
Matching, Re-ranking and Scoring: Learning Textual
Similarity by Incorporating Dependency Graph

Alignment and Coverage Features

Sarah Kohail and Chris Biemann

Language Technology Group
Computer Science Department

Universität Hamburg
Hamburg, Germany

{kohail, biemann}@informatik.uni-hamburg.de

Abstract. In this work, we introduce a supervised model for learning textual
similarity, which can identify and score similarity between a set of candidate
texts and a given query text. By combining dependency graph similarity and cov-
erage features with lexical similarity measures using neural networks, we show
that most relevant documents to a given text can be more accurately ranked and
scored than if the lexical similarity measures were used in isolation. Additionally,
we introduce an approximate dependency subgraph alignment approach allowing
node gaps and mismatch, where a certain word in one dependency graph cannot
be mapped to any word in the other graph. We apply our model to two different
applications, namely re-ranking for improving document retrieval precision on a
new dataset, and automatic short answer scoring on a standard dataset. Experi-
mental results indicate that our approach is easily adaptable to different tasks and
languages, and works well for long texts as well as short texts.

1 Introduction

Semantic Textual Similarity (STS) measures the degree of semantic equivalence be-
tween a given pair of text. It also determines the notion that some texts are more sim-
ilar than others. Measuring textual similarity, resulting from paraphrasing or summa-
rization, may improve language understanding for many Natural Language Processing
(NLP) applications, ranging from Information Retrieval (IR) [1] and machine reading
comprehension [2, 3] to question answering [4] and short answer scoring [5, 6].
In this paper, we address the problem of assessing STS of alternative versions of can-
didate texts that have a varying degrees of similarity to a given query text. Specifically,
we try to examine the impact of using dependency graph similarity and coverage fea-
tures, and leverage supervised machine learning techniques in order to improve the rel-
evancy identification and scoring. We also present an approximate subgraph alignment
approach to find a subgraph in the candidate text dependency graph that is similar to a
given query text dependency graph, allowing for node gaps and mismatches, where a
certain word in one dependency graph cannot be mapped to any word in the query text
graph, as well as graph structural differences. We evaluate our method on two tasks:

re-ranking for information retrieval and automatic short answer grading.
The remainder of this paper is organized as follows. In Section 2, we briefly discuss re-
lated work. Section 3 describes our textual similarity model and feature representation.
In section 4, we show the performance of our method and analyze results. Section 5
concludes and discusses further future work.

2 Related Work

Researchers have made substantial progress on STS motivated by the annual SemEval
competitions [7–9]. Most of state of the art approaches often focus on training regres-
sion models on traditional lexical surface overlap features. Recently, deep learning
models have achieved very promising results; the top three performing systems from
SemEval STS 2016 used deep learning based models [10–12]. However, STS remains
a hard problem when it comes to texts, which have both variable length and complex
dependency structure [13].
To ensure that our method is generalizable over different languages and various text
lengths, we evaluate our method using two different tasks, namely re-ranking for im-
proving document retrieval, and automatic short answer grading.
Examining the effect of results ranking, Jansen and Spink [14] observed that most users
do not browse results beyond the first page and the higher the document placement in
the first page results, the more likely a user is to read that document. By minimizing
the huge amount of relevant results to few highly relevant to the users’ query, and re-
ranking them to appear in the upper top rank, users are more likely to find their goal
quickly and easily [15].
Since short texts might not contain sufficient statical information or syntax patterns,
multiple evaluations have been proposed to operate for short texts separately [16–18],
while Pilehvar and Navigli [19] investigate a unified approach to semantic similarity
that operates at multiple levels.
The task of automatic short answer grading is to assess short natural language answers
based on their similarity with expert-provided correct answers. Mohler et al. [6] train
support vector machine (SVM) on a combination of graph-based alignment and lexical
similarity measures to score short students answers using a 5-point scale. They find that
the supervised model in this task outperforms the unsupervised model [5].
Numerous approaches have used the dataset of Mohler et al. [6] as a benchmark to eval-
uate their methods. We mention two recent comparable works, [20] and [21], which we
use later in our comparative study. Ramachandran et al. [20] adopt a mechanism to
automate the generation of regexp text patterns from the reference expert answer as
well as top-scoring student answers, to capture the structural and semantic variations
of good answers. Sultan et al. [21] train supervised model, namely a ridge regression
model, on a set of similarity and word embeddings features for the task of short answer
grading. They apply question demoting (QD) technique in an attempt to reduce the ad-
vantage of repeating words provided in the question by re-computing similarity features
after removing these words from both the reference answer and the student response.
Their ablation study shows that applying question demoting results in 0.021 correlation
improvement and 0.016 reduction in Root Mean Square Error (RMSE).

