
ORIGINAL PAPER

Token-based spelling variant detection in Middle Low
German texts

Fabian Barteld1 · Chris Biemann2 ·
Heike Zinsmeister1

Published online: 9 February 2019

© Springer Nature B.V. 2019

Abstract In this paper we present a pipeline for the detection of spelling variants,

i.e., different spellings that represent the same word, in non-standard texts. For

example, in Middle Low German texts in and ihn (among others) are potential

spellings of a single word, the personal pronoun ‘him’. Spelling variation is usually

addressed by normalization, in which non-standard variants are mapped to a corre-

sponding standard variant, e.g. the Modern German word ihn in the case of in.
However, the approach to spelling variant detection presented here does not need

such a reference to a standard variant and can therefore be applied to data for which a

standard variant is missing. The pipeline we present first generates spelling variants

for a given word using rewrite rules and surface similarity. Afterwards, the generated

types are filtered. We present a new filter that works on the token level, i.e., taking the

context of a word into account. Through this mechanism ambiguities on the type

level can be resolved. For instance, the Middle Low German word in can not only be
the personal pronoun ‘him’, but also the preposition ‘in’, and each of these has

different variants. The detected spelling variants can be used in two settings for

Digital Humanities research: On the one hand, they can be used to facilitate searching

in non-standard texts. On the other hand, they can be used to improve the perfor-

mance of natural language processing tools on the data by reducing the number of

& Fabian Barteld

fabian.barteld@uni-hamburg.de

Chris Biemann

biemann@informatik.uni-hamburg.de

Heike Zinsmeister

heike.zinsmeister@uni-hamburg.de

1 Institut für Germanistik, Universität Hamburg, Überseering 35, Postfach #15, 22297 Hamburg,

Germany

2 Department of Informatics, Language Technology Group, Universität Hamburg, Vogt-Kölln-

Straße 30, 22527 Hamburg, Germany

123

Lang Resources & Evaluation (2019) 53:677–706

https://doi.org/10.1007/s10579-018-09441-5

http://orcid.org/0000-0001-7941-2398
http://crossmark.crossref.org/dialog/?doi=10.1007/s10579-018-09441-5&domain=pdf
https://doi.org/10.1007/s10579-018-09441-5

unknown words. To evaluate the utility of the pipeline in both applications, we

present two evaluation settings and evaluate the pipeline on Middle Low German

texts. We were able to improve the F1 score compared with previous work from 0:39
to 0:52 for the search setting and from 0:23 to 0:30 when detecting spelling variants

of unknown words.

Keywords Spelling variation · Non-standard language · Historical texts ·

Information retrieval

1 Introduction

Digital humanities (DH) has brought the challenges posed for language processing

tools when used on non-standard language varieties such as diachronic texts into the

focus of computational linguistics (Dipper et al. 2013).1 This paper is concerned

with a particular property of such non-standard texts, namely spelling variation—the

phenomenon in which one and the same word is spelled in different ways. This

variation is characteristic of historical texts that predate a standardized orthography.

We present experiments with texts from Middle Low German (GML),2 a group of

historical dialects of German from the 15th to the 17th century, cf. example (1).3

(1) a. in dem seuenden steit

in the seventh is_indicated

b. JN dem elenboghen steyt

in the elbow is_indicated

(Brem. Ssp.)

A typical way of dealing with spelling variation is normalization, also called

standardization or canonicalization (Piotrowski 2012). Here, every given type of a

non-standard language is mapped to an equivalent type in a corresponding standard

language. In example (1), the types steit and steyt could be mapped to the

corresponding word in Modern Standard German, steht. This mapping serves two

purposes: First, NLP tools developed for the standard variant will have a decent

performance on the non-standard data as well. For instance, a part of speech (POS)

tagger developed for Modern Standard German will most likely assign the correct

POS tag to steht while steyt probably is a previously unseen word for the tagger, so

that the tagger has to guess and is more likely to assign an incorrect POS tag.

Second, when searching in non-standard texts or when training statistical NLP tools

on such texts themselves, normalization reduces variation in the data and provides

1 See also the workshop series on Language Technology for Cultural Heritage, Social Sciences, and

Humanities (LaTeCH) by ACL SIGHUM (https://sighum.wordpress.com).
2 Following ISO 639-3, we use GML as the abbreviation for Middle Low German in this paper.
3 In the whole paper, we will ignore differences in capitalization. All types are lowercased before

applying and evaluating our pipeline.

123

678 F. Barteld et al.

https://sighum.wordpress.com

more robust results. For instance, the spelling variants in and jn (ignoring the

difference in capitalization) from example (1) would both be mapped to the same

form that could be used when searching for or training on the preposition in.
Note that for searching in non-standard data or for training an NLP tool on it, it is

not required that a standard form exists. It is sufficient that variant sets can be

identified. An illustrative example for this is given by the NLP application described

in Hogenboom et al. (2015). As a preprocessing step for polarity classification,

emojis are mapped to “groups of emoticons denoting the same emotion”. In an

analogous manner, steit and steyt would be mapped to a set of spelling variants

fsteit; steyt; . . .g.
In this paper, we follow such an approach and explore techniques to deal with

spelling variation without reference to a standard variant. This makes the approach

usable for non-standard languages that do not have a closely related standard

variant. The main contribution of this paper is to introduce a new pipeline for

detecting spelling variants in a data-driven way by first generating a set of spelling

variant candidates and then filtering this candidate set. The filtering is done on the

type level and on the token level, i.e., taking context information into account. This

is the first approach for spelling variant detection in the absence of a standard target

language that works on the token level.

