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Abstract
We describe our solutions for semantic frame
and role induction subtasks of SemEval 2019
Task 2. Our approaches got the highest scores,
and the solution for the frame induction prob-
lem officially took the first place. The main
contributions of this paper are related to the se-
mantic frame induction problem. We propose
a combined approach that employs two differ-
ent types of vector representations: dense rep-
resentations from hidden layers of a masked
language model, and sparse representations
based on substitutes for the target word in the
context. The first one better groups synonyms,
the second one is better at disambiguating
homonyms. Extending the context to include
nearby sentences improves the results in both
cases. New Hearst-like patterns for verbs are
introduced that prove to be effective for frame
induction. Finally, we propose an approach to
selecting the number of clusters in agglomera-
tive clustering.

1 Introduction

Semeval-2019 Task 2 consisted of three subtasks,
this paper presents solutions to all three which
were all performing better than other submitted
approaches. The first solution officially took the
first place in the competition, the other two used
tuning on the development set provided by the or-
ganizers, which was then interpreted as using ad-
ditional corpora.

Semantic Frame Induction (Subtask A) is the
task of grouping target word occurrences in a
text corpus according to their frame (meaning
and semantic arguments structure). Target words
are usually verbs, nouns, and adjectives (these
have argument structure; however in the shared
task dataset only verbs were present). For in-
stance, the verbs rise, fall and climb in the sen-
tences The dollar is rising, which makes Rus-
sian economy unstable and The dollar fell 1% in

September after climbing 2% in August should be
clustered together, while the verb climb in sen-
tences like People climb mountains should be clus-
tered separately. For the sake of brevity, occur-
rences of different words sharing the same frame
will be called synonyms, and occurrences of the
same word belonging to different frames will be
called homonyms. This may violate the traditional
meaning of these terms. For instance, fall and
rise are not considered synonyms in the classi-
cal sense. Semantic Role Induction refers to find-
ing realizations of semantic arguments in text and
relating them to corresponding semantic frame
slots. Generic role induction (subtask B.2) re-
quires a small number of frame-independent roles
like Agent, Patient, Theme, etc. Frame-specific
role induction (subtask B.1) allows labeling ar-
guments of each frame independently from other
frames. For instance, Microsoft in Microsoft
bought Github and Google in Google opened new
offices should be labeled as the same role in B.2
but may be labeled differently in B.1. For further
details please refer to QasemiZadeh et al. (2019).

In this paper, we focused mainly on the Frame
Induction subtask. The main contributions for this
subtask are the following. A combined approach
to semantic frame induction is introduced, which
clusters dense representations obtained from hid-
den layers of a masked LM first and sparse bag-of-
words representations of possible substitutes for
a word in context afterward. This approach re-
sulted in better clustering of both synonyms and
homonyms1. New Hearst-like patterns designed
specifically for verbs were used and they proved to
be beneficial for Semantic Frame Induction. Also,
a simple but effective semi-supervised approach to
selecting the number of clusters for agglomerative
clustering was proposed. Finally, we proposed ex-

1GRANNy in the team name stands for General Relation
Acquisition with Neural Networks



tending context with neighboring sentences which
have shown consistent improvements for both of
our representations. For solving subtask B.2 we
used a semi-supervised approach of training lo-
gistic regression over features that were partly de-
signed and partly learned in an unsupervised fash-
ion. To ensure the best performance on verbs that
were not present in training data (the majority of
examples in the test) we used cross-validation with
a lexical split, to select optimal features and hyper-
parameters. For solving subtask B.1 we trivially
reused labels from B.2