3 Learning Textual Similarity

Given query text q and candidate text d, textual similarity captures the fact of how much
a candidate text d conveys the same information as a query text q.
In this research, we employ two sets of features, similarity features and coverage fea-
tures. The novel contribution of this work is constituted by three feature types: depen-
dency structure features, expansion features and coverage features. In the following
subsection, we describe each of these features in more details.

3.1 Similarity Features

Similarity is measured by the shared feature types between two texts a query text q and
a candidate text d. For both texts d and q, we create a vector representation d and q for
various feature types. Each entry in one vector corresponds to the existence/presence
(i.e di/qi∈ {0,1}), frequency (i.e di/qi ∈ N) or Tf-Idf measure (i.e di/qi ∈ R) of
a given feature type in a text. After removing stopwords, we consider the following
feature types:

Bag of Words (BOW): We represent the content of each text by a bag of words. In
this case, similarity is measured by the shared vocabulary between both d and q.
We also employ a second version of this feature using stemmed words.

Topic Distribution: We also model each document as a vector of topics using Latent
Dirichlet Allocation model (LDA) [22].

Dependency Structure: Another important similarity measure is dependency parse
structure similarity. Based on the work by [23], we aggregate individual depen-
dency relations obtained from a parser, weigh them with Tf-Idf and produce a
graph which contains the highest-ranked content words and their dependency re-
lations. For a text d, dependency graph Gd = {Vd, Ed}, where Vd = {w1, ..., wN}
represents the content words in a text, and Ed is an set of edges, where each edge
ejk represents a directed dependency relation between wj and wk. Written also as
a list of triples as follows: ”wj” → ”wk”[label = ”ejk”].
A generated dependency graph is then filtered according to the following three con-
ditions:

– Tf-Idf (wj ,d) ≥ α or Tf-Idf (wk,d) ≥ α
– Tf-Idf (wj wk,d) ≥ β
– Tf-Idf (ejk wj wk,d) ≥ λ

where α, β and λ are ≥ 0. When α, β and λ = 0, no Tf-Idf filtering is applied. For
q, dependency graphs are generated, and filtered in the same manner.
Similarity is then measured on these three levels by representing each text as a
vector of words, pairs and relations.

Named Entities: In this case, we measure similarity based on named entities terms
only.

Expansion Features: Since the variability of language allows expressing the same
concepts, entities and facts in different words, measuring similarity purely based
on exact word matching does not fully capture conceptual matching. We expand
content words, i.e. (common and proper) nouns, adjectives, verbs and adverbs in
each text text using the Distributional Thesaurus (DTs) from [24].

Once these vectors are constructed the similarity between each d and q texts pair can be
measured using cosine similarity using the following equation:

cos(q,d) =

N∑
i=1

qidi√
N∑

i=1
qi2

√
N∑

i=1
di

2

(1)

where N is the dimension of q and d. Vectors are (length-) normalized by dividing

by the L2 norm

√
N∑
i=1

qi2 and

√
N∑
i=1

di
2 of q and d respectively.