For candidate generation, we compare different techniques of measuring the

distance between candidates based on a modified Levenshtein distance and combine

them with a rule-based approach to reduce spelling variation. We employ Support

Vector Machine (SVM) classifiers for type-level filtering and introduce a neural

network architecture for token-level filtering. The distinction between generation,

type-level, and token-level filters, allows one to choose between recall and precision:

one can either use all the generated candidates for a high recall or apply one or both

filters for higher precision at the cost of recall. This allows a researcher in the

humanities to adapt the pipeline for her needs by simply leaving out some of the steps.

We approach the effects of spelling variation from two different perspectives that

are relevant for digital humanities: From an information retrieval (IR) perspective,
spelling variation leads to a low recall when searching for a specific word unless the

user knows the possible variants when searching. This makes searching in non-

standard texts challenging. The presented pipeline can facilitate searching by

generating spelling variants for the query term. From a natural language processing
(NLP) perspective, spelling variation leads to a situation in which training

information that actually belongs to one and the same word is distributed over its

different spelling variants, e.g. steit and steyt in (1). Furthermore—and this is more

relevant in the context of this paper—spelling variation also leads to a high number

of unknown words when applying a trained supervised machine learning model to

unseen data. This causes NLP tools to perform much worse than they would on

standard data. This effect can be mitigated by using the generated spelling variants

for unknown words when applying an NLP tool. To estimate the usefulness of our

pipeline for both applications, we introduce and use two evaluation settings that

capture relevant aspects of these tasks. We use a corpus of GML texts to evaluate

the techniques and report micro-averaged precision, recall, and the harmonic mean

between both values (F1) on the token level.

123

Token-based spelling variant detection in Middle Low German texts 679

First, we present a definition of spelling variation and the different approaches to

deal with it (Sect. 2) and a discussion of related work (Sect. 3). After that we

describe the data sets (Sect. 4) and the evaluation methods (Sect. 5) in detail. In

Sect. 6, we will present our pipeline to detect spelling variants, which will be further

detailed in the following sections. For the pipeline we explore the generation of

spelling variant candidates by simple lookup (Sect. 7) and by surface similarity

(Sect. 8). The generated candidates are subsequently filtered first on the type level

and then on the token level with a supervised machine learning setup (Sect. 9). We

conclude with an overview of the results, some error analysis, and an outlook for

further work (Sects. 10 and 11).

2 Defining and quantifying spelling variation

Spelling variation is usually approached in the context of an existing standard. As

mentioned before, normalization is the predominant approach for dealing with non-

standard data. For historical variants of modern standard languages, normalization

can be defined as the task of mapping words from the historical text to their

“canonical cognates, preserving both the root(s) and morphosyntactic features of the

associated historical form(s), which should suffice (modulo major grammatical and/

or lexical semantic shifts) for most natural language processing tasks” (Jurish

2010a, p. 72). Conversely, spelling variation can be approached by (what we call)

non-standard variant detection (Pilz et al. 2006; Ernst-Gerlach and Fuhr 2006;

Hauser and Schulz 2007), i.e., by finding the set of historical (or non-standard)

words corresponding to a given contemporary query term.

If no closely related standard language is available—as it is the case with Middle

Low German, as Modern Low German does not have a standardized orthography

either—these approaches cannot be applied in a straightforward manner. The

alternative that is pursued in this paper is to generate the set of variants for a given

token instead of a canonical cognate such that no reference to a standard is needed.

To clarify the similarities and differences between normalization and historical

variant detection on the one hand and spelling variant detection on the other hand,

we present formal definitions for spelling variation and the related tasks in this

section.

To define what constitutes a standard language,4 we distinguish between types
and morphological words (Barteld 2017): Types are the surface forms of a language,

i.e., elements of R� for some given alphabet R, morphological words are the abstract
entities that are instantiated by types. They can be seen as combinations of a lemma

(word-sense disambiguated), a POS, and a morphological description, e.g. {Personal
Pronoun, Nominative Sg., I}.

Given the language L � R� and a set of morphological words Lmorph, we define

the left- and right-total binary relation S � Lmorph � L that relates morphological
words with their potential spellings. If S is a function, i.e., for each morphological

4 In this paper, we are only concerned with spelling variation and therefore ignore other aspects of

standard and non-standard languages.

123

680 F. Barteld et al.

word there exists only one type as a potential spelling, we say that L is a standard

language, otherwise we call L a non-standard language. In general such a function is

not injective due to ambiguities, e.g. case syncretisms.

