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Abstract

We investigate different strategies for au-
tomatic offensive language classification
on German Twitter data. For this, we em-
ploy a sequentially combined BiLSTM-
CNN neural network. Based on this model,
three transfer learning tasks to improve
the classification performance with back-
ground knowledge are tested. We compare
1. Supervised category transfer: social me-
dia data annotated with near-offensive lan-
guage categories, 2. Weakly-supervised
category transfer: tweets annotated with
emojis they contain, 3. Unsupervised cate-
gory transfer: tweets annotated with topic
clusters obtained by Latent Dirichlet Allo-
cation (LDA). Further, we investigate the
effect of three different strategies to miti-
gate negative effects of ‘catastrophic forget-
ting’ during transfer learning. Our results
indicate that transfer learning in general im-
proves offensive language detection. Best
results are achieved from pre-training our
model on the unsupervised topic cluster-
ing of tweets in combination with thematic
user cluster information.

1 Introduction

User-generated content in forums, blogs, and so-
cial media not only contributes to a deliberative
exchange of opinions and ideas but is also contami-
nated with offensive language such as threats and
discrimination against people, swear words or blunt
insults. The automatic detection of such content
can be a useful support for moderators of public
platforms as well as for users who could receive
warnings or would be enabled to filter unwanted
content.

Although this topic now has been studied for
more than two decades, so far there has been little

work on offensive language detection for German
social media content. Regarding this, we present
a new approach to detect offensive language as
defined in the shared task of the GermEval 2018
workshop.1 For our contribution to the shared task,
we focus on the question how to apply transfer
learning for neural network-based text classifica-
tion systems.

In Germany, the growing interest in hate speech
analysis and detection is closely related to recent
political developments such as the increase of right-
wing populism, and societal reactions to the ongo-
ing influx of refugees seeking asylum (Ross et al.,
2016). Content analysis studies such as Kreißel
et al. (2018) have shown that a majority of hate
speech comments in German Facebook is authored
by a rather small group of very active users (5% of
all accounts engaging in hate speech). The findings
suggest that already such small groups are able
to severely disturb social media debates for large
audiences.

From the perspective of natural language pro-
cessing, the task of automatic detection of offen-
sive language in social media is complex due to
three major reasons. First, we can expect ‘atypical’
language data due to incorrect spellings, false gram-
mar and non-standard language variations such as
slang terms, intensifiers, or emojis/emoticons. For
the automatic detection of offensive language, it is
not quite clear whether these irregularities should
be treated as ‘noise’ or as a signal. Second, the
task cannot be reduced to an analysis of word-level
semantics only, e.g. spotting offensive keyterms in
the data. Instead, the assessment of whether or not
a post contains offensive language can be highly de-
pendent on sentence and discourse level semantics,
as well as subjective criteria. In a crowd-sourcing
experiment on ‘hate speech’ annotation, Ross et
al. (2016) achieved only very low inter-rater agree-
ment between annotators. Offensive language is

1https://projects.fzai.h-da.de/iggsa
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probably somewhat easier to achieve agreement
on, but still sentence-level semantics and context
or ‘world knowledge’ remains important. Third,
there is a lack of a common definition of the ac-
tual phenomenon to tackle. Published studies fo-
cus on ‘hostile messages’, ‘flames’, ‘hate speech’,
‘discrimination’, ‘abusive language’, or ‘offensive
language’. Although certainly overlapping, each
of these categories has been operationalized in a
slightly different manner. Since category defini-
tions do not match properly, publicly available an-
notated datasets and language resources for one
task cannot be used directly to train classifiers for
any respective other task.

Contribution: For the offensive language detec-
tion presented in this paper, our approach is to use
semi-supervised text classification to address all
of the three challenges. In order to account for
atypical language, we use sub-word embeddings
to represent word tokens, words unseen during
training, misspelled words and words specifically
used in the context of social media such as emojis.
To represent complex sequence information from
tweets, we use a neural network model combining
recurrent (e.g. Long-Short term memory, LSTM)
(Hochreiter and Schmidhuber, 1997) and convolu-
tional (CNN) layers. Both learning architectures,
LSTM and CNN, have already been employed suc-
cessfully in similar text classification tasks such
as sentiment analysis (Kim, 2014). We expect the
combination of LSTM and CNN to be especially
useful in the context of transfer learning.