3.2 Coverage Features

As a text gets longer, term frequency factors increase, and thus having a high similarity
score is likelier for longer than for shorter texts. IR research has shown that document
length normalization is important to guarantee that documents are retrieved with sim-
ilar chances as their likelihood of relevance regardless of their length [25]. The same
applies to answers grading: longer answers should not receive unjustly higher scores.
Normalizing vectors using the cosine L2 norm has proven to have several limitations
due to the use of the individual terms weights for text length normalization [26, 27].
This dependency is undesirable when the text includes infrequent terms with high Idf
value, which can significantly increase the overall cosine normalization L2 factor and
cause inaccurate weighting for the other terms in the text. Accordingly, the new weights
may not reflect the actual importance of the terms in content representation of the text.
We try to solve this problem by incorporating a set of coverage features to measure the
coverage of the query in the document.
Let Gd = {Vd, Ed} and Gq = {Vq, Eq} be the dependency graphs of d and q respec-
tively. We measure coverage using the following equations:

Vocabulary Coverage: We calculate vocabulary coverage by computing the number
of one-to-one nodes correspondence between both q and d dependency graphs di-
vided by the overall number of nodes in the query text q dependency graph, as in
the following equation:

|Vd ∩ Vq|
|Vq|

(2)

Relation Coverage: We calculate relation coverage by computing the number of one-
to-one edges (triple) correspondence between both q and d dependency graphs di-
vided by the overall number of edges in the query text q dependency graph:

|Ed ∩ Eq|
|Eq|

(3)

Pair Coverage: As in relation coverage, however in this case, we ignore the relation
type and edge direction.

Graph Coverage: Before we present more details about how graph coverage features
are measured, however, we first need to introduce our approximate dependency
sub-graph alignment methodology.

The idea is to find a subgraph Gs = {Vs, Es}, where Gs ⊆ Gd, that is approximately
similar to a query text graph Gq . Algorithm 1 shows the pseudo-code of dependency
sub-graph approximate matching algorithm.

Input: Gd, Gq , Threshold t
Output: Gs

Vintersection ← {Vd ∩ Vq} ;
for j ← 1 to |Vintersection| − 1 do

for k ← j + 1 to |Vintersection| do
Path← dijkstra.getPath(Gd, wj , wk);
if Path 6= null and Path.size(wj , wk) ≤ t then

Gs ← Gs ∪ Path;
end

end
end
Algorithm 1: Dependency sub-graph approximate alignment methodology.

First, we obtain the nodes intersection Vintersection between both q and d dependency
graphs. We then find the shortest path between every pair (wj , wk) of vertices belongs to
the Vintersection set in the candidate text dependency graph using Dijkstra’s algorithm
[28]. Each edge was given a weight of 1 and edges directions are ignored during the
process of the algorithm. Due to linguistic variation, we may not find a sub-graph that
match the exact query text graph, however, we might find a sub-graph that match the
query text graph approximately. We define a threshold parameter t to allow node gaps
and mismatch in the case where some nodes in the query text cannot be mapped to any
nodes in the candidate text graph. If the shortest path size (i.e number of edges between
wj andwk) is less than or equal t, the path will be added to the sub-graphGs. By setting
t to a value greater than 1, it is much more likely to capture syntactic variations. Figure
1 shows examples of sub-graph matching from the dataset of [6].
The resulting Gs is used to measure two graph coverage features as follows:

|Es|
|Ed|

(4)

|Es|
|Eq|

(5)

Since a much more relevant candidate text is much more likely to have a larger overlap
with the query text than other less relevant candidates, this may well tend to improving
relevant documents similarity assessment.

4 Applications and Analysis

We evaluate our method for two different tasks: re-ranking for article summary match-
ing, and short answer grading.

Fig. 1. Approximate sub-graph matching illustration. Example is taken from [6]. Given a model
and a student candidate answer, double lined nodes represents the shared words between both
answers and connections between words represents dependency relations. Direction and depen-
dency types are ignored. Algorithm 1 uses the dependency structure similarity of local neigh-
borhoods within Shortest Path (SP ≤ t), to find an approximate sub-graph that match the model
answer. The selected subgraph is highlighted by bold dotted lines. In this example t = 3.