Given a corpus C ¼ ðtiÞn1 in which each token is annotated with POS,

morphological information and lemma, i.e., each ti is a tuple ðw; p;m; lÞ, we define

the relation S0 � Lmorph � L on the basis of the corpus such that ððp;m; lÞ;wÞ 2 S0 if
ðw; p;m; lÞ 2 C. In general S0 will only approximate S. We will discuss implications

of this in Sect. 5.

Given a set of morphological words Lmorph, a non-standard language L and a

standard language Ls with the corresponding spelling relations SL and SLs , we can

define (type-based) normalization, non-standard variant and spelling variant

detection more precisely:

– Normalization is the function n : L ! PðLsÞ with

nðtÞ :¼ fts 2 Lsj9m 2 S�1
Ls
ðtsÞ : ðm; tÞ 2 SLg

– Non-standard variant detection is the function e : Ls ! PðLÞ with:

eðtsÞ :¼ fv 2 Lj9m 2 S�1
Ls
ðtsÞ : ðm; vÞ 2 SLg

– Spelling variant detection is the function s : L ! PðLÞ with:

sðtÞ :¼ fv 2 Lj9m 2 Lmorph : ðm; tÞ 2 SL ^ ðm; vÞ 2 SLg
Normalization and non-standard variant detection are closely related, as the fol-

lowing definitions demonstrate. They show how a non-standard variant detection

can be induced given a normalization and the other way round:

eðtsÞ :¼ fv 2 Ljts 2 nðvÞg
nðtÞ :¼ fts 2 Lsjt 2 eðtsÞg

Furthermore, a normalization induces a spelling variant detection:

snðtÞ :¼ fv 2 LjnðtÞ \ nðvÞ 6¼ ;g
However, while normalization and non-standard variant detection need to refer to a

language Ls, spelling variant detection does not need such a reference as can be seen

easily with the definitions given above.

So far, we have only defined type-based variants of the three approaches. The

token-based variants operate on tokens, i.e., types with a given left and right

context. In the case of normalization, the token-based version will return only one

element from Ls. For non-standard and spelling variant detection, the token-based

versions will return subsets of the type-based version, as some of the potential

variants of the given type can be excluded given a specific context.

123

Token-based spelling variant detection in Middle Low German texts 681

S can also be used to quantify the amount of spelling variation in L, e.g. simply as

the number of morphological words that have more than one spelling:5

v :¼ jfm 2 Lmorphj9t1; t2 2 L : t1 6¼ t2 ^ ðm; t1Þ 2 S ^ ðm; t2Þ 2 Sgj
We want to use this quantification of spelling variance to make another distinction.

For many applications it is not necessary that the target language is an existing

standard language, it suffices if Ls exhibits less variation than the non-standard

language. Just such an operation is commonplace for Twitter data: the removal of

repeated characters as a preprocessing step (Han et al. 2013). This reduces variation

because, for example, loool and loooool are both mapped to lol. This, however, is
not a normalization in the sense of mapping to an existing standard since lol is not a
standard word, a corresponding normalization would map loool, loooool, and lol to
laughing out loud.

More generally, a mapping r from a language L to a language L� is a

simplification if it reduces variation.6 In this sense, normalization is a special kind of

simplification where L� is an existing standard language.7 As mentioned above, this

allows the usage of tools and resources that are available for L� for L. While this is

not the case for a general simplification, this still is beneficial: From the viewpoint

of information retrieval (IR), a search term s given by the user can be mapped to

rðsÞ and the user can be presented with search results for all types from L that are

mapped to rðsÞ as well, i.e., r�1ðrðsÞÞ, where r�1 denotes the preimage of r,

improving the recall of the search. From the viewpoint of natural language

processing (NLP), L� will have less variation which results in less data sparsity and

unknown words. Like normalizations, simplifications also induce spelling variant

detections. As simplifications do not need the reference to a standard language, this

is one way to achieve spelling variant detection in the absence of a standard

language.

3 Related work

In this section we present several approaches for automatic normalization, non-

standard variant detection, and spelling variant detection that share similarities to

the techniques that we apply in this paper. While these approaches can be grouped

5 When L, Lmorph, and S are induced from a corpus, we have used a slightly different definition (Barteld

2017): v can be given as a ratio, as Lmorph is finite. For this, we excluded morphological words, that are

instantiated only once in the corpus as they cannot exhibit possible variance.
6 Simplification does not mean that the resulting types are simpler in the sense that they are shorter. The

addition of a h after every g that is not already followed by one would also be an example of a

simplification.
7 Compare also the remark by Jurish (2011) that “[t]he range of a canonicalization function need not be

restricted to extant forms; in particular a phonetization function mapping arbitrary input strings to unique

phonetic forms can be considered a canonicalization function in this sense” (p. 115). With our definitions,

a phonetization function would be a simplification. However, we do not restrict (type-based)

normalizations and simplifications to map to unique elements but allow for them to map to multiple

elements.