The main contribution of this paper is to investi-
gate potential performance contributions of transfer
learning to offensive language detection. For this,
we investigate three different approaches to make
use of knowledge learned by one task to improve
classification for our actual offensive language task.
To pre-train our BiLSTM-CNN network, we em-
ploy 1. Supervised category transfer: social media
data annotated with near-offensive language cat-
egories, 2. Weakly-supervised category transfer:
tweets annotated with emojis they contain, and
3. Unsupervised category transfer: tweets anno-
tated with topic clusters obtained by Latent Dirich-
let Allocation (LDA) (Blei et al., 2003). Further,
we investigate the effect of three different trans-
fer learning strategies on the classification perfor-
mance to mitigate the effect of ‘catastrophic forget-
ting’.2 The results indicate that transfer learning

2Catastrophic forgetting refers to the phenomenon that dur-

on generic topic clusters of tweets derived from an
LDA process of a large Twitter background corpus
significantly improves offensive language detec-
tion.

We present our findings in the following struc-
ture: Section 2 addresses related work to our ap-
proach. In Section 3, we introduce the details of
the GermEval 2018 Shared Task together with our
background corpora for knowledge transfer. In
Section 4, we describe our BiLSTM-CNN model
for text classification. Section 5 introduces the
different transfer learning setups we investigate.
To evaluate these setups, we conduct a number of
experiments for which results are presented in Sec-
tion 6. This section also contains a brief discussion
of errors made by our model. Finally, we give some
concluding remarks.

2 Related Work

Automatic detection of offensive language is a well-
studied phenomenon for the English language. Ini-
tial works on the detection of ‘hostile messages’
have been published already during the 1990s
(Spertus, 1997). An overview of recent approaches
comparing the different task definitions, feature
sets and classification methods is given by Schmidt
and Wiegand (2017). A major step forward to sup-
port the task was the publication of a large publicly
available, manually annotated dataset by Yahoo re-
search (Nobata et al., 2016). They provide a classi-
fication approach for detection of abusive language
in Yahoo user comments using a variety of linguis-
tic features in a linear classification model. One
major result of their work was that learning text fea-
tures from comments which are temporally close
to the to-be-predicted data is more important than
learning features from as much data as possible.
This is especially important for real-life scenarios
of classifying streams of comment data. In addition
to token-based features, Xiang et al. (2012) success-
fully employed topical features to detect offensive
tweets. We will build upon this idea by employing
topical data in our transfer learning setup. Transfer
learning recently has gained a lot of attention since
it can be easily applied to neural network learn-
ing architectures. For instance, Howard and Ruder
(2018) propose a generic transfer learning setup for

ing supervised learning of the actual task in a transfer learning
setup the update of model parameters can overwrite knowl-
edge obtained by the previously conducted training task. This
will eventually eliminate any positive effect of pre-training
and knowledge transfer from background corpora.
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text classification based on language modeling for
pre-training neural models with large background
corpora. To improve offensive language detection
for English social media texts, a transfer learning
approach was recently introduced by Felbo et al.
(2017). Their ‘deepmoji’ approach relies on the
idea to pre-train a neural network model for an ac-
tual offensive language classification task by using
emojis as weakly supervised training labels. On a
large collection of millions of randomly collected
English tweets containing emojis, they try to pre-
dict the specific emojis from features obtained from
the remaining tweet text. We will follow this idea
of transfer learning to evaluate it for offensive lan-
guage detection in German Twitter data together
with other transfer learning strategies.

3 Data and Tasks

3.1 GermEval 2018 Shared Task

Organizers of GermEval 2018 provide training and
test datasets for two tasks. Task 1 is a binary clas-
sification for deciding whether or not a German
tweet contains offensive language (the respective
category labels are ‘offense’ and ‘other’). Task 2 is
a multi-class classification with more fine-grained
labels sub-categorizing the same tweets into either
‘insult’, ‘profanity’, ‘abuse’, or ‘other’.