2 Related Work

This section describes previous work which our
approach is based on. Word Sense Induc-
tion (WSI) is the task of clustering occurrences
of an ambiguous word according to their mean-
ing which is similar to Frame Induction. One
of the major differences from Frame Induction is
that WSI doesn’t require grouping together dif-
ferent words with similar meanings, however, we
adopt some ideas from WSI in this work. In-
stead of graph or vector representation of word co-
occurrence information traditionally used to solve
WSI task, Baskaya et al. (2013) proposed ex-
ploiting n-gram language model (LM) to gener-
ate possible substitutes for an ambiguous word
in a particular context. Their approach was one
of the best in SemEval-2013 WSI shared task
(Jurgens and Klapaftis, 2013). Struyanskiy and
Arefyev (2018) proposed pretraining SOTA neu-
ral machine translation model built from Trans-
former blocks (Vaswani et al., 2017) to restore
target words hidden from its input (replaced with
a special token CENTERWORD). After pretrain-
ing, they exploited both predicted output em-
beddings to represent ambiguous words and at-
tention weights to better weigh relevant context
words in word2vec weighted average represen-
tation. A combination of these representations
achieved SOTA results on one of the datasets
from RUSSE’2018 Word Sense Induction for the
Russian language shared task (Panchenko et al.,
2018). Amrami and Goldberg (2018) develop
ideas from Baskaya et al. (2013) exploiting neu-
ral bidirectional LM ELMO (Peters et al., 2018)
instead of n-gram LM for generating substitutes.
To improve results further they propose using dy-
namic symmetric patterns “T and ”, “ and T”
(here “T” stands for the target word and “ ” for

the position at which we collect LM predictions).
For instance, to represent the word orange in He
wears an orange shirt instead of predicting what
comes after wears in He wears they predict what
comes after and in He wears orange and (simi-
larly, for backward LM they predict what comes
before and in and orange shirt). This provides
more information to the LM because we don’t
hide the ambiguous word and forces it to produce
its co-hyponyms instead of all possible continu-
ations given a one-sided context. Other impor-
tant contributions include lemmatizing substitutes
to remove grammatical bias from representations
(which was especially important for verbs) and us-
ing IDF weights to penalize frequent substitutes,
which are probably worse for discriminating be-
tween senses. They achieve SOTA results on the
SemEval-2013 WSI dataset.

Devlin et al. (2018) proposed BERT (Bidi-
rectional Encoder Representations from Trans-
formers). Like the model from Struyanskiy and
Arefyev (2018), BERT is a deep NN built from
Transformer blocks and pretrained on the task of
restoring words hidden from its input (replaced
with a special token [MASK], hence they named
it masked LM). However they used much deeper
models, pretrained them on much more data and
predicted hidden words at each timestep rather
than generating them as an output sequence. Also
additional next sentence prediction task was used
to pretrain the model for sentence pairs classifi-
cation (like paraphrase detection and NLI). BERT
has shown better results than previous SOTA mod-
els on a wide spectrum of natural language pro-
cessing tasks.

3 Semantic Frame Induction

In this section, we describe our approaches to
building vector representations of an occurrence
of the target word (which is always a verb in
the SemEval-2019 Frame Induction task dataset).
The first approach exploits dense vector represen-
tations of the target word in a context obtained
from hidden layers of BERT model. Another ap-
proach builds sparse TF-IDF BOW vectors from
substitutes generated for the target word by BERT
masked LM. We found that each model has its own
downsides when used with non-trainable distance
functions like cosine and Euclidean, and with tra-
ditional clustering algorithms like agglomerative
clustering, DBScan, and affinity propagation. The



first approach didn’t discriminate different senses
of the same verb, the second one had problems
with clustering together similar senses of different
verbs. In preliminary experiments, we tried fixing
the first problem by learning a distance function
instead of using a fixed one, but this didn’t help,
presumably due to a very small amount of labeled
data provided and restrictions on using additional
labeled data. So our best performing algorithm is
two-stage: it groups examples to a relatively small
number of large clusters using the first representa-
tion (merging synonyms together while not taking
into consideration homonyms) and then splits each
of them into smaller clusters using the second rep-
resentation (disambiguating homonyms). Finally,
we describe our approach to clustering these vec-
tor representations and propose a technique for se-
lecting the appropriate number of clusters.