123

682 F. Barteld et al.

by their underlying concept of normalization (e.g. normalization as error correction

vs. translation, Kobus et al. 2008), we present the selected approaches according to

their basic methods. First, there are rule-based approaches. The rules can either be

defined manually (Jurish 2010a; Pettersson et al. 2012) or learned from pairs from

the source and the target language (Bollmann et al. 2011). Second, there are

similarity-based approaches, using surface similarity (Pettersson et al. 2013a) or

context similarity (Costa Bertaglia and Volpe Nunes 2016). Since similarity

measures often overgenerate and yield similar types that are not spelling variants,

Barteld (2017) trained a supervised classifier to filter such results that were obtained

using similarity measures when detecting spelling variants. Rule-based and

similarity-based approaches are often combined, e.g. by using the similarity-based

approach as a backoff for the rule-based approach (Bollmann 2012).

Other approaches to normalization that have less in common with the approaches

employed in this paper include tagging approaches, where each character of a non-

standard word is tagged either with a sequence of edit operations (Chrupała 2014) or

with the corresponding characters in the standard word (Bollmann and Søgaard

2016), and character-based machine translation, either statistical (Pettersson et al.

2013) or neural (Bollmann et al. 2017).

Another important aspect that distinguishes different normalization approaches is

whether they are working on the type or on the token level. Approaches that work

on the type level will always treat one type the same regardless of its actual usage in

the text, while approaches that operate on the token level can treat the same type

differently based on the context. For example, in GML the token in can be the

preposition ‘in’ as in example (1) but it can also be the personal pronoun ‘him’,

which should not be conflated with the preposition. While the approaches presented

above all work on the type level, Jurish (2010b) proposes a Hidden Markov Model

to select the best normalization from a set of normalization candidates for each

token in a sequence of historical tokens. The candidates are generated by different

methods (e.g. the token itself and rule-based transliteration) that work on the type

level to generate normalization candidates. Ljubešić et al. (2016) compare

character-based statistical machine translation, applied either to the the tokens

individually, i.e., on the type level, or a whole sequence, i.e., token context is taken

into account. In contrast to the token-based approach presented in this paper, these

two approaches make use of a target language and a language model for this target

language.

One benefit—and common use case—of normalization is that when a non-

standard text is normalized, it can be processed by tools developed for the standard

language variety (Tjong Kim Sang et al. 2017). Bollmann (2013) and Derczynski

et al. (2013) among others have demonstrated the utility of normalization for

annotation. However, lately the limits of this approach have been emphasized (Yang

and Eisenstein 2016; van der Goot et al. 2017): While normalization helps to

achieve better results when applying NLP tools, not all phenomena of the non-

standard data can be covered—therefore other approaches like domain adaptation

should be combined with normalization to improve the tagging accuracy.

Furthermore, Koleva et al. (2017) report that a tagger trained on Modern Standard

German tagged every GML token as “foreign material” despite normalization.

123

Token-based spelling variant detection in Middle Low German texts 683

Hence for this data, training a tagger on GML texts is better suited. Along this line,

another branch of research has looked at training taggers directly on non-standard

data and using information about spelling variants when training and/or applying

these NLP tools (Kestemont et al. 2010; Logačev et al. 2014; Barteld et al.

2015, 2016; Adesam and Bouma 2016). While Adesam and Bouma (2016) use a

simplified form for tagging, the other approaches rely only on the sets of spelling

variants to improve tagging and lemmatization accuracy, respectively. Therefore,

these approaches can make use of a spelling variant detection tool such as the one

presented in this paper.

Another use-case for normalization is searching in historical texts (Jurish et al.

2014). By normalizing, searching the texts is simplified, especially for non-expert

users who are able to query the data using contemporary language. However, only

knowing the spelling variants of a given query term is enough to improve the recall

when searching documents that contain spelling variation. Pilz et al. (2006), Ernst-

Gerlach and Fuhr (2006), Hauser and Schulz (2007) present approaches to search in

historical texts by generating non-standard variants for a given search term. The

systems are evaluated by testing the recall for given Modern Standard German search

terms. Similarly, the pipeline presented in this paper can be used in this case as well.

4 Description of the data

For our experiments with historical data, we use the third pre-release of the

Reference Corpus Middle Low German/Low Rhenish (1200–1650) (ReN 0.3).8 This

version consists of 32 texts with 200,664 annotated tokens.

We split the data into training (24 texts, 160,240 tokens), development (6 texts,

20,736 tokens) and test (2 texts, 19,688 tokens) sets. While the texts in the training

set are from different language areas with 11 texts from the North Low Saxon area,

the texts in the development and test sets are all from the North Low Saxon area.

The development set contains 3991 types, 1959 of them do not appear in the

training set but almost half of them (841) have spelling variants in the training set.

The test set has a slightly less diverse vocabulary. It contains only 3063 types, 1681

of them do not appear in the training set, and again 623 have spelling variants in the

training set. This means that by mapping all unknown or OOV (out of vocabulary)

types from the development and test data to spelling variants in the training data

could reduce the OOV rates of 0:49 (development) and 0:55 (test) to 0:28
(development) and 0:35 (test), respectively.

5 Evaluation

In this section, we introduce two evaluation settings that we will employ throughout

the rest of the paper. They are inspired by the needs of information retrieval and
natural language processing as discussed in Sect. 1.

