
Unspeech: Unsupervised Speech Context Embeddings

Benjamin Milde, Chris Biemann

Language Technology, Universität Hamburg
{milde,biemann}@informatik.uni-hamburg.de

Abstract
We introduce ”Unspeech” embeddings, which are based

on unsupervised learning of context feature representations for
spoken language. The embeddings were trained on up to 9500
hours of crawled English speech data without transcriptions or
speaker information, by using a straightforward learning ob-
jective based on context and non-context discrimination with
negative sampling. We use a Siamese convolutional neural net-
work architecture to train Unspeech embeddings and evaluate
them on speaker comparison, utterance clustering and as a con-
text feature in TDNN-HMM acoustic models trained on TED-
LIUM, comparing it to i-vector baselines. Particularly decoding
out-of-domain speech data from the recently released Common
Voice corpus shows consistent WER reductions. We release our
source code and pre-trained Unspeech models under a permis-
sive open source license.
Index Terms: Unsupervised learning, speech embeddings, con-
text embeddings, speaker clustering

1. Introduction
Variance and variability in recordings of speech and its rep-
resentations are a common problem in automatic speech pro-
cessing tasks. E.g. speaker, environment characteristics and
the type of microphone will cause large differences in typical
speech representations (e.g. FBANK, MFCC), making direct
similarity comparisons difficult. We can describe such factors
of variance also as the context of an utterance; speech sounds
that occur close in time share similar contexts. Based on this
idea, we propose to learn representations of such contexts in an
unsupervised way, without needing further speaker IDs, chan-
nel information or transcriptions of the data.

Recent acoustic models for automatic speech recognition
(ASR) incorporate some form of (deep) neural network that
can learn to deal with part of this variance by using supervised
training data in combination with the ability to learn represen-
tations as part of the model. A growing trend is to incorporate
larger context views of the data explicitly into the neural net-
work. In Deep Neural Network Hidden Markov Model (DNN-
HMM) hybrids, fixed-length speaker embeddings like i-vectors
are made available for the neural network as additional input
features [1]. Typically, larger temporal windows than single
speech frames are also used as input to the neural network to
make context available to local predictions. This can e.g. be
achieved by either stacking consecutive speech frames or by us-
ing Time-Delayed Neural Networks (TDNNs) [2, 3].

On the other hand, ”Unspeech” embedding models embed
a window of speech into a fixed-length vector so that corre-
sponding points are close, if they share similar contexts. Un-
supervised training of the embedding function is inspired by
negative sampling in word2vec [4] – where words that share
a similar meaning are embedded in similar regions in a dense
vector space. In this work, we demonstrate that the learned Un-

speech context embeddings encode speaker characteristics and
also can be used to cluster a speech corpus. As an additional
context input feature, they can also improve supervised speech
recognition tasks with TDNN-HMM acoustic models, in partic-
ular when adaptation to out-of-domain data is needed.

2. Related Work
Speaker embeddings and phonetic embeddings are two major
groups of proposed embeddings in speech: While speaker em-
beddings seek to model utterances from the same speaker so that
they share similar regions in a dense vector space, in phonetic
embeddings, the same or similar phonetic content is close.

I-vectors [5] are well-known, popular speaker vectors. Re-
cently, supervised neural network-based speaker embeddings
also succeeded to show good speaker discriminative properties
[6, 7, 8], particularly on short utterances. Bengio and Heigold
proposed supervised word embeddings for speech recognition
[9], where words are nearby in the vector space if they sound
alike. Kamper et al. [10] showed that auto-encoders can also
be used in conjugntion with top-down information for unsuper-
vised phonetic representation learning in speech. Chung et al.
[11] proposed audio word2vec, based on sequence-to-sequence
auto-encoders trained on a dictionary of isolated spoken words.
By analogy of auto-encoders, Pathak et al. introduced con-
text encoders [12], a class of models that learn context embed-
dings in images. There is also growing interest in representation
learning on non-speech audio by using learning objectives di-
rectly related to contexts. Jansen et al. [13] encoded the notion
that (non-speech) sounds occurring in context are more related.