4.1 Re-ranking for Article-Summary Matching

Similar to [15], we utilize the ranking output of an IR system to do re-ranking. We
choose to select the top n relevant documents ranked by Lucene1 and incorporate our
features to improve documents ranking precision.

Lucene Ranking Our re-ranking method is build on the top of Lucene. Lucene offers
an open source information retrieval library, which provides IR-related tasks like in-
dexing, querying, language analysis, results scoring and retrieval. Figure 2 shows how
our re-ranking setup with Lucene works. Depending on the chosen language analyzer,
the documents are internally tokenized, stemmed and filtered for stopwords. The an-
alyzer preprocesses and extracts the terms on which the searching can be done. The
terms are then indexed into a format that facilitates rapid searching. When a query is
issued, it gets analyzed and relevant results are selected from the collection by match-
ing the query against the index. Finally, relevant documents are scored according to the
following equation:

Score(d, q) =
∑

w∈q tf(w, d)× idf(w)× normlength(d) (6)

1 https://lucene.apache.org/

Fig. 2. Re-ranking top-n results of a retrieval system.

where tf(w, d) is the word w frequency in document d, idf(w) is the inverse number
of documents in which word w appears, and normlength(d) is the length normalization
factor for document d.

Dataset We used a set of 37,164 German news articles collected from Spiegel Online
over 20152. It includes German online news articles from different genres like sports,
politic, economics, health, entertainment, etc. We remove images/video only articles,
filter out irrelevant information like: source agency, date and translator name, clean
HTML tags and extract only articles with summaries. The resulting corpus consists
of 1130 (article, summary) pairs. Each of these articles has one corresponding sum-
mary that was created manually by the article author. Summaries are abstractive, which
involves paraphrasing the facts from the original article using new novel sentences.
Length ranges are [45-950] and [1185-9560] characters, and [7-107] and [216-1390]
words, for summaries and articles respectively. The news are highly correlated due to
the short one-year interval. Similar events are discussed in different contexts, therefore
simple features like word frequency would not be able to discern the correct summary
from summaries of articles on closely related topics. Thus, this dataset is suited for
testing the capability of methods that assess a certain semantic understanding of texts –
as opposed to e.g. the DUC datasets3, where we found string-based matching to yield
almost perfect scores in a preliminary experiment. The remaining articles, which have

2 http://www.spiegel.de/
3 http://duc.nist.gov/

no corresponding summaries, were used as a background corpus for Tf-Idf calculation
and topic model training.
To create our dataset, we index the articles and use the summaries as a query to retrieve
the articles. Then, we re-rank the n top-ranked documents returned by Lucene. We label
the correct matching summary-article pairs as ”1” and ”0” otherwise. Overall, we have
5650 examples and 11300 examples, in the cases where n = 5 and n = 10 respectively.
We apply the same process with the summaries indexed and the articles as queries. Ta-
ble 1 shows Lucene retrieval results for both settings. Precision at n reports the fraction
of documents ranked in the top n results that are labeled as relevant. Note that not all
summary-article pairs could be correctly retrieved in all cases and the retrieval perfor-
mance is not equally effective for retrieving texts and summaries, since summaries are
much shorter and thus contain less distinctive words.

