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Abstract

In this paper, we investigate the differences between prediction-based (word2vec), dense count-
based (GloVe) and sparse count-based (JoBimText) semantic models. We evaluate the models, which
were selected because they can all be computed efficiently on large data, based on word similarity
tasks and a semantic ranking task both for verbs and nouns. We demonstrate that prediction-based
models yield higher scores than the other two models at determining a similarity score between
two words. To the contrary, sparse count-based methods perform best in the ranking task. Further,
sparse count-based methods benefit more from linguistically informed contexts, such as dependency
relations. In summary, we highlight differences of popular distributional semantic representations
and derive recommendations for their usage.

1 Introduction

With the steady growth of textual data, NLP methods are required that are able to process the data
efficiently. In this paper, we focus on efficient methods that are targeted to compute distributional models
that are based on the distributional hypothesis of Harris (1951). This hypothesis claims that words
occurring in similar contexts tend to have similar meanings. In order to implement this hypothesis,
early approaches (Hindle, 1990; Grefenstette, 1994; Lin, 1997) represented words using count-based
vectors of the context. However, such representations are very sparse, require a lot of memory and
are not very efficient. In the last decades, methods have been developed that transform such sparse
representations into dense representations mainly using matrix factorization. With word2vec (Mikolov
et al., 2013), an efficient prediction-based method was introduced, which also represents words with a
dense vector. However, also sparse and count-based methods have been proposed that allow an efficient
computation, e.g. (Kilgarriff et al., 2004; Biemann and Riedl, 2013). A more detailed overview of
semantic representations can be found in (Lund and Burgess, 1996; Turney and Pantel, 2010; Ferrone
and Zanzotto, 2017).

In this work, we explore different aspects between three different methods for computing similarities:
similarity computations that use sparse symbolic vectors for similarity computations, dense vector based
methods that are based on co-occurrences and prediction-based methods. For this, we aim to focus on
efficiently computable methods and selected SKIP and CBOW from word2vec, GloVe and JoBimText.
Based on these methods we want to explore different aspects: 1) which method performs the best global
similarity scoring using word pair similarity datasets 2) which method performs the best local ranking
of most similar terms for a query term 3) which context works best for the different methods and 4) are
there differences in the performance when evaluating on verbs and nouns.

2 Related Work

One of the first comparisons between count-based and prediction-based distributional models was per-
formed by Baroni et al. (2014). For this, they consider various tasks and show that prediction-based word



embeddings outperform sparse count-based methods and dense count-based methods used for comput-
ing distributional semantic models. The evaluation is performed on datasets for relatedness, analogy,
concept categorization and selectional preferences. The majority of word pairs considered for the eval-
uation consists of noun pairs. However, Levy and Goldberg (2014b) showed that dense count-based
methods, using PPMI weighted co-occurrences and SVD, approximates neural word embeddings. Levy
et al. (2015) showed in an extensive study the impact of various parameters and show the best perform-
ing parameters for these methods. The study reports results for various datasets for word similarity and
analogy. However, they do not evaluate the performance on local similarity ranking tasks and omit re-
sults for pure count-based semantic methods. Claveau and Kijak (2016) performed another comparison
of various semantic representation using both intrinsic and extrinsic evaluations. They compare the per-
formance of their count-based method to dense representations and prediction-based methods using a
manually crafted lexicon, SimLex and an information retrieval task. They show that their method per-
forms better on the manually crafted lexicon than using word2vec. For this task, they also show that a
word2vec model computed on a larger dataset yields inferior results than models computed on a smaller
corpus, which is contrary to previous findings, e.g. (Banko and Brill, 2001; Gorman and Curran, 2006;
Riedl and Biemann, 2013). Based on the SimLex task and the extrinsic evaluation they show comparable
performance to the word2vec model computed on a larger corpus.

In this work, we do not focus on the best performing systems for each dataset, like e.g. retrofitting
embeddings (Kiela et al., 2015; Rothe and Schütze, 2015), but want to carve out the difference of existing
methods for computing distributional similarities.

3 Methods for Distributional Semantics

For the efficient and scalable similarity computation, we select SKIP and CBOW from word2vec as
prediction-based, GloVe as dense count-based1and JoBimText as sparse count-based method.