Bromley et al. [14] introduced Siamese neural networks:
two (time-delayed) neural networks that embed digital signa-
tures and a learning objective based on discriminating between
true and false signatures. This idea has recently been revisited
in the context of joint phoneme and speaker embeddigs learn-
ing in a weakly supervised setting, where speaker annotation,
same word information and segmentation is available [15, 16].
Gutmann et al. [17] introduced Noise-Contrastive Estimation
(NCE), an estimator based on discriminating between observed
data and some artificially generated noise. Jati et al. proposed
Speaker2vec [18] for speaker segmentation, with unsupervised
training using a neural encoder/decoder. Very recently and in
parallel to our efforts, Jati et al. also proposed (unsupervised)
neural predictive coding to learn speaker characteristics [19].

In [20] unsupervised speaker clustering was proposed to
yield labels for speaker adaptation in acoustic models, based
on the idea that consecutive windows of speech are likely from
the same speaker. Several forms of context/speaker embeddings
have also been used for (speaker) adaptation in state-of-the-art
speech recognition acoustic models: i-vector speaker embed-
dings are by far the most popular [1, 21, 22]. Vesely et al.
proposed sequence summary neural networks for speaker adap-
tation, where utterance context vectors are averaged from the
speech feature representation [23]. Gupta et al. [24] showed

0 50 100 150 200

0

20

targetcontextcontext context context

Figure 1: The initial sequence with unnormalized FBANK vec-
tors: we choose one target window and two left and right con-
texts. All windows are of the same size.

0

25

0

25

0

25

0

25

0

25

0

25

0

25

0 25 50 75
0

25

} }C=0C=1

0 25 50 75

Figure 2: Sampling examples for two left contexts and two right
contexts from the figure above. Positive example pairs are of
class C = 1, negative sampled pairs are C = 0. In this exam-
ple, each window has a size of 50 FBANK frames (0.5 seconds).

that visual features, in the form of activations from a pre-trained
ConvNet for object detection on videos can also be used as con-
text vectors in the acoustic model.

3. Proposed Models
We construct an artificial binary classification task with logistic
regression, where two fixed sized windows are compared. One
target window can have multiple context windows, depending
on the number of left and right contexts. For every left and
right context, a pair with the target is created. Figure 1 illus-
trates this with two right and left contexts, yielding four positive
contexts and four randomly sampled negative contexts. For the
target window we denote embt as the target embedding trans-
formation, taking a window of FBANK features and producing
a fixed sized output vector, embc as the embedding of a true
context and embneg as the embedding of a randomly sampled
context. The pair of (embedded) speech windows is considered
to be of class C = 1 if one window is the context of the other,
or C = 0 if they are not. For C = 1, we sample the pairs from
consecutive windows, for C = 0 we use negative sampling to
construct a pair of speech windows that are unrelated with high
probability: We uniformly sample a random utterance u and
then uniformly a random position in u.

3.1. Objective Function

With the scalar x as the output of the model for a particular data
point, σ the sigmoid function and C its true class ∈ (0, 1), the
logistic loss for a binary classification task is:

loss(x,C) = C(−log(σ(x))) + (1− C)(−log(1− σ(x)))
(1)

with x = embTt embc, the dot product over target and
context embedding transformations if C = 1 and x =
embneg1

T
i embneg2i, the dot product over two negative sam-

pled embedding transformations if C = 0, for k = number of
negative samples we can thus obtain:

NEGloss = −k · log(σ(embTt embc))

−
k∑

i=1

log(1− σ(embTneg1i
embneg2i))

(2)

Note that in the similar NCE loss formulation [17], P (C =
1) = P (C = 0) = 1

2
, i.e. the number of data points where

C = 1 and C = 0 are the same, while we could have more
negative than positive target/context embedding pairs, depend-
ing on k. Instead, for C = 1 we multiply with k = the number
of negative samples, to penalize errors on positive and negative
context pairs equally. Another difference is that we sample two
unrelated embedding windows instead of one.

3.2. Model Architecture

embedding transformation, e.g. VGG16} }

embedding
of size n

embedding
of size n

dot product→

logistic loss,
C=1 if true context, C=0 if negative sampled context

negative
embedding transformation, e.g. VGG16

target window FBANK 64x40 FBANK 64x40context window

t c
·α ·α

} }

Figure 3: Unspeech embeddings are trained using a Siamese
neural network architecture combined with a dot product. We
use the VGG16A network as embedding transformation in the
yellow boxes (a convolutional neural network with 16 layers).

