
similarities of less frequent words to a marginal
role or outweighing them altogether. Especially
in the two highest frequency classes 4 and 5, there
are terms that always come to dominate the graphs
of their related pseudowords (like beer).

Interestingly, we notice a drop of the NMI scores
for similarities in the fields of Table 2a corre-
sponding to the most skewed frequency class com-
binations, in particular 1-5, 2-5, 3-5, where some
words tend to completely dominate their graphs,
and clusterings tend to consist of a single big clus-
ter, possibly accompanied by smaller, marginal
ones. We also computed a most frequent score
baseline (BSL), which yields just one single cluster
for each ego word graph. Its NMI scores are always
0, as this measure heavily penalizes the asymme-
try of having just one cluster in the output and two
clusters in the ground truth. This, together with the
fact that MaxMax, which is the most fine-grained
among our examined algorithms, reaches NMI val-
ues that are on par with the other systems (or
consistently better, in the case of co-occurrences)
while regularly obtaining the lowest BC-F scores,
leads us to claim that NMI is biased towards fine-
grained clusterings8. On the opposite side of the
spectrum, the more coarse-grained systems tend

8This bias is discussed more at length by Li et al. (2014).

to have very high BC-F scores close to the base-
line, especially for the more skewed combinations.
This depends on the fact that unbalanced graphs
consist of nearly just one sense. Here the bias
of BCubed measures becomes manifest: Due to
their nature as averages over all single clustered
elements, they stress the similarity between the in-
ternal structures of two clusterings, i.e. the distri-
bution of elements inside each cluster, and disre-
gard their external structures, i.e. their respective
sizes and the distribution of cardinalities among
clusters. The TOP2 measure, however, was de-
fined so as to never assign a score greater than 0.5
in such occurrences. In fact, in the case of co-
occurrences we see that the baseline achieves the
best BC-F scores, but most of the time it is beaten
by other systems in terms of TOP2 score. Over-
all, TOP2 seems to be the most suited measure for
the evaluation of the task represented by our pseu-
doword data sets and is more in line with our ex-
pectations: higher scores when the ego word graph
is more balanced, and much lower scores when the
ego word graph is strongly skewed, without the ex-
cesses of NMI.
We remark that scores on the whole are usu-
ally worse for co-occurrences than for similarities,
both globally and for each frequency class combi-
nation. For co-occurrences, TOP2 never goes over
0.5. This is a strong indication that the structure
of co-occurrence ego word graphs is different than
that of SSIM-based ones, as already discussed in
Section 2; in particular, they are denser and nois-
ier, but generally more balanced. Remarkably, a
coarse-grained algorithm like Chinese Whispers
obtains its worst scores on co-occurrences, ac-
cording to TOP2, suffering from its very unbal-
anced, nearly-BSL clusterings. However, this very
characteristic makes Chinese Whispers the best
system overall on the less dense SSIMs (and the



1 2 3 4 5
BC-F NMI TOP2 BC-F NMI TOP2 BC-F NMI TOP2 BC-F NMI TOP2 BC-F NMI TOP2

MCL 92.6 71.9 79.7 89.7 67.6 81.1 87.4 64.0 83.4 99.0 35.9 65.5 98.0 26.3 55.0
CW 94.7 79.6 85.6 94.2 78.4 87.0 91.8 73.0 86.8 98.9 30.6 63.6 99.4 29.7 61.4
MM 37.0 45.5 50.8 26.8 39.7 46.4 17.6 32.5 40.2 17.0 11.2 42.5 13.2 10.3 37.7 1
GP 70.6 57.5 76.4 62.3 46.4 71.7 50.8 34.9 62.4 49.8 8.4 43.2 46.9 7.5 36.9
BSL 72.5 0.0 35.5 75.8 0.0 38.2 81.5 0.0 41.6 98.4 0.0 47.9 98.3 0.0 44.1

MCL 88.2 63.5 80.4 85.4 58.3 79.0 98.2 43.2 68.4 97.8 12.9 38.5
CW 92.4 74.5 86.8 87.5 59.6 78.8 98.2 27.2 60.9 98.5 10.9 49.6
MM 22.7 38.9 40.8 16.3 33.6 34.8 16.9 13.1 45.3 12.5 9.0 28.6 2
GP 60.4 47.3 72.7 55.5 40.4 67.0 51.6 9.7 45.2 48.1 6.8 35.7
BSL 73.8 0.0 37.2 76.4 0.0 38.0 97.4 0.0 46.4 98.0 0.0 43.7