The training data contains 5,008 manually la-
beled tweets sampled from Twitter from selected
accounts that are suspected to contain a high share
of offensive language. Manual inspection reveals
a high share of political tweets among those la-
beled as offensive. These tweets range from offend-
ing single Twitter users, politicians and parties to
degradation of whole social groups such as Mus-
lims, migrants or refugees. The test data contains
3,532 tweets. To create a realistic scenario of truly
unseen test data, training and test set are sampled
from disjoint user accounts. No standard validation
set is provided for the task. To optimize hyper-
parameters of our classification models and allow
for early stopping to prevent the neural models
from overfitting, we created our own validation set.
For this, we used the last 808 examples from the
provided training set. The remaining first 4,200
examples were used to train our models.

3.2 Background Knowledge

Since the provided dataset for offensive language
detection is rather small, we investigate the poten-
tial of transfer learning to increase classification

performance. For this, we use the following labeled
as well as unlabeled datasets.

One Million Posts: A recently published re-
source of German language social media data has
been published by Schabus et al. (2017). Among
other things, the dataset contains 11,773 labeled
user comments posted to the Austrian newspaper
website ‘Der Standard’.3 Comments have not been
annotated for offensive language, but for categories
such as positive/negative sentiment, off-topic, inap-
propriate or discriminating.

Twitter: As a second resource, we use a back-
ground corpus of German tweets that were col-
lected using the Twitter streaming API from 2011
to 2017. Since the API provides a random fraction
of all tweets (1%), language identification is per-
formed using ‘langid.py’ (Lui and Baldwin, 2012)
to filter for German tweets. For all years com-
bined, we obtain about 18 million unlabeled Ger-
man tweets from the stream, which can be used as
a large, in-domain background corpus.

4 Text Classification

In the following section, we describe one linear
classification model in combination with specifi-
cally engineered features, which we use as a base-
line for the classification task. We further introduce
a neural network model as a basis for our approach
to transfer learning. This model achieves the high-
est performance for offensive language detection,
as compared to our baseline.

4.1 SVM baseline:

Model: The baseline classifier uses a linear Sup-
port Vector Machine (Fan et al., 2008), which is
suited for a high number of features. We use a
text classification framework for German (Ruppert
et al., 2017) that has been used successfully for
sentiment analysis before.

Features: We induce token features based on the
Twitter background corpus. Because tweets are
usually very short, they are not an optimal source
to obtain good estimates on inverse document fre-
quencies (IDF). To obtain a better feature weight-
ing, we calculate IDF scores based on the Twitter
corpus combined with an in-house product review
dataset (cf. ibid.). From this combined corpus, we
compute the IDF scores and 300-dimensional word

3http://derstandard.at
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embeddings (Mikolov et al., 2013) for all contained
features. Following Ruppert et al. (2017), we use
the IDF scores to obtain the highest-weighted terms
per category in the training data. Here, we obtain
words like Staatsfunk, Vasall (state media, vassal)
or deutschlandfeindlichen (Germany-opposing) for
the category ‘abuse’ and curse words for ‘insult’.
Further, IDF scores are used to weight the word
vectors of all terms in a tweet. Additionally, we em-
ploy a polarity lexicon and perform lexical expan-
sion on it to obtain new entries from our in-domain
background corpus that are weighted on a ‘positive–
negative’ continuum. Lexical expansion is based
on distributional word similarity as described in
Kumar et al. (2016).

4.2 BiLSTM-CNN for Text Classification
Model: For transfer learning, we rely on a neu-
ral network architecture implemented in the Keras
framework for Python.4 Our model (see Fig. 1)
combines a bi-directional LSTM layer (Hochreiter
and Schmidhuber, 1997) with 100 units followed
by three parallel convolutional layers (CNN), each
with a different kernel size k ∈ 3,4,5, and a filter
size 200. The outputs of the three CNN blocks
are max-pooled globally and concatenated. Finally,
features encoded by the CNN blocks are fed into
a dense layer with 100 units, followed by the pre-
diction layer. Except for this final layer which uses
Softmax activation, we rely on LeakyReLU activa-
tion (Maas et al., 2013) for the other model layers.
For regularization, dropout is applied to the LSTM
layer and to each CNN block after global max-
pooling (dropout rate 0.5). For training, we use the
Nesterov Adam optimization and categorical cross-
entropy loss with a learning rate of 0.002. The
intuition behind this architecture is that the recur-
rent LSTM layer can serve as a feature encoder for
general language characteristics from sequences
of semantic word embeddings. The convolutional
layers on top of this can then encode category re-
lated features delivered by the LSTM while the
last dense layers finally fine-tune highly category-
specific features for the actual classification task.