Figure 3 shows our architecture for FBANK input features.
We project two dimensional input windows into two fixed sized
embeddings, which are combined with a dot product. Since this
is sensitive to the scaling of output embeddings, we multiply
them with a single scalar parameter α, which is trained with the
rest of the network. Direct normalization to unit length (mak-
ing the dot product equivalent to a cosine distance) did hamper
convergence of the loss and was discarded early on.

Many different architectures are possible for converting
the input representation into a fixed sized embedding, but
we mainly evaluated with a VGG-style ConvNet architecture
(Model A in [25]), as it is well established and it can exploit the
two dimensional structure in the FBANK signal. We share the
weights of the convolutional layers of both embedding transfor-
mations, but keep the fully connected layers separate. Dropout
is used for fully connected layers (0.1) and L2 regularization is
used on the weights (0.0001), for all experiments we optimize
with ADAM [26]. We make use of leaky ReLUs [27].

4. Evaluation
Table 1: Comparison of English speech data sets.

hours speakers
dataset train dev test train dev test
TED-LIUM V2 211 2 1 1273+3 14+4 13+2
Common Voice V1 242 5 5 16677 2728 2768
TEDx (crawled) 9505 41520 talks

Table 1 characterizes the datasets we used in our evalua-
tion. TED-LIUM V2 [28] has a comparatively small number
of speakers, especially in the development and test set of the
corpus. TED-LIUM and Common Voice [29] are segmented
at the utterance level, both are similar in the number of hours.
In Common Voice, volunteers from all over the world recorded
predefined prompts, in TED-LIUM utterances are segmented
from and aligned to TED talks. In order to explore large-scale
training, we also downloaded all TEDx talks from 01-01-2016
until 03-01-2018 from YouTube, giving us 41520 talks (0.5 TB
compressed audio data) with a total of 9505 hours of unanno-
tated audio. While the majority of TEDx talks are in English,
a very small number of them are in other languages or contain
only music. We did not segment or clean the TEDx data.

4.1. Same/different Speaker Experiment

In the same/different speaker experiment, we evaluate a binary
classification task: given two utterances, are they uttered from
the same or different speakers? Our hypothesis is that Unspeech
embeddings can be used for this task, because one strategy to
discriminate samples of true contexts from negative sampled
ones is modelling speaker traits. In Table 2 we show equal error
rates (EER)1 on same/different speaker comparisons of all utter-
ance pairs, limiting the number of speakers to 100 in the train
sets of TED-LIUM and Common Voice corpus in this experi-
ment. The embedding dimension is 100 in all experiments, we
train Unspeech models with different target window widths (32,
64, 128) and i-vectors are trained/extracted with Kaldi [31]. For
all experiments, we use two left and two right context windows.

Table 2: Equal error rates (EER) on TED-LIUM V2 – Unspeech
embeddings correlate with speaker embeddings.

Embedding EER
TED-LIUM: train dev test
(1) i-vector 7.59% 0.46% 1.09%
(2) i-vector-sp 7.57% 0.47% 0.93%
(3) unspeech-32-sp 13.84% 5.56% 3.73%
(4) unspeech-64 15.42% 5.35% 2.40%
(5) unspeech-64-sp 13.92% 3.4% 3.31%
(6) unspeech-64-tedx 19.56% 7.96% 4.96%
(7) unspeech-128-tedx 20.32% 5.56% 5.45%

The distance function d1(a, b) = σ(embt(a)
T embc(b)) to

compare two segments a and b correspond to the distance func-
tion in the Unspeech training process. The cosine distance, or
equally after normalization to unit length, the Euclidean dis-
tance on vectors produced by embt also produces good com-
parison results, so that d2(a, b) = ||embt(a) − embt(b)|| can
be used for comparing two Unspeech segments. Sequences that
are longer than the trained target window can be windowed and
averaged to obtain a single vector for the whole sequence, since
vectors that are close in time share contexts and correlate highly.
However, EER on i-vectors trained with supervised speaker la-
bels compared with the cosine distance (results with d2(a, b)
are identical after normalization) are lower than on Unspeech
embeddings with d2(a, b) (1,2 vs 3,4,5). Training Unspeech
on TEDx talks instead of TED-LIUM does also produce higher
EER as a speaker embedding (6,7). ”-sp” denotes training on
speed-perturbed data: adding copies of the raw training data at
0.9 and 1.1 playing speed, as recommended in [32].