P@n Sum/Text Text/Sum 4

P@1 1029 (0.9106) 887 (0.7849)
P@3 1111 (0.9831) 1021(0.9035)
P@5 1122 (0.9929) 1052 (0.9309)
P@10 1128 (0.9982) 1090 (0.9646)
P@20 1128 (0.9982) 1114 (0.9858)
P@50 1129 (0.9991) 1123 (0.9938)
P@100 1129 (0.9991) 1129 (0.9991)

Table 1. Lucene retrieval performance. Retrieval is evaluated by P@n. The number in paren-
thesis shows the overall P@n for the entire dataset of 1130 article-summary pairs. Sum/Text:
summaries on index, articles for retrieval. Text/Sum: articles on index, text for retrieval

Experimental Setup For computing features, we use the implementation provided by
[29] for topic modeling, and [30] for named entities extraction. Dependency graphs for
both queries and documents are generated using the German collapsed parser by [31],
and filtered using Tf-Idf thresholds in three levels. By manual inspection, α, β and λ
are set to 10, 5 and 2 respectively. For lexical expansions features, we obtain the top 10
DT expansions using the JoBimText API5.
Once the similarity and coverage scores have been computed for each summary-article
pairs, we use a cost-sensitive Multilayer Perceptron (MLP) neural network to handle
the imbalance between positive and negative examples. False positives are assigned a
larger cost than false negatives, so the classifier would not be biased toward negative
instances. The cost of false negatives is fixed to 1. We explore different costs to find the
best cost using the validation set for false negatives class. We have found that a cost of
n− 1 performs the best across all the training/validation rounds.
We run different experiments with different MLP structures and learning parameters.
For evaluation, we use 5-fold cross-validation. We choose the model which provides

5 www.jobimtext.org/jobimviz-web-demo/api-and-demo-documentation/

the best overall accuracy with a balanced classification error rate and stable perfor-
mance scores between the two classes, which was determined on a smaller version of
the dataset in preliminary experiments. The network structure includes 3 hidden layers,

Sum/Text Text/Sum
Features Precision Recall F-Measure TP Precision Recall F-Measure TP

All 0.916 0.894 0.899 1026 0.915 0.889 0.896 960
BOW 0.890 0.853 0.864 1013 0.893 0.850 0.862 929
Dependency 0.887 0.838 0.850 1003 0.890 0.843 0.856 921
Coverage 0.893 0.853 0.864 919 0.850 0.861 0.862 917
Cov+Dep 0.904 0.874 0.882 1011 0.904 0.870 0.880 942
All/(Cov+Dep) 0.902 0.865 0.874 1023 0.901 0.860 0.870 948

Table 2. Binary relevancy classification results using MLP (n=5). Results shows binary relevancy
classification precision (P@1), recall, F-measure and true positives.

Sum/Text Text/Sum
Features Precision Recall F-Measure TP Precision Recall F-Measure TP

All 0.951 0.929 0.936 1038 0.949 0.923 0.931 994
BOW 0.938 0.894 0.908 1024 0.936 0.889 0.904 971
Dependency 0.933 0.879 0.895 1014 0.933 0.883 0.899 954
Coverage 0.930 0.881 0.896 972 0.935 0.888 0.903 962
Cov+Dep 0.945 0.918 0.926 1020 0.941 0.899 0.912 989
All/(Cov+Dep) 0.943 0.906 0.917 1035 0.942 0.903 0.915 989

Table 3. Binary relevancy classification results using MLP (n=10). Results shows binary rele-
vancy classification precision (P@1), recall, F-measure and true positives.

with (f + c)/2 neurons in each layer, where f is the number of input features and c is
the number of classes (i.e c = 2). Training time is set to 1000 epochs.
To re-rank, MLP6 is configured to return a probability distribution of each class la-
bel. We re-rank the relevancy according to the descending ordering of the probability
distribution of the positive class.