3.1 BERT Hidden Representations

In the preliminary experiments, we compared
dense representations from different layers of two
BERT models pretrained on English texts: bert-
base-uncased and bert-large-uncased with 3x more
weights. While being significantly slower, the
large model didn’t show better clustering results
for the development set, so we stuck to the base
model. Presumably, fine-tuning the large model
to the final task could reveal its superiority, but
this would require much more labeled data that
was provided. Interestingly, a weighted average
of word2vec embeddings for context words pro-
posed for WSI in Arefyev et al. (2018) showed
similar results, which also supports the hypothesis
that distance functions like cosine or Euclidean are
not appropriate for BERT hidden representations.
BERT-base consists of 12 Transformer blocks with
12 attention heads each, hidden state dimension-
ality is 768. It was pre-trained on lowercased
texts split into subword units. Hyperparameters
were selected on the development set, the best re-
sults were achieved using outputs of the layer 6 at
timestep when the first subword of the verb was
fed in. Also, better results were achieved when in-
put texts were lemmatized. This can be explained
by the large grammatical bias of LMs also no-
ticed by Amrami and Goldberg (2018): it is much
easier to correctly predict grammatical attributes
like number, gender, tense from contexts, so it is
more beneficial to assign higher probabilities to all
verbs with correct tense than to all verbs with cor-

rect meaning when losses like cross-entropy are
used, which results in large distance between oc-
currences of the same verb in the same meaning,
but in different tenses.

3.2 Substitutes Representations

We adopt ideas from Amrami and Goldberg
(2018) for our second approach to Frame Induc-
tion, with several important differences. First, we
propose new patterns which are more suitable for
verbs. Secondly, we use BERT, which proved to
be better than ELMO for generating substitutes
in our series of preliminary experiments. This is
likely due to the fact that BERT takes into ac-
count the whole context in all of its layers, un-
like bidirectional LM in ELMO, which consists of
two independently trained language models, one
using only right context, and another only left con-
text. Lastly, we do hard clustering instead of soft
clustering required for SemEval-2013 WSI, hence
we do not sample from distributions predicted by
LM, but instead, take the topmost probable substi-
tutes. We found this approach works better than
one doing soft clustering and then selecting the
most probable cluster for each example.

To generate substitutes, a masked LM based on
the bert-base-uncased model was utilized. It is
likely that the large model could generate better
substitutes, but we left it for future work. Non-
lemmatized lowercased text was passed through
all the layers of the model. We didn’t add bi-
ases of the last linear layer to obtain less frequent
but more contextually suitable subwords. We took
K most probable substitutes to represent each ex-
ample (K=40 was selected on the development
set), lemmatized them to get rid of grammatical
bias, and then built TF-IDF bag-of-words vec-
tors. To improve results we employ symmetric
patterns. Symmetric patterns were first proposed
in Hearst (1992) and then used in many cases, in-
cluding Widdows and Dorow (2002), Panchenko
et al. (2012), Schwartz et al. (2015), to extract
lexical relations like hyponymy, hypernymy, co-
hyponymy, etc. from texts, and to augment lex-
ical resources. However, we were not aware of
any Hearst-like patterns designed specifically for
verbs. Along with “T and ” pattern and trivial “T”
and “ ” patterns we proposed and experimented
with “T and then ”, “T and will ” and “T and then
will ” patterns. We suppose that the meaning of a
verb is better described not by its hypernyms or co-



hyponyms (which are traditionally extracted for
nouns using patterns like “ such as T” or “T and
”) but rather by preceding and following events

which are better extracted by the proposed pat-
terns. “T and then ” pattern has shown the best
results both for the development and the test sets.
For instance, to generate substitutes for the verb
build in They are building phones we pass They
are building and then [MASK] phones and collect
predictions at the masked timestep. We found that
among others, substitutes like export, distribute,
ship are generated for Manufacturing frame and
establish, open, close for Building frame of the
verb build allowing to discriminate between them.
See Appendix A for examples.

3.3 Clustering
We experimented with K-means, DBScan, Affin-
ity Propagation and Agglomerative clustering al-
gorithms implemented in the scikit-learn (Pe-
dregosa et al., 2011) and found agglomerative
clustering to achieve the best results. To select
hyperparameters of Agglomerative clustering for
dense representations (number of clusters and dis-
tance functions between points and clusters) we
used a simple yet effective semi-supervised ap-
proach: merge the development and test sets (la-
beled and unlabeled respectively) and perform
grid search for hyperparameters that provide clus-
tering with optimal value of the target metric
(BCubed-f1 in our case) on the labeled subset. Al-
most always optimal results were obtained using
cosine distance for points and average linkage for
clusters (average distance between elements).