1The error rate where the number of false positive and false nega-
tives is the same, calculated using pyannote.metrics [30]

4.2. Clustering Utterances

We can also use the generated vectors to cluster a corpus of
utterances to gain insight into what kind of utterances get clus-
tered together. We use HDBSCAN [33], a modern hierarchical
density-based clustering algorithm for our experiments since it
scales very well to a large number of utterances and the num-
ber of clusters does not need to be known apriori. It uses an
approximate nearest neighbor search if the comparison metric
is Euclidean, making it significantly faster on a large number
of utterances as compared to other speaker clustering methods
that require distance computations of all utterance pairs (includ-
ing greedy hierarchical clustering with BIC [34]). We use Ad-
justed Rand Index (ARI) [35] and Normalized Mutual Infor-
mation (NMI) [36] to compare the clusters to the speaker IDs
provided by the TED-LIUM corpus in Table 3. We found that
Unspeech embeddings and i-vectors give a sensible number of
clusters, without much tweaking of HDBSCAN’s two parame-
ters (min. cluster size, min. samples)2. On the train set, Un-
speech embeddings will provide slightly higher cluster scores,
while i-vectors provide better scores for dev and test (that have
a significantly smaller number of speakers). Unspeech-64 is
slightly better than Unspeech-32 on the dev and test set. ARI is
sensitive to the absolute number of outliers – we found NMI to
be a better metric to compare the results on the train set.

Taking a closer look at the clustered Unspeech embeddings,
we observed that different speakers in the same talk tend to get
clustered into distinct clusters (making the clustered output very
often more accurate than the train speaker IDs provided in TED-
LIUM), while the same speaker across different talks and also
the same speaker in one talk with significantly different back-
ground noises tends to be clustered into distinct clusters. This
implies that Unspeech embeds more than just speaker traits.

4.3. Acoustic Models With Unspeech Cluster IDs

We can also train acoustic models with the cluster IDs provided
and use them in lieu of speaker IDs for HMM-GMM speaker
adaptation and online i-vector training for the TDNN-HMM
model. We use the TED-LIUM TDNN-HMM chain recipe
(s5 r2) in Kaldi [37] and show WER before (plain) and af-
ter rescoring with the standard 4-gram Cantab TED-LIUM LM
(resc.). Table 4 shows WER on different speaker separation
strategies on the train set, with one speaker per talk being the de-
fault in the s5 r2 recipe. All models pre-trained online i-vectors
based on the given speaker IDs and use those as additional input
features. The standard recipe computes a fixed affine transform
on the combined input features (40 dim hi-res MFCC + 100
dim i-vector), c.f. Appendix C.6 of [38]. GMM-HMM boot-
strap models will perform about 15% worse and TDNN-HMM
trained on them will perform about 10% worse if no speaker
information is available. Using the cluster IDs from clustering
Unspeech embeddings of all utterances, the baseline WER can
not only be recovered, but even slightly improved upon. For all
TDNN-HMM models we set the width of a layer to 1024.

4.4. Unspeech Context Vectors in TDNN-HMM models

We can also replace the i-vector representation used in training
the TDNN-HMM with the Unspeech context vector. In Table
5, we selected the strongest baseline from Table 4 according to
the dev set (Unspeech 64-sp clusters) and show WERs on the

2We use 5/3 for all experiments shown in Table 3, but other param-
eters in the range 3-10 will give similar results.

Table 3: Comparing clustered utterances from TED-LIUM using i-vectors and (normalized) Unspeech embeddings with speaker labels
from the corpus. ”-sp” denotes embeddings trained with speed-perturbed training data.