MCL 83.5 49.9 75.0 97.7 41.8 66.1 97.3 13.2 44.1
CW 84.3 43.4 69.9 97.5 25.8 59.3 97.7 9.1 49.4
MM 12.7 31.0 28.4 17.8 15.4 43.1 12.4 9.6 29.3 3
GP 53.2 36.1 65.8 46.3 13.3 47.9 43.4 7.8 36.5
BSL 76.6 0.0 38.1 96.5 0.0 45.4 97.5 0.0 43.3

MCL 93.9 69.3 78.0 96.3 68.9 79.1
CW 96.0 81.9 86.4 96.8 69.5 80.5
MM 21.4 40.0 41.7 18.2 33.1 39.6 4
GP 69.2 48.2 69.5 59.8 37.8 64.3
BSL 77.2 0.0 36.6 82.8 0.0 39.6

MCL 96.6 78.9 86.5
CW 96.9 76.9 85.5
MM 17.6 35.7 38.8 5
GP 59.4 43.7 70.1
BSL 81.0 0.0 40.2

(a) Scores on the SSIM-based data set.
1 2 3 4 5

BC-F NMI TOP2 BC-F NMI TOP2 BC-F NMI TOP2 BC-F NMI TOP2 BC-F NMI TOP2
MCL 61.3 6.3 41.1 63.2 5.0 45.8 74.4 4.0 46.4 70.9 2.2 30.2 76.8 5.1 37.1
CW 69.9 7.1 38.3 80.5 4.4 34.4 92.5 3.2 25.9 95.8 0.3 7.3 98.7 0.1 12.8
MM 49.6 17.1 42.2 40.7 13.4 39.7 38.3 7.3 39.2 34.7 3.7 28.0 36.9 3.7 32.7 1
GP 48.1 5.3 40.9 45.0 5.0 37.1 27.7 4.5 28.0 57.3 2.5 34.7 73.7 0.7 37.9
BSL 71.9 0.0 34.4 83.5 0.0 42.0 94.4 0.0 46.7 98.9 0.0 47.9 99.7 0.0 48.9

MCL 60.5 4.8 43.3 67.5 5.0 40.5 65.8 4.6 38.8 77.6 4.6 34.0
CW 81.8 3.1 32.5 87.1 3.4 30.4 92.7 2.8 20.2 97.0 5.7 22.6
MM 35.0 13.8 35.6 34.6 11.8 33.5 34.2 8.7 34.5 36.2 5.1 30.3 2
GP 49.6 5.7 36.9 29.2 7.2 31.0 62.7 5.1 38.2 86.0 0.7 41.1
BSL 83.0 0.0 38.2 88.3 0.0 36.8 94.7 0.0 41.9 98.0 0.0 44.0

MCL 69.6 5.4 34.0 66.4 6.4 37.1 77.2 6.8 43.1
CW 85.6 3.3 25.1 88.4 3.3 23.2 94.6 5.7 24.4
MM 32.7 13.7 27.9 31.7 13.2 30.6 33.4 8.1 34.5 3
GP 38.5 5.8 28.5 63.5 6.2 36.6 88.3 0.9 39.9
BSL 86.7 0.0 28.3 89.6 0.0 32.9 95.8 0.0 40.3

MCL 59.2 8.5 35.1 71.9 7.7 39.8
CW 84.7 5.0 26.7 89.1 7.7 31.5
MM 31.1 18.5 32.9 31.6 14.3 35.6 4
GP 60.7 7.1 34.5 81.0 2.5 36.7
BSL 86.8 0.0 27.3 90.5 0.0 35.5

MCL 73.0 7.8 33.7
CW 85.1 4.3 27.2
MM 30.5 19.2 32.4 5
GP 81.9 1.4 29.5
BSL 86.8 0.0 27.6

(b) Scores on the co-occurrence-based data set.