8 Version 0.3. Publication date 2017-06-15. http://hdl.handle.net/11022/0000-0006-473B-9.

123

684 F. Barteld et al.

http://hdl.handle.net/11022/0000-0006-473B-9

Before we illustrate the two settings with an example, we need to clarify the input

and output of our pipeline for spelling variant detection: Given a lexicon LT, which

contains the types that appear in textual data T , and some token t, i.e., a type which

may or may not occur in T and its context, the pipeline produces a list of all types of

LT that are spelling variants for t.

For our example, the GML data is split into training, development and test sets as

described in the previous section. From these sets, we extract three lexicons Ltrain,

Ldevel, and Ltest, each containing the types that appear in the respective set of the

data.

Both evaluation settings evaluate the pipeline on tokens from the test

(respectively the development) set. Which lexicon is used for producing the

spelling variants for these tokens (Ltrain or Ltest) depends on the evaluation setting.

We illustrate these two settings with the spelling variants of the GML masculine/

neuter demonstrative pronoun desse, dit in the dative singular form. Figure 1 shows

their distribution over the data sets. LGML, the unknown complete dictionary of

GML, is approximated by the complete dataset, Ltrain [Ldevelop [Ltest. The

figure illustrates the situation when applying the pipeline on the test set, therefore

the development set is not marked explicitly.

Detection of spelling variants in texts (text-eval) The first evaluation setting

evaluates, for each token in the test set, the identification of the spelling variants in

the same set, i.e., in Ltest. It is motivated by the search scenario for which we assume

Fig. 1 Spelling variants of desse, dit in ReN 0.3

123

Token-based spelling variant detection in Middle Low German texts 685

that the aim is to search in data that is distinct from the data that was used to train

the pipeline. In particular, it determines for each occurrence of desse, desseme,
dessen, and deseme in the test set the spelling variants that appear in this set (i.e., a

subset of desse, desseme, dessen, and deseme).
Detection of known spelling variants for unknown types (OOV-eval) The second

evaluation setting evaluates the mapping of OOV words in the test data to spelling

variants in the training data. It is motivated by the assumption that the training data

is used to train the spelling variant detection pipeline as well as an NLP tool. Hence,

when applying the NLP tool to unseen data, e.g. the test set, the aim is to produce

spelling variants that are known to the tool (i.e., types from Ltrain) for unknown types

in the test data. In our example, this means generating the spelling variants for

deseme as a subset of dissen, , , dusseme, dyssem, dussem, dessem,
desem, dissem, desse, desseme, and dessen. This setting is similar to the evaluation

in our previous work (Barteld 2017) with the difference that we evaluate on the

token level and not on the type level.

In sum, spelling variants are always generated with respect to a specific lexicon

and not with regard to an (unknown) complete lexicon LGML. Consequently, in our

example, dezen is never generated because it appears neither in the training nor in

the test data.

A crucial requisite for evaluating which tokens should be considered as spelling

variants is a proper definition of what a word is. This is not a trivial task because a

word can be defined in different ways (cf. for lemmatization, Weissweiler and

Fraser 2018). For our evaluation based on the GML texts in the ReN 0.3 corpus we

employ a strict definition which is based on the lexical and syntactic annotation of

the corpus: Two tokens with the same part-of-speech label, the same morphology,

and the same lemma9 are considered to be instances of the same word—and

consequently, if the spelling differs, spelling variants.10

This definition has a data sparsity issue when used for evaluation: Infrequent but

ambiguous types might not appear as instances of every possible word that they can

stand for. Therefore, some pairs of types that are seen as actual spelling variants by

human experts are counted as false positives according to this evaluation scheme.

This is illustrated by the examples pilatus (‘Pontius Pilate’) gehystlich (‘clerical’),

and frage (‘(the/to) question’) in Table 1.11

9 The lemmatization in the corpus includes word-sense disambiguation such that homonyms are

distinguished.
10 This definition leads to a broad definition of spelling variation, as words that are not spelling variants

in a strict sense might be conflated due to the lemmatization. One example are the adverbs vele ‘a lot’ and
mehr ‘more’ that are derived from the positive and the comparative form of the adjective vele and are

therefore lemmatized the same.
11 The abbreviations follow the Leipzig glossing rules (https://www.eva.mpg.de/lingua/resources/

glossing-rules.php).

123

686 F. Barteld et al.

https://www.eva.mpg.de/lingua/resources/glossing-rules.php
https://www.eva.mpg.de/lingua/resources/glossing-rules.php

All of the types in one of the sections of the table are considered spelling variants by

experts. However, only vraghe and frage, printed in bold in the table, are part of the

extracted spelling variant relation as they are the only two types that appear with the

same annotations in the texts. Though e.g. pilatus could appear in the nominative case,

due to data sparsity it only appears in the genitive case and is therefore not considered a

spelling variant of pylatus by our data-driven definition of spelling variants. This

problem is obviously connected to low-frequency types: If they are ambiguous, they

are unlikely to overlap in their grammatical function. Therefore, the actual precision of

the pipeline will be higher than measured on this data set.