Embedding Num. clusters Outliers ARI NMI
train dev test train dev test train dev test train dev test

TED-LIUM IDs 1273 (1492) 14 13 3 4 2 1.0 1.0 1.0 1.0 1.0 1.0
i-vector 1630 12 10 8699 1 2 0.8713 0.9717 0.9792 0.9605 0.9804 0.9598
i-vector-sp 1623 12 10 9068 1 2 0.8641 0.9717 0.9792 0.9592 0.9804 0.9598
unspeech-32-sp 1686 16 12 3235 22 32 0.9313 0.9456 0.9178 0.9780 0.9536 0.9146
unspeech-64 1690 16 11 5690 14 21 0.8130 0.9537 0.9458 0.9636 0.9636 0.9493
unspeech-64-sp 1702 15 11 3705 23 25 0.9205 0.9517 0.9340 0.9730 0.9633 0.9366

Table 4: Comparing the effect of two speaker division baselines
(One speaker per talk, one speaker per utterance) and cluster-
ing with Unspeech on WER with GMM-HMM and TDNN-HMM
chain acoustic models trained on TED-LIUM.

Acoustic model Spk. div. Dev WER Test WER
plain resc. plain resc.

GMM-HMM per talk 19.2 18.2 17.6 16.7
TDNN-HMM 8.6 7.8 8.8 8.2
GMM-HMM per utt. 19.6 18.7 20.1 19.2
TDNN-HMM 8.5 7.9 9.3 9.0
GMM-HMM Unspeech 18.4 17.4 17.5 16.5
TDNN-HMM 64 8.6 7.8 8.5 8.1
GMM-HMM Unspeech 18.4 17.5 17.2 16.4
TDNN-HMM 64-sp 8.3 7.5 8.6 8.2

Table 5: WER for TDNN-HMM chain models trained with Un-
speech embeddings on TED-LIUM.

Context vector Dev WER Test WER
plain resc. plain resc.

(1) none 9.1 8.5 9.5 9.1
(2) i-vector-sp-ted 8.3 7.5 8.6 8.2
(3) unspeech-64-sp-ted 9.1 8.3 9.6 9.0
(4) unspeech-64-sp-cv 9.1 8.3 9.5 9.1
(5) unspeech-64-sp-cv + (2) 8.4 7.6 8.5 8.1
(6) unspeech-64-tedx 9.0 8.2 9.4 8.7
(7) unspeech-128-tedx 8.9 8.2 9.4 8.9

TED-LIUM dev and test for different Unspeech context em-
beddings. We trained Unspeech models with different window
sizes (64,128) on TED-LIUM (ted) and Common Voice V1 (cv)
and computed them for every 10 frames, like the online i-vector
baseline. While Unspeech embeddings can slightly improve a
baseline model trained without any context vectors, with best
results obtained when training on the 9500 hours of TEDx data
(6,7), using i-vectors (2) yields better WERs compared to Un-
speech embeddings. Combining Unspeech embeddings trained
on Common Voice and i-vectors in the input representation can
yield slightly lower WERs than i-vectors alone (5).

In Table 6 we show WER on decoding utterances from the
Common Voice V1 dev and test sets with TDNN-HMM acous-
tic models trained on TED-LIUM. Utterances from Common
Voice are much harder to recognize, since a lot more noise and
variability is present in the recordings and the recording have
perceivably a much lower signal-to-noise ratio. Since they also
contain over 2700 speakers each using an egregious range of
microphones, they provide an excellent dev/test to test how ro-
bust the TDNN-HMM models are on out-of-domain data. Un-
surprisingly, WERs are fairly high compared to the TED-LIUM
test set with mostly clean and well pronounced speech. With

Table 6: Decoding Common Voice V1 utterances. Mozilla’s
open source dataset provides a challenging test set, which is
out-of-domain for an acoustic model trained on TED-LIUM.

Context vector Dev WER Test WER
plain resc. plain resc.

(1) none 31.2 29.6 29.9 28.5
(2) i-vector-sp-ted 30.3 29.0 29.9 28.2
(3) unspeech-64-sp-cv 29.5 27.9 28.3 26.9
(4) unspeech-64-sp-cv + (2) 29.6 28.2 28.9 27.4
(5) unspeech-64-tedx 30.2 28.8 29.2 27.5
(6) unspeech-128-tedx 30.1 28.7 29.5 28.0

Common Voice we observed that acoustic models trained with
Unspeech embeddings consistently resulted in better WERs
compared to the baselines, helping the model to adapt. Par-
ticularly pre-training Unspeech models on the Common Voice
train data help a TDNN-HMM model trained on TED-LIUM to
adapt to the style of Common Voice recordings. Embeddings
from Unspeech models trained on TEDx will also perform bet-
ter than the no context and i-vector baseline models. In contrast
to the results in Table 5, in this decoding task, i-vectors in the
acoustic model do not provide much of an improvement over
the TDNN-HMM baseline model without context vectors.