Results and Discussion The best report relevancy classification results are reported
in Table 2 and Table 3. Since we are only aware of the correct article-summary pairs,
we use P@1 only as a measure of performance. We also reported the recall, F-measure
and true positives. We test the performance using different sets of features. From the
results we observe the following: First, using all the features achieves the best perfor-
mance over all measures in all cases. Second, using a combination of coverage and

6 Learning rate = 0.5, momentum = 0.2

n=5 n=10
Features Sum/Text Text/Sum Sum/Text Text/Sum
All 1080 (0.962) 996 (0.946) 1077 (0.954) 1018 (0.933)
BOW 1064 (0.948) 987 (0.938) 1048 (0.929) 994 (0.911)
Dependency 1050 (0.935) 980 (0.931) 1037 (0.919) 976 (0.895)
Coverage 1038 (0.925) 962 (0.914) 1031 (0.914) 973 (0.892)
Cov+Dep 1079 (0.961) 991 (0.942) 1072 (0.950) 1010 (0.926)
All/(Cov+Dep) 1064 (0.948) 986 (0.937) 1048 (0.929) 993 (0.911)

Table 4. Re-ranking results using MLP probability distribution from different relevancy classifi-
cation models when n=5 and n=10. The table shows the improvement in P@1 after the re-ranking.
Numbers in brackets are the results of dividing by the number of cases, (1122,1052), (1128,1090),
where the correct document is in the top 5 or top 10 Lucene results respectively, which form an
upper bound.

dependency features lead to the second best performance and play a role in providing
comparable performance to that obtained using all the features with an unnoticeable
drop in true positives. Third, F-measures falls with average of 0.0215 (in four cases)
when excluding these two features, and using each feature in isolation does not lead
to any improvement, but achieves comparable results to the ones using BOW features.
Forth, in most cases, we outperform Lucene P@1 in terms of true positives.
The improvement is most clearly seen when we use our neural networks models for
re-ranking, see Tables 4.
In manual error analysis, we generally observe limitations on very short summaries that
have no intersection with the text – most extremely noticed for an article on fashion his-
tory (866 words) with the (translated) summary “The suit is the uniform of gentlemen“.
Other errors could be addressed by a German compound splitter, as there are fre-
quently compounds where only the parts match, such as ”Ratenkreditangebote” and
”Ratenkredite”, other examples include derivational matches like ”vorweihnachtliche”
and ”Vorweihnachtszeit”, which could be addressed by an improved morphology com-
ponent that also includes compound analysis.

4.2 Automatic Short Answers Grading

We provide a second evaluation for our method on automatic short answers grading.

Dataset We use the dataset by [6]7. The dataset consists of 81 computer science ques-
tions on data structures course and 2273 student answers. The dataset was graded by
two judges and normalized on a scale of 0..5 according to the extent to which the stu-
dent answers are considered similar to the content of the correct answers. The reported
inter-annotator agreement (IAA) between both judges is 0.586% (Pearsons ρ) and 0.659
Root Mean Square Error (RMSE).

7 http://web.eecs.umich.edu/˜mihalcea/downloads.html\#saga

Experimental Setup Dependency graphs for both questions and answers are based on
collapsed dependencies from the Stanford Parser8. By manual inspection, we set α, β
and λ to 4, 2 and 1 respectively. As average text length in this case is shorter, we choose
smaller values.
We used New York Times articles within the years 1998-2000 as a background corpus
for Tf-Idf calculation, and our topic model was trained using set of 36 million sentences
from the recent English Wikipedia dump.
We train a MLP with one hidden layer using default parameters9 for 5000 training
epochs to increase stability. Following [6], we apply a 12-fold cross validation over the
entire dataset for evaluation.

Results and Discussion Table 5 shows our results in comparison to previous ap-
proaches.

Features ρ RMSE
Tf-Idf 0.327 1.022
Lesk 0.462 1.050
Mohler et al. [6] 0.518 0.978
Inter-annotator Agreement (IAA) 0.586 0.659
Sultan et al. [21] 0.592 0.887
Sultan et al. [21] w/ Question Demoting 0.571 0.903
Ramachandran et al. [20]* 0.610 0.860

Our Method 0.590 0.847

Table 5. Comparing performance of different models trained on [6]. Comparison is based on
Pearson’s ρ correlation and Root Mean Square Error (RMSE). * results on a smaller test dataset,
not directly comparable.