3.4 Combined Approach
Our best performing submission was made of a
combination of techniques described above. At
phase 1, we clustered dense representations us-
ing proposed semi-supervised agglomerative clus-
tering. At phase 2, we split each cluster sep-
arately using sparse representations and conven-
tional agglomerative clustering with cosine dis-
tance and average linkage (selected on the devel-
opment set). We didn’t use the semi-supervised
tuning again because at that stage most clusters
didn’t contain labeled examples. During the blind
evaluation period, we simply split each cluster into
two (this method is denoted as Combined below).
In the post-evaluation period, we experimented
with more sophisticated approaches. Finally, our
best results (denoted as Combined2) were ob-

tained when the number of clusters at phase 2 was
selected using silhouette score and small clusters
(with less than 20 examples) or clusters with dif-
ferent target verbs were left intact. Also, during
the post-evaluation period, we tried extending the
context with nearby sentences (sentences with ad-
jacent IDs in the Penn Treebank corpus). This al-
lowed us to incorporate more information about
the preceding and following events, which resulted
in improved performance of both representations.
In Combined2 we passed a large context of max-
imum 7 sentences to the left and to the right for
dense, and smaller context of 2 sentences on both
sides for sparse representations (selected on the
development set).

3.5 Dataset and Experiments

Due to limitations imposed by the task, we re-
stricted ourselves to only using labeled data pro-
vided by the organizers. For the majority of
our experiments, we used the development set
that consisted of 600 examples of 35 verbs clus-
tered into 41 frames. There are many examples
of synonymy in this dataset but not so many of
homonymy. Almost all ambiguous verbs have
less than 5 examples for all frames except their
most frequent frame, hence we used only verbs
join and believe (54/9 and 12/8 examples of their
first/second most frequent frame respectively) to
select hyperparameters likely resulting in a subop-
timal performance on the test.

For internal evaluation of different represen-
tations and hyperparameters selection, we used
the following procedure: the development set or
its subset was clustered many times using ag-
glomerative clustering with all feasible hyperpa-
rameter values, and maximum BCubed-f1 value
(maxB3f1) was taken as a score for the represen-
tation. This allowed us to compare clusterability
of different representations while avoiding prob-
lems of selecting the number of clusters and other
hyperparameters. Of course, there is a possibil-
ity that other clustering algorithms might perform
better with different representations, however, we
didn’t see improvements from using other clus-
tering algorithms and stick to agglomerative clus-
tering. Table 1 shows maxB3f1 for the whole
development set and for all examples of several
homonyms. Evidently, dense representations are
significantly better when clustering the whole de-
velopment set, while sparse representations with



dev join@dev build@test follow@test start@test

sparse 0.91 0.98 0.83 0.96 0.75
dense 0.94 0.92 0.70 0.80 0.72

Table 1: Sparse vs. dense representations, maxB3f1

Figure 1: Recall for synonyms and homonyms w.r.t.
number of clusters for dense and sparse representations

an appropriate pattern are better for disambiguat-
ing homonyms.

We denote the proportion of synonyms shar-
ing common cluster as recall for synonyms and
the proportion of homonyms put in separate clus-
ters as recall for homonyms. Figure 1 shows
both metrics depending on the number of clus-
ters for agglomerative clustering of the whole de-
velopment set. It is evident that until a relatively
large number of clusters (30) almost all synonyms
are correctly clustered together when using dense
representations, yet homonyms are clustered to-
gether as well, which gives almost 1.0 recall for
synonyms and nearly 0.0 recall for homonyms.
MaxB3f1 of approximately 0.94 is achieved at
around 25-28 clusters (depending on the context
size) where synonyms are still clustered almost
perfectly. At the same time, sparse representations
split homonyms into different clusters even at very
small numbers of clusters, but simultaneously split
synonyms also, achieving lower maxB3f1 of 0.91
in a wider range of 25-40 clusters. To solve this
problem, our final solution clusters dense repre-
sentations first and then splits large clusters con-
taining examples of the same verb (to prevent
splitting synonyms) into a small number of clus-
ters to improve recall for homonyms.