It is important to note that we use two different parts of the dataset for assessing

which types are spelling variants. For training, we only use the training set to define

spelling variants as this is the only data source that is available when training. For

evaluating, we use the whole data set in order to get closer to the real spelling

variant relation. This leads to a situation in which the training set contains pairs of

types that are labeled as not being spelling variants but that are considered spelling

variants for the evaluation. For GML unde (‘and’), the training set contains the

following spelling variants: [en, un, und, van, vn, vnd, vnde, vnnd, vnnde, vude,
�vnde, ...nde]. The full corpus, however, also contains noch, unnde, and vnn as

further variants.

The evaluation is performed on the token, not on the type level. This has two

implications. First, each type is weighted by its frequency as each token instance of

a type is counted separately. We argue that it is more important to get frequent

tokens right, which—with the exception of high-frequency function words—holds

for a search application. Second, ambiguities that appear on the type level are

resolved on the token level (see Jurish 2010b, for a discussion of token level

normalization). This is illustrated by the example koning and koninge (‘king’).

Table 2 shows all morphological annotations of these two types in the corpus. As

can be seen from these examples, koninge is analyzed as spelling variant of koning if

Table 1 Examples for spelling variants that do not appear with the same annotations in ReN 0.3

Type POS Morph. Freq.

pylatus proper noun (M) NOM.SG 13

pilatus proper noun (M) GEN.SG 1

gheystlyk adjective F.DAT/ACC 2

geystlich adjective N.NOM 1

frage verb 1SG 3

vrage verb IMP.SG 2

vrage common noun (F) ACC.SG 1

vraghe common noun (F) NOM.SG 1

frage common noun (F) NOM.SG 1

frage verb 3SG 1

vrage verb 3SG 1

vrage verb 2PL 1

123

Token-based spelling variant detection in Middle Low German texts 687

the latter appears in dative or—as in example (2b)—in accusative case but not in

nominative case as in example (2a).

(2) a. Do sprak de koning

Then said the king.NOM

b. Vnde wundede den koning

And injured the king.ACC

(Alexander Helmst.)

To see the effect of resolving type ambiguities on the token level, Table 3 shows

micro-averaged precision (P), recall (R), F1 values, and the average number of

spelling variant candidates (C) in the training data when, for each token, all types

that appear as spelling variants of the respective type are added. The recall is 1,

however, the precision is rather low (0:32) due to the ambiguity on the token level.

This low precision of 0:32 is an upper bound for type-based approaches that detect

all spelling variants (i.e., that have a recall of 1).

6 A pipeline for spelling variant detection

In the following sections, we present a pipeline for spelling variant detection. This

pipeline extends previous work (Barteld 2017). The general approach consists of

two steps: in the first step, spelling variant candidates for a given type are generated.

This candidate set is then filtered in a second step using a supervised classifier.

Barteld (2017) obtained types with a low Levenshtein distance (Levenshtein 1966)

to the given type from the lexicon in the generation step and used a SVM with the

set of character n-grams taken from the aligned types (Ciobanu and Dinu 2014) and

the cosine similarity of vector representations of the words as features for the

filtering.

Table 2 Ambiguity of koning and koninge in ReN 0.3

Type Morph Freq.

koning NOM.SG 51

common noun (M) ACC.SG 22

GEN.SG 6

DAT.SG 5

koninge DAT.SG 15

common noun (M) NOM.PL 5

ACC.PL 1

ACC.SG 1

123

688 F. Barteld et al.

In this paper, we present an extended version of this general approach. Figure 2

gives an overview over the whole pipeline as it is presented in this paper. For a

given type, spelling variant candidates are generated in two ways on the type level:

By a simple lexicon lookup (Sect. 7) on the one hand and by surface similarity

(Sect. 8) combined with a SVM filter on the other hand. For the surface similarity,

we experiment with modified versions of the Levenhstein distance (Sect. 8.1).

Furthermore, we combine this similarity-based generation with a rule-based

simplification (Sect. 8.2) by first applying a simplifaction on all types before using

the distance-based generation. This addresses one major issue with our previous

approach, which is rooted in the low recall of the generation process: While a

Levenshtein distance of 1 has a relatively low recall, it still offers a better balance

between precision and recall than higher distances and led to the best overall results.

For the SVM filter, we substitute the standard SVM classifier with a Bagging-SVM

(BSVM) (Mordelet and Vert 2014), which is better suited for the training data (Sect.

9.1). A further addition to the pipeline presented in this paper is that candidates

obtained by these two generators are combined and subsequently filtered (at the

token level) by applying a CNN filter (Sect. 9.2).

An implementation of the pipeline using Python is available at https://github.

com/fab-bar/SpellVarDetection.

The runtime of the candidate generation step is governed by searching in the

lexicon for candidates with a Levenshtein distance lower than or equal to the given

threshold. For this, we use Levenshtein automata which have a runtime that is linear

with regard to the size of the dictionary (Schulz and Mihov 2002). This runtime can

also be improved by incorporating filtering techniques (Mihov and Schulz 2004).