Our approach exhibits superior performance over existing models when evaluating
on RMSE except for IAA, and we perform quite well in comparison to IAA and [21]
in terms of Pearson’s correlation. Although [20] report better results; however, their
evaluation is based on much smaller test data (453 examples) and they use in-domain
model training. As can be seen as well, our coverage and alignment features proven to
has a great effect on improving the performance than when only considering BOW or
Tf-Idf features in isolation.
Further manual error analysis shows that a substantial portion of the errors are due to
unstructured answers and misspelling. Again, a more lenient matching mechanism, e.g.
using edit distance or automatic spelling correction, might alleviate these errors.

8 http://nlp.stanford.edu/software/lex-parser.shtml
9 Learning rate = 0.3, momentum = 0.2

5 Conclusion

In this paper, we introduced a supervised approach for learning to rank and score a set of
candidate texts that have varying degrees of similarity to a given query text. We showed
that incorporating additional structural and content similarity features, coverage mea-
sures and lexical similarity from distributional thesaurus can produce better results than
if each were used individually.
To enable interpretable similarity, we also developed an approximate dependency sub-
graph alignment algorithm. The idea is to find a subgraph in the candidate text de-
pendency graph that is similar to a given query text dependency graph, allowing for
syntactic variations.
To ensure that our method is generalizable over different languages and various text
lengths, we evaluate our method using two different tasks, namely re-ranking for im-
proving document retrieval, and short answer grading. Results indicate that our ap-
proach provide better or comparable performance to baseline and recent approaches.
In the future, we would like to improve the quality of our alignment algorithm by in-
corporating semantic similarity, which will help capturing synonyms and paraphrases.
Further improvement would be to explore more lenient matching mechanisms to cap-
ture morphological variants and misspellings.

References
1. Amiri, H., Resnik, P., Boyd-Graber, J., Daumé III, H.: Learning text pair similarity with

context-sensitive autoencoders. In: ACL, Berlin, Germany (2016) 1882–1892
2. Chen, D., Bolton, J., Manning, C.D.: A thorough examination of the cnn/daily mail reading

comprehension task. In: ACL, Berlin, Germany (2016) 2358–2367
3. Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., Blun-

som, P.: Teaching machines to read and comprehend. In Cortes, C., Lawrence, N.D., Lee,
D.D., Sugiyama, M., Garnett, R., eds.: Advances in Neural Information Processing Systems
28, Montreal, Canada (2015) 1693–1701

4. Weston, J., Bordes, A., Chopra, S., Mikolov, T.: Towards ai-complete question answering:
A set of prerequisite toy tasks. CoRR (2015)

5. Mohler, M., Mihalcea, R.: Text-to-text semantic similarity for automatic short answer grad-
ing. In: EACL 2009, Athens, Greece (2009) 567–575

6. Mohler, M., Bunescu, R., Mihalcea, R.: Learning to grade short answer questions using
semantic similarity measures and dependency graph alignments. In: ACL-HLT. HLT ’11,
Portland, Oregon, USA (2011) 752–762

7. Agirre, E., Diab, M., Cer, D., Gonzalez-Agirre, A.: Semeval-2012 task 6: A pilot on semantic
textual similarity. In: SemEval, Montreal, Canada (2012) 385–393

8. Agirre, E., Banea, C., Cer, D., Diab, M., Gonzalez-Agirre, A., Mihalcea, R., Wiebe, J.:
Semeval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual evaluation.
In: SemEval, San Diego, California (2016) 497–511

9. Agirre, E., Gonzalez-Agirre, A., Lopez-Gazpio, I., Maritxalar, M., Rigau, G., Uria, L.:
Semeval-2016 task 2: Interpretable semantic textual similarity, San Diego, California (2016)
512–524

10. Rychalska, B., Pakulska, K., Chodorowska, K., Walczak, W., Andruszkiewicz, P.: Samsung
poland nlp team at semeval-2016 task 1: Necessity for diversity; combining recursive au-
toencoders, wordnet and ensemble methods to measure semantic similarity. In: SemEval,
San Diego, California (2016) 602–608