Table 2 compares results on the test set. Verb
baseline assigns the first token of the verb to each
example as its cluster id. It overestimates the
real number of clusters in the test (149), giving
the highest precision but very low recall because

Method #cl PuIpuF1 B3P B3R B3F1

Verb baseline 227 73.94 74.61 58.95 65.86

Dense ctx0+ss.agglo 126 76.24 60.5 77.61 68
Combined 239 77.03 65.23 73.82 69.26

@Combined+sep. sell 240 78.86 70.61 73.82 72.18

?Dense ctx7+ss.agglo 194 77.52 66.68 72.67 69.55
?Combined2 272 78.15 70.86 70.54 70.70

?Dense ctx7+maxsil 126 75.77 60.23 76.34 67.33

Table 2: Subtask-A, results on test. ? for post-eval re-
sults, @ for manual postprocessing (out of competition)

Pattern ctx PuIpuF1 B3P B3R B3F1 maxB3F1

T and then 2 78.15 70.86 70.54 70.70 71.34
T and 2 77.92 70.43 70.16 70.30 71.16

2 77.80 70.37 69.85 70.11 71.01
T 2 77.95 68.50 71.97 70.19 71.15

T and then 0 77.79 70.56 69.67 70.11 71.06
T and then 1 77.93 70.87 69.89 70.38 71.38
T and then 2 78.15 70.86 70.54 70.70 71.34
T and then 3 78.14 70.52 70.66 70.59 71.29
T and then 5 77.72 70.29 70.10 70.19 71.13
T and then 7 77.94 70.95 69.89 70.41 71.24

Table 3: Subtask-A, effect of pattern and context size

synonyms are never clustered together. Dense
representation with semi-supervised agglomera-
tive clustering slightly underestimates the num-
ber of clusters in the test set (similarly to the de-
velopment set) resulting in the highest recall due
to merged synonyms. The combined approach
splits some clusters hurting BCubed-recall a bit
but increasing BCubed-precision, even more, re-
sulting in better BCubed-f1. The last row shows
that selecting the number of clusters which maxi-
mizes silhouette score (unsupervised approach) in-
stead of BCubed-f1 of the labeled subset results
in much worse results, hence our semi-supervised
approach is beneficial. Finally, we noticed that the
largest cluster had all the examples of both sell and
buy, which were among the most frequent verbs
in the test set. In FrameNet, they are assigned to
Commerce sell and Commerce buy frames respec-
tively which is a questionable solution since these
are just different ways to put into words the same
type of event with the same participants (some-
thing like commercial-transfer-of-property). We
simply moved all examples of the verb sell into
a separate cluster which gave significant improve-
ment in BCubed-f1. However, this result is out
of competition due to the manual postprocessing.
Yet, our best result without manual postprocessing
is still ranked first.

In Table 3 we report the results of clustering
the test set depending on the pattern and the con-



text size used to build sparse representations at
phase 2. In addition to standard metrics, we report
maxB3F1 which excludes the effect of a subopti-
mal number of clusters selected on the compari-
son results. Our proposed pattern seems to give
small but consistent improvement as well as con-
text extension. The context of 1-3 sentences on
both sides is a reasonable choice for sparse repre-
sentations.

4 Semantic Role Induction

After looking at examples from the development
set we decided that the subtask B.2 (generic se-
mantic role induction) could be solved much more
effectively using a classifier than any kind of clus-
tering because generic roles look more like a high-
level linguistic abstraction than something natu-
rally occurring in texts. We used the development
set to trained logistic regression on top of repre-
sentations extracted from BERT and several hand-
crafted features. BERT was pretrained in unsuper-
vised fashion on large corpora and this results in
much better generalization of our semi-supervised
approach compared to a logistic regression trained
only on hand-crafted features (see ablation anal-
ysis below). To select hyperparameters we used
cross-validation with lexical split (i.e. there were
no common verbs in train and test subsets for each
fold) to ensure the best performance on new verbs
not seen during training. This approach was re-
jected as using an additional labeled corpora to
train a supervised component. However we hardly
see how the development set provided by the or-
ganizers can be considered as additional.