Word2Vec

We use the SKIP-gram model, which predicts for a word the neighboring words within a symmetric
window of w. Considering the CBOW model, a word is predicted by its neighboring words. For the
computation, we use the implementation by Mikolov et al. (2013)2. In addition, we use the extension
of word2vec, which was introduced by Levy and Goldberg (2014a)3 and allows to use arbitrary contexts
for computing dense vector representations for similarity computations.

Global Vectors (GloVe)

As dense count-based approach, we select GloVe (Pennington et al., 2014).4 GloVe achieves its repre-
sentation based on logarithmic co-occurrences between words and context. This representation is learned
using matrix factorization methods.

JoBimText (JBT)

We consider JoBimText (Biemann and Riedl, 2013) as symbolic count-based method5 that produces
word similarities encoded in a distributional thesaurus (DT, cf. Lin, 1998). The method is based on a
term-context representation and can handle arbitrary contexts. For an efficient computation it considers

1In this study, we consider GloVe as a dense count-based method. Although GloVe uses a classifier in order to optimize
its cost function, it is based on co-occurrence statistics and does not predict contexts from words directly, as performed in
word2vec.

2https://code.google.com/archive/p/word2vec/
3https://bitbucket.org/yoavgo/word2vecf
4https://nlp.stanford.edu/projects/glove/
5http://sf.net/p/jobimtext/



several pruning techniques and uses Lexicographer’s Mutual Information (LMI) (Evert, 2005) to de-
termine relevant contexts per word. In addition, we show results when using the frequency (freq) for
ranking which turned out to perform well in Padró et al. (2014). For each term the 1000 contexts with
the highest LMI score or frequency are kept. Additionally, contexts are removed that co-occur with more
than 1000 terms. The similarity score is only computed between terms that share at least one context
and is based on the logarithmic sum of the reciprocal value of the number of terms a context co-occurs
(log). Furthermore, we computed similarity scores by using solely the number of contexts two terms
share (one).

4 Experimental Setting

For performing the studies, we rely on two different evaluation methods. First, we show results based on
datasets that contain averaged similarity scores for word pairs annotated by humans. We use SimLex-999
(Hill et al., 2015), which consists of 999 word pairs, formed by 666 noun, 222 verb and 111 adjective
pairs and the SimVerb-3500 dataset (Gerz et al., 2016) which comprises of 3500 verb pairs. The eval-
uation scores are computed using the Spearman rank correlation coefficient between the gold standard
scores and the similarity scores obtained with the semantic methods. These evaluations validate the
ability of semantic methods to provide similarity scores that demonstrate the performance for a global
ranking between word pairs scores. We name this task as a ‘global ranking task’ as the semantic models
have to provide a score between two given word pairs and the evaluation score is computed by the corre-
lation between similarity scores given by the model and averaged similarity scores given by humans.

In a so-called local ranking task, we will evaluate how well semantic models can retrieve the most
similar words for a given term. For this, we sample 1000 low-, middle- and high frequent nouns and
verbs. In order to compute the semantic similarities between the most similar terms, we use the WordNet
Path measure (Pedersen et al., 2004) and perform an evaluation that is similar to the one used by Biemann
and Riedl (2013). This Path measure is the shortest reciprocal distance + 1 between two words based on
the IS-A path.

The computation of the various models is performed using a dump of English Wikipedia that com-
prises of 35 million sentences. The similarities are computed on raw tokenized text, then on lemmatized
and POS-tagged tagged text and finally using dependency parses6 as context representation, which has
been shown to work well for computing similarities (Lin, 1997; Biemann and Riedl, 2013; Levy and
Goldberg, 2014a). Whereas the tokens and lemmas can be processed with all methods, the dependency
parses can only be used with a modification of word2vec (Levy and Goldberg, 2014a) and JBT.