11. Brychcı́n, T., Svoboda, L.: Uwb at semeval-2016 task 1: Semantic textual similarity using
lexical, syntactic, and semantic information. In: SemEval, San Diego, California (2016)
588–594

12. Afzal, N., Wang, Y., Liu, H.: Mayonlp at semeval-2016 task 1: Semantic textual similarity
based on lexical semantic net and deep learning semantic model. In: SemEval, San Diego,
California (2016) 674–679

13. Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity.
In: Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona USA (2016)

14. Jansen, B.J., Spink, A.H.: Investigating customer click through behaviour with integrated
sponsored and nonsponsored results. International Journal of Internet Marketing and Adver-
tising 5 (2009) 74–94

15. Hagen, M., Völske, M., Göring, S., Stein, B.: Axiomatic result re-ranking. In: CIKM 2016,
Indianapolis, Indiana (2016)

16. Yang, S., Lu, W., Yang, D., Yao, L., Wei, B.: Short text understanding by leveraging knowl-
edge into topic model. In: NAACL: HLT, Denver, Colorado, USA, Association for Compu-
tational Linguistics (2015) 1232–1237

17. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional deep neural
networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’15, Santiago, Chile (2015) 373–382

18. Gu, Y., Yang, Z., Zhou, J., Qu, W., Wei, J., Shi, X.: A fast approach for semantic similar
short texts retrieval. In: ACL, Berlin, Germany (2016) 89–94

19. Pilehvar, M.T., Navigli, R.: From senses to texts: An all-in-one graph-based approach for
measuring semantic similarity. Artificial Intelligence 228 (2015) 95–128

20. Ramachandran, L., Cheng, J., Foltz, P.: Identifying patterns for short answer scoring using
graph-based lexico-semantic text matching. In: Proceedings of the Tenth Workshop on In-
novative Use of NLP for Building Educational Applications, Denver, Colorado, USA (2015)
97–106

21. Sultan, M.A., Salazar, C., Sumner, T.: Fast and easy short answer grading with high accuracy.
In: NAACL: HLT, San Diego, California (2016) 1070–1075

22. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. the Journal of machine
Learning research 3 (2003) 993–1022

23. Kohail, S.: Unsupervised topic-specific domain dependency graphs for aspect identification
in sentiment analysis. In: Student Research Workshop Associated with RANLP 2015, Hissar,
Bulgaria (2015) 16–23

24. Biemann, C., Riedl, M.: Text: Now in 2D! a framework for lexical expansion with contextual
similarity. Journal of Language Modelling 1 (2013) 55–95

25. Albalate, A., Minker, W.: Semi-Supervised and Unervised Machine Learning: Novel Strate-
gies. John Wiley & Sons (2013)

26. Buckley, C., Singhal, A., Mitra, M., Salton, G.: New retrieval approaches using smart: Trec
4. In: TREC, Gaithersburg, Maryland (1995) 25–48

27. Singhal, A., Salton, G., Buckley, C.: Length normalization in degraded text collections. In:
Proceedings of Fifth Annual Symposium on Document Analysis and Information Retrieval,
Las Vegas, Nevada, USA (1996) 15–17

28. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik
1 (1959) 269–271

29. Phan, X.H., Nguyen, C.T.: GibbsLDA++: A C/C++ implementation of latent Dirichlet allo-
cation (LDA). (2007) http://gibbslda.sourceforge.net.

30. Benikova, D., Yimam, S.M., Santhanam, P., Biemann, C.: GermaNER: Free Open German
Named Entity Recognition Tool. In: GSCL, Duisburg-Essen, Germany (2015) 31–38

31. Ruppert, E., Klesy, J., Riedl, M., Biemann, C.: Rule-based Dependency Parse Collapsing and
Propagation for German and English. In: GSCL, Duisburg-Essen, Germany (2015) 58–66