For candidate filtering, the trained classifiers (SVM and CNN) have to be applied to

each of the candidates which can be done in parallel.

Table 3 Precision, recall, F1, and average number of candidates for the lookup approach (training set)

P R F1 C

0.32 1.00 0.49 14:38� 16:31

dessem

Lookup
desse
desseme
dessen

Simplification +
Modified
Levenshtein
distance

desses
deseme
. . .

SVM
filter

deseme
. . .

+

desseFem. tyt
desseMasc. torne
. . .

CNN
filter

desseMasc. torne
. . .

Candidate generation Candidate filtering

Type-based Token-based

Fig. 2 Overview over the spelling variant generation pipeline

123

Token-based spelling variant detection in Middle Low German texts 689

https://github.com/fab-bar/SpellVarDetection
https://github.com/fab-bar/SpellVarDetection

The intermediate results presented in the following sections are obtained from the

development set. Section 10 contains final results and an error analysis on the test

set.

7 Lexicon-based variant generation

A simple approach for spelling variant detection is a lexicon-based lookup of

spelling variants. The lexicon lists all known variants for each known type and is

extracted from the training data. As described in Sect. 5, the approach is evaluated

in two settings text-eval and OOV-eval. Table 4 shows the results for the lookup

approach. This approach cannot generalize to unknown types, therefore it only

produces spelling variant candidates in the text-eval setting. In the OOV-eval setting

where the evaluation is only done on unknown types no candidates are generated.

This leads to a precision of 112 and a recall of 0.

For the text-eval setting, the lexicon-based lookup is well suited for short but

frequent words and thus complements the generation of candidates based on surface

similarity. The GML personal pronoun ji (‘you’, 2PL.NOM) for example has the

following spelling variants in the training corpus: [ghy, gi, gij, gv, gy, je]. The
variant ghy will be especially hard to identify with an approach that is based on

surface similarity, since its Levenshtein distance of 3 is greater than the length of the

type itself.

All of the following approaches are combined with this lexicon-based lookup, so

we will show how well these approaches generalize to spelling variants not covered

by a simple lookup.

8 Candidate generation using surface similarity

8.1 Modified Levenshtein distance

As noted in Sect. 6 above, the simple Levenshtein distance is too coarse-grained and

can only serve as a first approximation to spelling variant detection (Bollmann

2012). While recall is not very high with a Levenshtein distance of 1, when we

increase the Levenshtein distance to 2 precision is already much lower, as can be

Table 4 Precision, recall, F1, and average number of candidates for the lookup approach (development

set)

text-eval OOV-eval

P R F1 C P R F1 C

0.36 0.74 0.49 5:68� 7:90 1.00 0.00 0.00 0:00� 0:00

12 We define precision to be 1 when there are no candidates generated as there are no falsely generated

candidates.

123

690 F. Barteld et al.

seen in Table 5.13 Example (3) illustrates how the number of candidates increases

dramatically with a higher Levenshtein distance. The number of spelling variant

candidates for spyse ‘dish/food’ is increased by the factor of 7 between Levenshtein

distance 1 and 2 while no new spelling variants are discovered (only spise and

spysze are actual spelling variants of spyse, whereas spysen ‘(to) dine’ is a related

verb).

(3) spyse

a. Distance 1:

spysen, spysze, spise

b. Distance 2:

spise, syde, sesse, spysze, pyne, spysen, pyze, syne, spere, syst,

spyede, swyge, ryse, spade, wyse, syme, spyker, swyne, spele,
sluse, spyl, pryse

In our pipeline, the missing granularity of the Levenshtein distance is addressed

by the filters that are applied afterwards. However, previous experiments (Barteld

2017) have shown that even after applying the filter, the drop in precision when

going from distance 1 to distance 2 leads to a decrease in F1 value despite the higher

recall. In this section, we present experiments with two options to make the

Levenshtein distance more fine-grained so that we obtain a better recall without the

loss in precision that comes with a Levenshtein distance of 2.

The first option is the addition of edit operations. The second option is to avoid a

fixed distance for all types and to make the distance dependent on the type for which

the candidates are obtained.

Regarding the addition of edit operations, we introduce two variants of the

Levenshtein distance that can be found in the literature and a new variant:

First, transpositions (T), ab ! ba, are sometimes added to the atomic edit

operations that have a cost of 1 (Damerau 1964). A second modification is the

Table 5 Precision, recall, F1, and average number of candidates for different Levenshtein distances

(development set)

Dist text-eval OOV-eval

P R F1 C P R F1 C

1 0.22 0.85 0.35 10.61 ± 10.84 0.20 0.27 0.23 2.10 ± 3.22

2 0.04 0.95 0.08 65.43 ± 56.47 0.04 0.64 0.07 25.86 ± 47.71

3 0.01 0.97 0.02 300.77 ± 212.50 0.01 0.87 0.01 216.36 ± 368.62

13 The given distances are always an upper bound. For brevity, we write distance 2 instead of the more

precise � 2.