5 Word Similarity Evaluation

In this section, we show the Spearman correlations for the different models using SimLex and SimVerb7.
First, we perform the computation of the models on raw text (see Table 1). Using various parameters
for both word2vec models8, we observe the best results for the SimLex dataset when computing both
SKIP and CBOW with 500 dimensions, using random sampling (s = 1E−5), 10 negative examples and
a word window size of 1 (W1). This is in line with Melamud et al. (2016), who mostly obtain the highest
scores for word similarity tasks when using a comparably high number of dimensions. For GloVe we
obtain the best results with the same parameters as for word2vec: we use a window size of 1 and 500
dimensions.9 The CBOW model performs best on the SimVerb dataset but does not yield the best scores
for the verbs in SimLex. However, we could not detect much differences between the two sets, as we
observe a correlation of 0.9177 for 90 verb pairs that are shared in both datasets. GloVe performs best on

6We use the Stanford dependency parser (de Marneffe et al., 2006)
7All word pairs not contained in the model are scored with zero.
8We tested different values for random sampling (s = {0, 1−5}), dimension size (d = {100, 200, 500}), window size

(w = {1, 5, 10, 15}) and negative examples (n = {0, 5, 10}
9We tested various window sizes (w = {1, 2, 5, 10, 15}) and various number of dimensions (d = {50, 100, 200, 500}).



SimLex SimVerb
Method all NN VB JJ

ra
w

te
xt

SKIP W1 100 0.3105 0.3488 0.1630 0.4345 0.2113
SKIP W1 500 0.3908 0.4223 0.2616 0.5324 0.2656
SKIP W5 500 0.3364 0.3758 0.1741 0.4531 0.2335
CBOW W1 100 0.3159 0.3529 0.1683 0.4575 0.2121
CBOW W1 500 0.3901 0.4193 0.2638 0.5284 0.2677
CBOW W5 500 0.3427 0.3821 0.1698 0.4798 0.2339
GloVe W1 100 0.2359 0.2367 0.1633 0.3567 0.1565
GloVe W1 500 0.3055 0.2832 0.2679 0.5359 0.1903
JBT freq one 0.2940 0.3934 0.0576 0.3742 0.1469
JBT freq log 0.3085 0.4032 0.0726 0.4071 0.1599
JBT LMI one 0.3140 0.4113 0.0741 0.4144 0.1763
JBT LMI log 0.3306 0.4231 0.0942 0.4328 0.1889

le
m

m
a

SKIP W1 500 0.4024 0.4465 0.2041 0.5347 0.3012
CBOW W1 500 0.3997 0.4409 0.2037 0.5353 0.3023
GloVe W1 500 0.3751 0.3786 0.2411 0.5437 0.3017
JBT LMI log 0.3784 0.4583 0.2100 0.3906 0.2961

de
p. SKIP W1 500 0.3480 0.4089 0.2678 0.3220 0.2552

JBT LMI log 0.3869 0.4475 0.2649 0.3841 0.3276

Table 1: Spearman correlation with SimLex and SimVerb for models computed on tokenized text.

adjectives and verbs for the SimLex dataset, but cannot reach the highest scores on the SimVerb dataset.
Although, JBT is not optimized for global similarity scoring, as it does not compute normalized similarity
scores between two terms, the correlation scores are are highest for the SimLex’s nouns. In contrast to
Padró et al. (2014), computing JBT by using the frequency (JBT freq log and JBT freq one) for ranking
relevant contexts does not yield the best performance. Here the highest scores are achieved using LMI
with a logarithmic scoring, which confirms the findings by Riedl (2016). As the selected parameters also
performed best for the lemmatized and dependency-parsed data, we restrict the presentation of results to
this setting in the remainder.

Inspecting the correlation scores on the lemmatization-based models equipped with POS-tags we ob-
serve a similar trend. In general, we examine higher scores than with raw text. For the entire SimLex and
SimVerb dataset we again observe the best performance with the prediction-based models. In contrast to
the previous evaluations, the scores from the JBT LMI log are closer to the highest correlation scores of
CBOW. Again the best scores for verbs and adjectives are retrieved using GloVe.

Using dependency parses as context, we spot the best performance with JBT LMI log. For the
SimVerb dataset, we get even higher results than using the best performing CBOW model using lemmas.
Using the dependency-based SKIP model performs well for the SimLex verbs, but apart from that cannot
even outperform the word2vec models computed on raw text.