5. Conclusion
Unspeech context embeddings contain and embed speaker char-
acteristics, but supervised speaker embeddings like i-vectors
would be better suited for tasks like speaker recognition or au-
thentication. However, clustering utterances according to Un-
speech contexts and using the cluster IDs for speaker adaptation
in HMM-GMM/TDNN-HMM models is a viable alternative if
no speaker information is available. While using Unspeech con-
text embeddings as additional input features did not yield sig-
nificant WER improvements compared to an i-vector baseline
on TED-LIUM dev and test, we observed consistent WER re-
ductions with out-of-domain data from the Common Voice cor-
pus when we add Unspeech embeddings. This is a compelling
use case of Unspeech context embedding for the adaptation
of TDNN-HMM models. Better scores on the same/different
speaker similarity task was not indicative of WER reduction –
our TEDx Unspeech models scored higher EERs, but were at
the same time better context vectors in the acoustic models. We
are currently also working on modifying the training objective
to see if phonetic Unspeech embeddings can be trained using a
similar unsupervised training procedure. Furthermore, we are
releasing our source code and offer pre-trained models.3

Acknowledgments. We thank Michael Henretty from Mozilla for
giving us access to Common Voice V1 speaker information.

3See http://unspeech.net, license: Apache 2.0

6. References
[1] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker

adaptation of neural network acoustic models using i-vectors.” in
ASRU, Olomouc, Czech Republic, 2013, pp. 55–59.

[2] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J.
Lang, “Phoneme recognition using time-delay neural networks,”
in Readings in speech recognition, 1990, pp. 393–404.

[3] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts,” in Proc. Interspeech, Dresden, Germany, 2015, pp. 3214–
3218.

[4] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed Representations of Words and Phrases and their Com-
positionality,” in Proc. NIPS, Lake Tahoe, NV, USA, 2013, pp.
3111–3119.

[5] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[6] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero,
Y. Carmiel, and S. Khudanpur, “Deep neural network-based
speaker embeddings for end-to-end speaker verification,” in Proc.
Spoken Language Technology Workshop (SLT), San Diego, CA,
USA, 2016, pp. 165–170.

[7] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur,
“Deep neural network embeddings for text-independent speaker
verification,” in Proc. Interspeech 2017, Stockholm, Sweden,
2017, pp. 999–1003.

[8] L. Li, Y. Chen, Y. Shi, Z. Tang, and D. Wang, “Deep speaker fea-
ture learning for text-independent speaker verification,” in Proc.
Interspeech 2017, Stockholm, Sweden, 2017, pp. 1542–1545.

[9] S. Bengio and G. Heigold, “Word embeddings for speech recog-
nition,” in Proc. Interspeech, Singapore, 2014, pp. 1053–1057.

[10] H. Kamper, M. Elsner, A. Jansen, and S. Goldwater, “Unsuper-
vised neural network based feature extraction using weak top-
down constraints,” in Proc. Acoustics, Speech and Signal Process-
ing (ICASSP). South Brisbane, Queensland, Australia: IEEE,
2015, pp. 5818–5822.

[11] Y.-A. Chung, C.-C. Wu, C.-H. Shen, H.-Y. Lee, and L.-S. Lee,
“Audio word2vec: Unsupervised learning of audio segment repre-
sentations using sequence-to-sequence autoencoder,” in Proc. In-
terspeech, San Francisco, CA, USA, 2016, pp. 765–769.

[12] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proceed-
ings of Computer Vision and Pattern Recognition (CVPR), Cae-
sars Palace, Nevada, United States, 2016, pp. 2536–2544.

[13] A. Jansen, M. Plakal, R. Pandya, D. P. Ellis, S. Hershey, J. Liu,
R. C. Moore, and R. A. Saurous, “Unsupervised learning of se-
mantic audio representations,” arXiv preprint arXiv:1711.02209,
2017.

[14] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah,
“Signature verification using a ”Siamese” time delay neural net-
work,” in Proc. Advances in Neural Information Processing Sys-
tems (NIPS), Denver, CO, USA, 1994, pp. 737–744.