Features: As input, we feed 300-dimensional
word embeddings obtained from fastText (Bo-
janowski et al., 2017) into our model. Since fast-
Text also makes use of sub-word information (char-
acter n-grams), it has the great advantage that it can
provide semantic embeddings also for words that

4https://keras.io

Figure 1: BiLSTM-CNN model architecture. We
use a combination of recurrent and convolutional
cells for learning. As input, we rely on (sub-)word
embeddings. The final architecture also includes
clustering information obtained from Twitter user
ids. Dotted lines indicate dropout with rate 0.5
between layers. The last dense layer contains n
units for prediction of the probability of each of the
n classification labels per task.

have not been seen during training the embedding
model. We use a model pre-trained with German
language data from Wikipedia and Common Crawl
provided by Mikolov et al. (2018). First, we unify
all Twitter-typical user mentions (‘@username’)
and URLs into a single string representation and
reduce all characters to lower case. Then, we split
tweets into tokens at boundaries of changing char-
acter classes. As an exception, sequences of emoji
characters are split into single character tokens.
Finally, for each token, an embedding vector is
obtained from the fastText model.

For offensive language detection in Twitter, users
addressed in tweets might be an additional relevant
signal. We assume it is more likely that politicians
or news agencies are addressees of offensive lan-
guage than, for instance, musicians or athletes. To
make use of such information, we obtain a cluster-
ing of user ids from our Twitter background corpus.
From all tweets in our stream from 2016 or 2017,
we extract those tweets that have at least two @-
mentions and all of the @-mentions have been seen
at least five times in the background corpus. Based
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Table 1: Examples of Twitter user clusters

Cluster Accounts

26 breitbartnews, realdonaldtrump, jrch-
eneyjohn, lindasuhler, barbmuenchen

28 dagibee, lilyachty, youngthug, chris-
brown, richthekid

40 bvb, fcbayern, dfb, young, team
44 spdde, cdu, gruenen, martinschulz, fdp,

dielinke
50 tagesschau, spiegelonline, zdf, zeiton-

line, janboehm

on the resulting 1.8 million lists of about 169,000
distinct user ids, we compute a topic model with
K = 50 topics using Latent Dirichlet Allocation
(Blei et al., 2003). For each of the user ids, we
extract the most probable topic from the inferred
user id-topic distribution as cluster id. This results
in a thematic cluster id for most of the user ids in
our background corpus grouping together accounts
such as American or German political actors, musi-
cians, media websites or sports clubs (see Table 1).
For our final classification approach, cluster ids for
users mentioned in tweets are fed as a second input
in addition to (sub-)word embeddings to the penul-
timate dense layer of the neural network model.

5 Transfer Learning

As mentioned earlier, we investigate potential
strategies for transfer learning to achieve optimal
performance. For this, we compare three different
methods to pre-train our model with background
data sets. We also compare three different strategies
to combat ‘catastrophic forgetting’ during training
on the actual target data.

5.1 Background Knowledge

For a transfer learning setup, we need to specify
a task to train the model and prepare the corre-
sponding dataset. We compare the following three
methods.

Supervised near-category transfer: As intro-
duced above, the ‘One Million Post’ corpus pro-
vides annotation labels for more than 11,000 user
comments. Although there is no directly compa-
rable category capturing ‘offensive language’ as
defined in the shared task, there are two closely
related categories. From the resource, we extract
all those comments in which a majority of the anno-

tators agree that they contain either ‘inappropriate’
or ‘discriminating’ content, or none of the afore-
mentioned. We treat the first two cases as exam-
ples of ‘offense’ and the latter case as examples
of ‘other’. This results in 3,599 training examples
(519 offense, 3080 other) from on the ‘One Million
Post’ corpus. We conduct pre-training of the neural
model as a binary classification task (similar to the
Task 1 of GermEval 2018)

Weakly-supervised emoji transfer: Following
the approach of Felbo et al. (2017), we constructed
a weakly-supervised training dataset from our Twit-
ter background corpus. From all tweets posted be-
tween 2013 and 2017, we extract those containing
at least one emoji character. In the case of several
emojis in one tweet, we duplicate the tweet for each
unique emoji type. Emojis are then removed from
the actual tweets and treated as a label to predict
by the neural model. This results in a multi-class
classification task to predict the right emoji out of
1,297 different ones. Our training dataset contains
1,904,330 training examples.