6 Word Ranking Evaluation

In this section, we use the WordNet-based evaluation in order to show the performance of the methods
based on a local similarity ranking. Here, we focus on the methods with its best performing parameters
and show results for lemma and POS-based models and dependency-based models. Table 2 shows results
for nouns and verbs for different frequent bands for the top N = {1, 5, 10, 50, 100} highest ranked words.
For low- and mid-frequent nouns the best scores up to the top 10 most similar nouns are achieved with
the SKIP model. Beyond considering more than the 10 most similar terms the JBT model performs best.
Whereas, up to the 50 most similar nouns, the performance of the different models is comparable, we
observe performance drops for the top 100 ranked words for GloVe and SKIP in comparison to JBT.



Method freq 1 5 10 50 100

no
un

s

SKIP W1 500 high 0.3613 0.2759 0.2373 0.1326 0.0751
GloVe W1 500 high 0.2612 0.2412 0.2266 0.1821 0.1439
JBT LMI log high 0.3821 0.3007 0.2649 0.2013 0.1802
SKIP W1 500 mid 0.2480 0.1887 0.1649 0.1138 0.0736
GloVe W1 500 mid 0.2270 0.1612 0.1429 0.1133 0.0980
JBT LMI log mid 0.2377 0.1828 0.1660 0.1362 0.1249
SKIP W1 500 low 0.1891 0.1461 0.1320 0.0816 0.0477
GloVe W1 500 low 0.1423 0.1174 0.1092 0.0864 0.0618
JBT LMI log low 0.1798 0.1508 0.1392 0.1166 0.1062

ve
rb

s

SKIP W1 500 high 0.4718 0.3384 0.2866 0.1574 0.0956
GloVe W1 500 high 0.4882 0.3683 0.3217 0.2462 0.1864
JBT LMI log high 0.4611 0.3651 0.3286 0.2686 0.2498
SKIP W1 500 mid 0.3689 0.2524 0.2139 0.1129 0.0676
GloVe W1 500 mid 0.3286 0.2352 0.2111 0.1741 0.1481
JBT LMI log mid 0.3437 0.2705 0.2520 0.2167 0.2052
SKIP W1 500 low 0.2481 0.1766 0.1469 0.0653 0.0354
GloVe W1 500 low 0.1950 0.1768 0.1665 0.1276 0.0878
JBT LMI log low 0.2544 0.2246 0.2140 0.1904 0.1773

Table 2: Results of the lemma-based models for the WordNet-based evaluation showing results for the
top N most similar words.

Considering the high frequent nouns the best performance is always obtained with the JBT model. For
verbs Glove achieves the highest scores for when using the top 1 to 5 most similar terms for high frequent
verbs. However, similar to the results based on nouns the best performance for the 10, 50 and 100 most
similar terms ist gained using the JBT model.

Using dependency parses as context, we obtain the overall highest scores using JBT (see Table 3).
Again, the modified SKIP model cannot compete with the count-based method and performs even infe-
rior to the lemma and POS-tag based models.

Method freq 1 5 10 50 100

no
un

s

SKIP W1 500 high 0.3760 0.2889 0.2546 0.1907 0.1665
JBT LMI log high 0.4004 0.3143 0.2776 0.2148 0.1929
SKIP W1 500 mid 0.1990 0.1630 0.1507 0.1308 0.1216
JBT LMI log mid 0.2898 0.2214 0.1989 0.1585 0.1451
SKIP W1 500 low 0.1420 0.1288 0.1230 0.1061 0.0913
JBT LMI log low 0.2634 0.2012 0.1815 0.1431 0.1300

ve
rb

s

SKIP W1 500 high 0.4073 0.3011 0.2656 0.2153 0.1973
JBT LMI log high 0.4948 0.3729 0.3305 0.2660 0.2494
SKIP W1 500 mid 0.2842 0.2201 0.2012 0.1770 0.1683
JBT LMI log mid 0.3980 0.3026 0.2699 0.2193 0.2072
SKIP W1 500 low 0.2076 0.1781 0.1714 0.1589 0.1482
JBT LMI log low 0.3214 0.2597 0.2363 0.2007 0.1919

Table 3: WordNet Path scores for semantic models that use dependency parses as context

7 Data Analysis

When examining the most similar words, we detected some further properties of each models. Exem-
plarily, we show the five most similar terms to the noun “access” using the POS-tagged and lemmatized
models in Table 4. First, we observe that not all similar terms are nouns and in addition it seems, that



SKIP W1 500 GloVe W1 500 JBT LMI log
access#VB 0.73 accessible#JJ 0.80 connection#NN 27.08
accessible#JJ 0.65 provide#VB 0.80 connectivity#NN 22.72
accessibility#RB 0.64 allow#VB 0.78 link#NN 14.62
accessibility#NN 0.64 enable#VB 0.78 exposure#NN 13.58
wifus#NN 0.61 available#JJ 0.75 entry#NN 12.11

Table 4: Most similar words for the noun “access”.

in comparison to JBT, SKIP and GloVe favor less frequent words. These effects are explored in the
following.