[15] G. Synnaeve and E. Dupoux, “Weakly supervised multi-
embeddings learning of acoustic models,” arXiv preprint
arXiv:1412.6645, 2014.

[16] N. Zeghidour, G. Synnaeve, N. Usunier, and E. Dupoux, “Joint
learning of speaker and phonetic similarities with siamese net-
works,” in Proc. Interspeech, San Francisco, CA, USA, 2016, pp.
1295–1299.

[17] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models,”
in Proc. International Conference on Artificial Intelligence and
Statistics, Sardinia, Italy, 2010, pp. 297–304.

[18] A. Jati and P. Georgiou, “Speaker2vec: Unsupervised learning and
adaptation of a speaker manifold using deep neural networks with
an evaluation on speaker segmentation,” Proc. Interspeech 2017,
pp. 3567–3571, 2017.

[19] ——, “Neural predictive coding using convolutional neural net-
works towards unsupervised learning of speaker characteristics,”
arXiv preprint arXiv:1802.07860, 2018.

[20] H. Jin, F. Kubala, and R. Schwartz, “Automatic speaker cluster-
ing,” in Proceedings of the DARPA speech recognition workshop,
1997, pp. 108–111.

[21] A. Senior and I. Lopez-Moreno, “Improving DNN speaker inde-
pendence with i-vector inputs,” in Proc. Acoustics, Speech and
Signal Processing (ICASSP), Florence, Italy, 2014, pp. 225–229.

[22] Y. Miao, H. Zhang, and F. Metze, “Speaker adaptive train-
ing of deep neural network acoustic models using i-vectors,”
IEEE/ACM Transactions on Audio, Speech and Language Pro-
cessing (TASLP), vol. 23, no. 11, pp. 1938–1949, 2015.

[23] K. Veselỳ, S. Watanabe, K. Žmolı́ková, M. Karafiát, L. Burget,
and J. H. Černockỳ, “Sequence summarizing neural network for
speaker adaptation,” in Acoustics, Speech and Signal Processing
(ICASSP), Lujiazui, Shanghai, China, 2016, pp. 5315–5319.

[24] A. Gupta, Y. Miao, L. Neves, and F. Metze, “Visual features
for context-aware speech recognition,” in Proc. Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017, pp. 5020–5024.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[26] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Opti-
mization,” CoRR, vol. abs/1412.6, 2014.

[27] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, vol. 30,
no. 1, Atlanta, GA, USA, 2013, p. 3.

[28] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing the TED-
LIUM corpus with selected data for language modeling and more
TED talks,” in Proc. LREC, Reykjavik, Iceland, 2014, pp. 3935–
3939.

[29] Mozilla, Common Voice Corpus V1, 2018. [Online]. Available:
https://voice.mozilla.org/en/data

[30] H. Bredin, “pyannote.metrics: a toolkit for reproducible
evaluation, diagnostic, and error analysis of speaker diarization
systems,” in Proc. Interspeech, Stockholm, Sweden, 2017.
[Online]. Available: http://pyannote.github.io/pyannote-metrics

[31] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in Proc. ASRU, Atlanta,
GA, USA, 2011.

[32] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” in Proc. Interspeech, Dresden, Ger-
many, 2015, pp. 3586–3589.

[33] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical den-
sity based clustering,” The Journal of Open Source Software,
vol. 2, no. 11, p. 205, 2017.

[34] B. Zhou and J. H. Hansen, “Unsupervised audio stream segmenta-
tion and clustering via the bayesian information criterion,” in In-
ternational Conference on Spoken Language Processing (ICSLP),
Beijing, China, 2000, pp. 714–717.

[35] L. Hubert and P. Arabie, “Comparing partitions,” Journal of clas-
sification, vol. 2, no. 1, pp. 193–218, 1985.

[36] A. Strehl, “Relationship-based clustering and cluster ensembles
for high-dimensional data mining,” Ph.D. dissertation, University
Of Texas at Austin, 2002.

[37] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neu-
ral networks for ASR based on lattice-free MMI.” in Proc. Inter-
speech, San Fransisco, CA, USA, 2016, pp. 2751–2755.

[38] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of
DNNs with natural gradient and parameter averaging,” arXiv
preprint arXiv:1410.7455, 2014.