Unsupervised topic transfer: As a final method,
we create a training data set for transfer learning
in a completely unsupervised manner. For this, we
compute an LDA clustering with K = 1,000 topics5

on 10 million tweets sampled from 2016 and 2017
from our Twitter background corpus containing
at least two meaningful words (i.e. alphanumeric
sequences that are not stopwords, URLs or user
mentions). Tweets also have been deduplicated
before sampling. From the topic-document distri-
bution of the resulting LDA model, we determined
the majority topic id for each tweet as a target label
for prediction during pre-training our neural model.
Pre-training of the neural model was conducted on
the 10 million tweets with batch size 128 for 10
epochs.

5.2 Transfer Learning Strategies
Once the neural model has been pre-trained on the
above-specified targets and corresponding datasets,
we can apply it for learning our actual target task.
For this, we need to remove the final prediction
layer of the pre-trained model (i.e. Layer 4 in
Fig. 1), and add a new dense layer for prediction
of one of the actual label sets (two for Task 1, four
for Task 2). The training for the actual GermEval

5For LDA, we used Mallet (http://mallet.cs.
umass.edu) with Gibbs Sampling for 1,000 iterations and
priors α = 10/K and β = 0.01.
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tasks is conducted with batch size 32 for up to 50
epochs. To prevent the aforementioned effect of
forgetting pre-trained knowledge during this task-
specific model training, we evaluate three different
strategies.

Gradual unfreezing (GU): In Howard and
Ruder (2018), gradual unfreezing of pre-trained
model weights is proposed as one strategy to miti-
gate forgetting. The basic idea is to initially freeze
all pre-trained weights of the neural model and
keep only the newly added last layer trainable (i.e.
Layer 4 in Fig. 1). After training that last layer for
one epoch on the GermEval training data, the next
lower frozen layer is unfrozen and training will be
repeated for another epoch. This will be iterated
until all layers (4 to 1) are unfrozen.

Single bottom-up unfreezing (BU): Following
the approach of Felbo et al. (2017), we do not iter-
atively unfreeze all layers of the model, but only
one at a time. First, the newly added final predic-
tion layer is trained while all other model weights
remain frozen. Training is conducted for up to 50
epochs. The best performing model during these
epochs with respect to our validation set is then
used in the next step of fine-tuning the pre-trained
model layers. For the bottom-up strategy, we un-
freeze the lowest layer (1) containing the most gen-
eral knowledge first, then we continue optimization
with the more specific layers (2 and 3) one after
the other. During fine-tuning of each single layer,
all other layers remain frozen and training is per-
formed for 50 epochs selecting the best performing
model at the end of each layer optimization. In a
final round of fine-tuning, all layers are unfrozen.

Single top-down unfreezing (TU): This pro-
ceeding is similar the one described above, but
inverts the order of unfreezing single layers from
top to bottom sequentially fine-tuning layers 4, 3,
2, 1 individually, and all together in a final round.

Baseline (Pre-train only): All strategies are
compared to the baseline of no freezing of model
weights, but training all layers at once directly after
pre-training with one of the three transfer datasets.

6 Evaluation

Since there is no prior state-of-the-art for the Germ-
Eval Shared Task 2018 dataset, we evaluate the
performance of our neural model compared to the
baseline SVM architecture. We further compare the

Table 2: Transfer learning performance (Task 1)

Transfer Strategy F1 Accuracy

None - 0.709 0.795

Category

Pre-train only 0.712 0.809
GU 0.702 0.796
BU 0.709 0.802
TU 0.711 0.799

Emoji

Pre-train only 0.720 0.811
GU 0.708 0.807
BU 0.739 0.817
TU 0.725 0.814

Topic

Pre-train only 0.733 0.817
GU 0.712 0.801
BU 0.753 0.828
TU 0.732 0.817

different tasks and strategies for transfer learning
introduced above and provide some first insights
on error analysis.