4.1 Model Description and Results

We trained a logistic regression classifier for the
14 most frequent semantic roles in the develop-
ment set. Following recommendations of Devlin
et al. (2018) we used outputs from the last four
layers of BERT as features. These outputs were
taken for two timesteps at which the target argu-
ment and its corresponding verb were fed. To be
exact, we found the first subword of the verb (for
instance, buy for buy out) and the last subword
for the argument (Union for European Union) per-
forming best. Additionally we used several hand-
designed features. Table 4 shows our submis-
sion results. Also, we display results when us-
ing only BERT and only hand-designed features
suggesting that both of them contribute positively

Method #cl PuIpuF1 B3P B3R B3F1

ClstPerGrType 37 56.05 40.89 37.33 39.03
Logistic regression 14 77.47 56.21 74.41 64.04

w/o designed feats. 14 76.93 54.71 73.55 62.75
w/o BERT feats. 13 65.08 41.90 55.01 47.57

Table 4: Subtask-B.2, results on test

to the results but BERT features are much more
important. For additional details regarding hand-
designed features and ablation analysis please re-
fer to Appendix B. We didn’t experiment with sub-
task B.1 due to the lack of time, instead we used
labels predicted for subtask B.2 which resulted in
64.43 / 73.11 BCubed-F1 / PuIpu-F1 compared to
45.79 / 57.99 of the best performing baseline.

5 Conclusions

We show how neural language models can be ef-
fectively used for unsupervised inference of se-
mantic structures. To improve the result of seman-
tic frame induction we used a combined approach
that utilizes two different vector representations,
and adjusted our clustering algorithm accordingly.
The design stemmed from our analysis of prob-
lems in use of neural language models for the pur-
pose of semantic frame induction; the experiments
showed that issues may be strongly related to how
the models treat such linguistic phenomena as syn-
onymy and homonymy. Designing a system that
addresses this problem directly allowed us to im-
prove the result significantly. We think that our
result could be additionally improved by finding
better parameters and/or model combinations. We
also think that further research in this direction
could lead to neural language models that explic-
itly address various linguistic phenomena by de-
sign, for even better inference of semantic proper-
ties.
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build: Manufacturing/ follow: Compliance/ join: Participation/
Building Relative time Becoming a member

drive 0.61/0.031 execute 0.53/0.0 end 0.5/0.15
export 0.5/0.031 obey 0.47/0.0 support 0.81/0.32
import 0.67/0.046 keep 0.53/0.0 continue 0.5/0.23
distribute 0.72/0.092 adopt 0.74/0.0 begin 0.44/0.21
manufacture 0.94/0.12 apply 0.68/0.013 follow 0.56/0.37
ship 0.5/0.077 maintain 0.63/0.013 lead 0.88/0.77
release 0.5/0.092 use 0.63/0.013 start 0.5/0.56
make 0.56/0.11 enforce 0.47/0.013 leave 0.5/0.82
assemble 0.78/0.18 ignore 0.42/0.013 represent 0.31/0.52
deliver 0.89/0.22 implement 0.79/0.027 rejoin 0.25/0.6
... ... ...
rebuild 0.28/0.55 confirm 0.16/0.47 buy 0.062/0.47
expand 0.33/0.75 begin 0.16/0.48 found 0.0/0.4
acquire 0.22/0.58 end 0.11/0.64 oversee 0.0/0.4
finance 0.17/0.58 see 0.053/0.43 serve 0.0/0.48
erect 0.11/0.43 include 0.053/0.55 create 0.0/0.48
open 0.11/0.77 come 0.0/0.41 acquire 0.0/0.48
fund 0.056/0.58 be 0.0/0.49 purchase 0.0/0.55
establish 0.056/0.6 , 0.0/0.51 establish 0.0/0.6
close 0.0/0.42 mark 0.0/0.53 form 0.0/0.63
start 0.0/0.43 after 0.0/0.61 become 0.0/0.82

Table 5: Examples of generated substitutes for template
“T and then ”

A Examples of generated substitutes

To show how substitutes can disambiguate
homonyms we generated substitutes for examples
of two most frequent frames for several verbs.
For each verb we excluded rare substitutes with
P (subs|framei) < 0.4 for both frames. Then
we sorted the rest according to the probability ra-
tio P (subs|frame1)

P (subs|frame2)+1e−6 . Table 5 shows substitutes
with the largest and the smallest ratio (most dis-
criminating substitutes).