Table 2: Mean scores per frequency class combination over both SSIM-based and the co-occurrence-
based ego word graph data sets. The best values for each frequency class combination are highlighted.



other evaluation measures agree). At the same
time, the more fine-grained GP and MCL seem
to better adapt to the structure of co-occurrence
graphs, while GP’s performances clearly deterio-
rate on more unbalanced pseudowords for SSIMs.
On the lower end of the spectrum, MaxMax shows
a very constant but too divisive nature for our task
of homonymy detection.

5.1 Example of Clusterings

We briefly want to show the differences between
the clusterings of our four systems (CW, MCL,
MaxMax, GP) on the SSIM ego word graph of a
same pseudoword. We chose catsup bufflehead:
catsup (variant of ketchup) belongs to frequency
class 2 and bufflehead (a kind of duck) to fre-
quency class 1. Their graph has 488 nodes and a
density of 0.548, above the global mean of 0.45.
The node ratio is in favour of catsup at 3.05 : 1
against bufflehead, with respectively 111 against
339 exclusive terms, still being a quite balanced
ego graph.
Chinese Whispers finds two clusters which seem
to cover correctly the two senses of bird or animal
on one side, {hummingbird, woodpecker,
dove, merganser,...}, and food on the
other side: {polenta, egg, baguette,
squab,...}. Its scores are very high, respec-
tively 0.95 for BC-F, 0.80 for NMI and 0.93 for
TOP2.
The gangplank algorithm yields 5 clusters. One
is clearly about the bird: {goldeneye, condor,
peacock,...}. The other four have high pre-
cision, but lose recall for splitting the sense of
food, e.g. in {puree, clove, dill,...} and
{jelly, tablespoon, dripping,...}, and
the distinction between them is not always clear.
We obtain a BC-F of 0.66, a NMI of 0.51 and a
TOP2 of 0.78.
The Markov cluster algorithm with an inflation
factor of 1.4 fails to make a distinction and
finds only one cluster: {raptor, Parmesan,
coffee, stork,...}. Its scores are the same of
our trivial baseline: BC-F 0.77, NMI 0.0 and TOP2
0.41 (< 0.5, see section 3).
MaxMax confirms its tendency of very fine-
grained clusterings and produces 22 clusters.
Each has a very high precision, but some consist
of only two or three elements, such as {gin,
rum, brandy} and {cashmere, denim} and
in general they make very narrow distinctions.

The biggest cluster {chili, chily, ginger,
shallot,...} has 89 elements. We also find a
cluster with bird names, but the overall scores are
low: BC-F 0.27, NMI 0.38 and TOP2 0.45.

6 Conclusions

The major contribution of this work is to present
two new pseudoword ego word graph data sets for
graph-based homonymy detection: one for context
semantic similarities and one for co-occurrences.
The data sets are modelled around 1225 pseu-
dowords, each representing the combination of
two monosemous words. We show that many ego
word graphs are too skewed when the two compo-
nents come from very different frequency classes,
up to the point of actually collapsing on just one
sense, but in general they represent a good approx-
imation of homonymy. We evidence the biases of
BCubed measures and NMI, respectively towards
baseline-like clusterings (and BSL is the best per-
forming system for co-occurrences in this sense)
and finer clusterings. On the contrary, our pro-
posed TOP2 metric seems to strike the right bal-
ance and to provide the most meaningful scores
for interpretation. Chinese Whispers, which yields
tendentially coarse clusterings, emerges as the best
system overall for this task with regard to SSIM,
and is closely followed by MCL, which is in turn
the best system for co-occurrences, according to
TOP2. The more fine-grained GP approach falls
in-between. MaxMax systematically has the low-
est scores, as its clusterings prove to be too frag-
mented for our task, and only achieves good NMI

values, which are however biased.
These considerations lead us to identify Word

Sense Discrimination9 (WSD), commonly used as
a synonym for Word Sense Induction, as an actu-
ally different, yet complementary task which ne-
cessitates different instruments, as exemplified by
our double data set: whereas WSI is paradigmatic,
WSD is syntagmatic. We deem that this distinction
deserves further investigation. As a future work,
beyond expanding our data sets we envision the
implementation of consensus clustering (Ghaemi
et al., 2009) and re-clustering techniques to im-
prove results, and a more accurate analysis of the
relation between creation of word graphs and al-
gorithms’ outputs.

9Defined as “determining for any two occurrences [of a
word] whether they belong to the same sense or not”, after
Schütze (1998).
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