Transfer learning: First, we evaluate the perfor-
mance of different transfer learning datasets and
strategies. Tables 2 and 3 show that we achieve
best performances for both tasks on our validation
set by pre-training our neural model on the large
Twitter datasets.6 The two approaches, emoji and
topic transfer, substantially improve the classifica-
tion performance compared to not using transfer
learning at all (‘None’). In contrast, pre-training
on the annotated dataset from the ‘One Million
Posts’ corpus does only lead to minor improve-
ments. Comparing the three different strategies
to reduce negative effects of forgetting in transfer
learning, the strategy of unfreezing single layers
during training from the lowest layers to the top of
the model architecture (BU) performs best, espe-
cially in conjunction with the pre-training on the
large Twitter datasets. For these setups, the model
can take full advantage of learning language regu-
larities from generic to more task-specific features
in its different layers. The other strategies (GU,
TU) do not perform better than pre-training the

6For the binary classification Task 1, we report precision
(P), recall (R), and F1 for the targeted positive class ‘offense’.
During training, we also optimized for binary F1. For the
multi-class classification Task 2, we report macro-F1 (average
of precision, recall, and F1 of all individual four categories).
During training, we also optimized for macro-F1. All reported
results are average values obtained from 10 repeated runs of
model training.
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Table 3: Transfer learning performance (Task 2)

Transfer Strategy F1 Accuracy

None - 0.578 0.747

Category

Pre-train only 0.578 0.755
GU 0.560 0.751
BU 0.580 0.750
TU 0.581 0.759

Emoji

Pre-train only 0.572 0.756
GU 0.564 0.756
BU 0.577 0.764
TU 0.592 0.757

Topic

Pre-train only 0.597 0.762
GU 0.590 0.755
BU 0.607 0.764
TU 0.582 0.764

neural model and then immediately training the
entire network on the actual task (‘Pre-train only’).

Final results: Tables 4 and 5 show the final re-
sults for the two offensive language detection tasks
on the official test set. We compare the base-
line SVM model with the BiLSTM-CNN neural
model with the best performing transfer learning
setup (BU). Additionally, we show the results when
adding cluster information from users addressed in
tweets (cf. Section 4). Due to the fact that training
and validation data were sampled from a different
user account population than the test dataset (cf.
Section 3), evaluation scores on the official test
data are drastically lower than scores achieved on
our validation set during model selection.

Compared to the already highly tweaked SVM
baseline, our BiLSTM-CNN model architecture
with topic transfer delivers comparable results for
identifying offensive language in Task 1 and sig-
nificantly improved results for Task 2. The SVM
achieves a high precision but fails to identify many
offensive tweets, which especially in Task 2 nega-
tively affects the recall.

In contrast, topic transfer leads to a significant
improvement, especially for Task 2. Performance
gains mainly stem from increased recall due to
the background knowledge incorporated into the
model. We assume that not only language regu-
larities are learned through pre-training but that
also some aspects relevant for offensive language
already are grouped together by the LDA clusters

used for pre-training.
As a second task-specific extension of our text

classification, we feed cluster information for users
addressed in tweets into the process. Here the re-
sults are mixed. While this information did not lead
to major performance increases on our validation
set (not shown), the improvements for the official
test set are quite significant. For Task 1, the per-
formance score increases several percentage points
up to 75.2% F1 (Accuracy 77.5%). For Task 2,
increases are still quite remarkable, although the
absolute performance of this multi-class problem
with 52.7% F1 (Accuracy 73.7%) is rather mod-
erate. From these results, we infer that thematic
user clusters apparently contribute a lot of informa-
tion to generalize an offensive language detection
model to unseen test data.