B Features and ablation analysis for
Generic Semantic Role Induction
subtask

We used the following hand-crafted features: an
indicator that the argument is to the left of the verb
and an indicator that the particle by is between
them; categorical features for the output syntac-
tic relation of the argument, the last relation in the
path between the argument and the verb, the part
of speech of the first word of the argument, the
number of words and the number of words start-
ing with a capital letter in the argument. All these
features were concatenated, categorical features
were encoded with one-hot vectors. In the prelimi-
nary experiments we noticed that hand-crafted fea-
tures performed well by themselves but didn’t im-
prove results when concatenated with BERT out-
puts; this was resolved by multiplying the fea-
tures by 10 (we attribute the effect to very high di-
mensionality of BERT outputs compared to hand-
crafted features, which requires harmonizing the
variance each of them adds to the scalar product

Method #cl PuIpuF1 B3P B3R B3F1

ClstPerGrType 37 56.05 40.89 37.33 39.03
Logistic regression 14 77.47 56.21 74.41 64.04

w/o designed feats. 14 76.93 54.71 73.55 62.75
w/o BERT feats. 13 65.08 41.90 55.01 47.57

w/o BERT@arg 14 73.45 51.60 67.59 58.52
w/o BERT@verb 14 74.88 52.16 71.88 60.45
w/o verb input rel 14 76.92 55.45 73.45 63.19
w/o by between 14 76.92 55.55 73.45 63.25
w/o arg is left 14 77.25 55.65 73.90 63.49

layer 0,1 14 73.56 50.34 68.33 57.97
layer 0 14 73.69 50.52 68.88 58.29
layer 1 14 74.71 51.65 70.47 59.61
layer 2 14 75.13 52.18 71.16 60.21
layer 4 14 76.16 54.11 72.30 61.90
layer 11 14 75.98 54.37 72.19 62.02
layer 10,11 14 76.58 55.10 73.25 62.89
layer 10 14 76.66 55.51 72.96 63.05
layer 6 14 76.98 55.72 73.29 63.31
layer 8 14 77.40 56.33 73.78 63.88

Table 6: Subtask-B.2, ablations on test set.

in the logistic regression). We tried multiplying
each feature by its own constant determined ana-
lytically from its dimensionality, but this worsened
the results, so we left it for the future work.

Table 6 shows results for subtask B.2 after
removing features from input representation or
using different BERT layers instead of the last
four. For ablation analysis, we selected L2-
regularization strength using cross-validation with
a lexical split after removing each feature while
leaving all other hyperparameters intact. The fea-
tures with largest contribution to the result are
(from most to least important) BERT output at the
argument, at the verb, the last relation in the path
from the argument to the verb, the indicator that
the particle by is between them (which was de-
signed to fix errors due to passive voice) and the
indicator that the argument is to the left of the
verb. All other features’ contributions (not shown)
are small. Remarkably, removing all BERT fea-
tures gives very large decrease in performance (-
18 B3F1) while removing only outputs at the argu-
ment/verb gives only moderate decrease (-5.5/-3.5
B3F1) which can be explained by deeply bidirec-
tional nature of BERT resulting in some informa-
tion about both the verb and the argument present
in each of these outputs. Finally, we tried using
other BERT layers instead of the last four (lay-
ers 8-11) and found that intermediate layers per-
form best. For instance, layer 8 can replace the
last four layers with very little decrease in perfor-
mance, while the last two layers (10, 11) concate-
nated perform noticeably worse but much better
than the first layers.