Frequency of Similarities

To explore the frequencies of similar words, we compute the average frequency for the top N =
{1, 10, 100, 200} most similar words for the sampled candidates. In addition, we use the relative fre-
quency in relation to the frequency of the queried word. Among all frequency bands and for verbs and
nouns we observe a consistent pattern, as shown in Figure 1. For nouns, the SKIP and CBOW similar

Figure 1: Normalized average frequency for the top N most similar words for 3000 nouns (left) and 3000
verbs (right) for the semantic models computed using lemmas and POS information.

words are on average 3 times more frequent than the queried term. Schnabel et al. (2015) also describe
that the frequency of the similarities stay in the same frequency region and attribute this effect to the
cosine similarity. Using GloVe the similar nouns are on average 20 times more frequent and for JBT we
retrieve words that are on average 100 times more frequent than the queried word. For verbs, we obtain
consistently higher average similarities. However, the pattern is similar to the one observed with nouns.

Keeping the same POS

Next, we examine the stability of the most similar terms in respect to the POS of the candidate term.
For this we use the lemmatized and dependency-based models in order to determine the percentage
of similar words that keep the same POS-tag. This reveals how good the most similar words stay in
their same grammatical function and is e.g. relevant when trying to replace unknown words in machine
translation or for POS-tagging and dependency parsing, where the grammatical function should be the
same. We show the ratio of all 3000 selected nouns for the top N = {1, 10, 50, 100} first entries in Table
5. Using the lemmatized models, we obtain the highest POS consistency among the similar terms using
JBT, followed by GloVe and SKIP after a large margin. The dependency parses-based models show a



context Method 1 10 50 100

lemmas
SKIP W1 500 0.6077 0.5550 0.5060 0.4834
GloVe W1 500 0.5137 0.5382 0.5446 0.5408
JBT LMI log 0.9997 0.8969 0.8762 0.8650

dependen- SKIP W1 500 0.9703 0.9687 0.9559 0.9450
cies JBT LMI log 1.0000 0.9486 0.9258 0.9139

Table 5: Percentage of the top N most similar terms for nouns that keep the same POS-tag

different trend: here the SKIP model pertains mostly in the same POS class and yields higher scores than
the JBT approach.

8 Conclusion

In this paper, we have shown the differences between efficiently computable semantic methods of three
different classes: sparse count based, dense count-based and dense prediction-based models. For global
similarity ranking, we advise using the SKIP or CBOW method when processing raw and lemmatized
text, which obtain the best overall results on SimLex and SimVerb. In general, we observe performance
increases when using lemmatized text rather than raw text. Using dependency parses, only the JBT
model improves and yields the best result for verbs. Using SKIP with dependency parse context no
improvements are gained and the performance is mostly worse than using raw text. Based on the local
similarity ranking, we recommend using the JBT model, which yields the best overall performance both
for nouns and verbs. In addition, using dependency parses as context results in further improvements.
When requiring more than the top 50 most similar terms for query term, we would not advise using
the dense vector representations, as both GloVe and word2vec perform poorly. Based on tasks where
words in text should be replaced with words of the same grammatical function (e.g. lexical substitution,
machine translation) using either JBT with all context or SKIP using dependency parses is advised, as
word and lemma based GloVe and SKIP favor similarities to words of another POS. Furthermore, SKIP
and CBOW favor to extract similar terms of the same frequency as the queried word, whereas similar
words obtained with JBT are on average 176 times more frequent. For tasks like text simplification
however, providing more frequent words is favored as frequent words are more likely to be known.

In future work, we would like to evaluate further methods like Random Indexing, SVD-based meth-
ods, and DM (Padó and Lapata, 2007) and enhance the evaluation by extrinsic ones. In addition, we want
to conceive a method that integrates the advantages of all discussed methods.
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