Error analysis: Accuracy values for German of-
fensive language detection around 75% signal some
room for improvement in future work. What are
the hard cases for classifying offensive language?
We look at false positive (FP) and false negatives
(FN) for Task 1. In our validation set, the ratio of
FP and FN is about 60:40, which means our classi-
fier slightly more often assumes offensive language
than there is actually in the data compared to cases
in which it misses to recognize offensive tweets.
Looking more qualitatively into FP examples, we
can see a lot of cases which actually express a
very critical opinion and/or use harsh language,
but are not unequivocal insults. Another group of
FP tweets does not express insults directly but for-
mulates offensive content as a question. In other
cases, it is really dependent on context whether a
tweet addressing a specific group uses that group
signifier actually with a derogatory intention (e.g.
calling people ‘Jew’, ‘Muslim’, or ‘Communist’).
For FN tweets, we can identify insults that are
rather subtle. They do not use derogatory vocab-
ulary but express loathing by dehumanizing syn-
tax (e.g. ‘das was uns regiert’ where the definite
gender-neutral article ‘das’ refers to the German
chancellor), metaphor (‘Der ist nicht die hellste
Kerze’, i.e. ‘he is not the brightest light’) or insin-
uating an incestuous relationship of some persons
parents (‘Hier drängt sich der Verdacht auf, das die
Eltern der beiden Geschwister waren’). Another
repeatedly occurring FN case are tweets express-
ing suspicion against the government, democratic
institutions, the media or elections. While those
tweets certainly in most cases origin from a radi-
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Table 4: Offensive language detection performance % (Task 1)
Model RunID Offense Other Average (official rank score)

P R F1 P R F1 P R F1 Acc.

Baseline SVM coarse 1 71.52 46.17 56.12 76.52 90.52 82.93 74.02 68.34 71.07 75.42
BiLSTM-CNN
+ Topic transfer coarse 2 66.30 49.75 56.84 77.03 86.95 81.69 71.67 68.35 69.97 74.29
+ User-cluster coarse 3 66.29 68.89 67.56 83.62 81.93 82.77 74.96 75.41 75.18 77.49

Table 5: Offensive language detection performance % (Task 2)
Model RunID Abuse Insult Other Profanity Average (official rank score)

F F F F P R F Acc.
Baseline SVM fine 1 46.10 21.12 82.88 3.92 50.92 37.27 43.04 70.44
BiLSTM-CNN
+ Topic transfer fine 2 51.96 40.18 84.26 15.58 51.06 46.07 48.44 72.79
+ User cluster fine 3 53.25 39.46 84.85 29.63 56.85 49.13 52.71 73.67

cal right-wing worldview and can be considered as
abusive against democratic values, their language
is not necessarily offensive per se. This more qual-
itative look into the data opens up some directions
to improve offensive language detection incorporat-
ing technologies that are able to capture such more
subtle insults as well as handling cases of questions
and harsh but still not insulting critique.

7 Conclusion

In this paper, we presented our neural network text
classification approach for offensive language de-
tection on the GermEval 2018 Shared Task dataset.
We used a combination of BiLSTM and CNN archi-
tectures for learning. As task-specific adaptations
of standard text classification, we evaluated dif-
ferent datasets and strategies for transfer learning,
as well as additional features obtained from users
addressed in tweets. The coarse-grained offensive
language detection could be realized to a much
better extent than the fine-grained task of separat-
ing four different categories of insults (accuracy
77.5% vs. 73.7%). From our experiments, four
main messages can be drawn:

1. Transfer learning of neural networks architec-
tures can improve offensive language detec-
tion drastically.

2. Transfer learning should be conducted on as
much data as possible regarding availability
and computational resources. We obtained
best results in a completely unsupervised and
task-agnostic pre-training setup on in-domain

data. During pre-training, we predicted the
primary topics of tweets obtained by an LDA
process, which previously clustered our back-
ground dataset of 10 million tweets into 1,000
topics.

3. To mitigate the effect of ‘catastrophic forget-
ting’ in transfer learning, it is advised to train
and optimize the different layers of the neu-
ral network model separately. In our experi-
ments on models pre-trained on large Twitter
datasets, the bottom-up approach of training
from the lowest to the top layer performed sig-
nificantly better than all other tested strategies
to freeze model weights during learning.

4. User mentions in tweets can contribute a lot
of information to the classifier since some ac-
counts are much more likely to be targeted
by offensive language than others. Clustering
users thematically allows including informa-
tion from users not seen during training.

The fact that our unsupervised, task-agnostic pre-
training by LDA topic transfer performed best sug-
gests that this approach will also contribute ben-
eficially to other text classification tasks such as
sentiment analysis. Thus, in future work, we plan
to evaluate our approach with regard to such other
tasks. We also plan to evaluate more task-agnostic
approaches for transfer learning, for instance em-
ploying language modeling as a pre-training task.
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