123

Token-based spelling variant detection in Middle Low German texts 691

treatment of arbitrary merges and splits (MS) (i.e., ab $ c) as atomic operations

with a cost of 1. In GML texts, this appears for example in the pair ij and y.
As a third modification, we introduce a new variant of the Levenshtein distance.

This variant is inspired by a common preprocessing step for social media data, i.e.,

the deletion of repeated characters (Han et al. 2013). Instead of removing repetitions

in a preprocessing step, we integrate this directly into the metric by allowing

repetitions of common characters (Re) with a cost of 0 (or: after a match, insertions/

deletions of the matched character have a cost of 0):

8n2N1;x2Rdðx; xnÞ ¼ 0 ¼ dðxn; xÞ
With this addition, the modified Levenshtein distance is no longer a metric in the

mathematical sense as for example dðlol; loooolÞ ¼ 0.

Searching the set of all types for the neighbors of a given type is done using

Levenshtein automata (Mihov and Schulz 2004). T and MS are added as described

by Schulz and Mihov (2001) to the automata. Re is added by introducing states of

the form ði#e; xÞ for a position i in a word, an error value e, and a character x 2 R to

the automaton. These states can be reached from a match with character x in

position i� 1. From this state, insertions and deletions of x have a cost of 0.

Table 6 gives the results of using the modified Levenshtein distances with a

maximum distance of 1. These results show that adding transpositions and

repetitions to the Levenshtein distance leads to a small improvement in recall with a

reasonable loss in precision for both the text-eval and the OOV-eval setup. While

adding merges and splits leads to an even higher recall, the loss in precision is

higher too. Hence adding transpositions and repetitions leads to the best tradeoff

between recall and precision in the OOV-eval setting and a still very good tradeoff

in the text-eval setting.

Regarding the usage of different distance thresholds depending on the type, one

option is to normalize the Levenshtein distance by the length of one of the types

(Yujian and Bo 2007). Setting a threshold 0\t for this ratio between the length of

Table 6 Precision, recall, F1, and average number of candidates for different variants of the Levenshtein

distances (development set)

T MS Re text-eval OOV-eval

P R F1 C P R F1 C

– – – 0.22 0.85 0.35 10:61� 10:84 0.20 0.27 0.23 2:10� 3:22

x – – 0.22 0.85 0.35 10:66� 10:86 0.20 0.28 0.23 2:14� 3:29

– x – 0.11 0.90 0.19 23:21� 23:15 0.10 0.35 0.16 5:27� 9:66

– – x 0.21 0.88 0.33 11:80� 11:96 0.18 0.34 0.23 2:96� 5:28

x x – 0.11 0.90 0.19 23:27� 23:18 0.10 0.36 0.16 5:31� 9:71

x – x 0.21 0.88 0.33 11:84� 11:97 0.18 0.34 0.23 2:99� 5:34

– x x 0.10 0.91 0.18 25:03� 24:12 0.09 0.41 0.15 7:12� 13:49

x x x 0.10 0.91 0.18 25:08� 24:15 0.09 0.41 0.15 7:15� 13:54

123

692 F. Barteld et al.

the type and the Levenshtein distance, the maximum Levenshtein distance d to find

spelling variant candidates for a given type T with length lT can be computed using

the following formula:

d ¼ maxð1; blT � tcÞ
In order to generate candidates for short types as well, we use a minimum

Levenshtein distance of 1.

This results in a small improvement in recall with a smaller loss in precision than

using a Levenshtein distance [1 for all types (cf. Table 7). 0:2 leads to the best F1

value in the OOV setting and one of the best F1 values in the text-eval setting. We

use this threshold for further experiments.

Table 8 shows the comparison between Levenshtein distances 1, 2, and the

Levenshtein distance with the modifications presented above (Mod), i.e., the

combination of allowing transpositions and repetitions and using a different distance

based on the length of type with a threshold of 0:2. For the following experiments,

this combination is used to generate candidates (Lev(mod)).

The modifications of the Levenshtein distance presented so far are independent of

the data set and require no training. A commonly used addition of the basic

Levenshtein distance is to assign different costs to different substitutions or other

edit operations (Bollmann 2012 and Pettersson et al. 2013a, for normalization of

historical texts, Gomes and Pereira Lopes 2011, for cognate identification). These

weights are trained on the specific data. In the next section, we will present a similar

approach that combines rule-based simplification with the Levenshtein distance. For

this, a set of rules is applied to all types of the lexicon to map them to a simplified

lexicon. Then, all types whose simplified version is below the given Levenshtein

threshold are seen as spelling variant candidates. Since differences between types

that are covered by rules are removed before the Levenshtein distance is calculated,

these differences do not contribute to the distance. Therefore, this approach is

similar to assigning a cost of 0 to the edit operations encoded by the rules.

Table 7 Precision, recall, F1, and average number of candidates for different thresholds for the nor-

malized Levenshtein distance (development set)

t text-eval OOV-eval

P R F1 C P R F1 C

0.1 0.22 0.85 0.35 10:61� 10:84 0.20 0.27 0.23 2.10 ± 3.22

0.15 0.22 0.85 0.35 10:62� 10:83 0.20 0.27 0.23 2.13 ± 3.22

0.2 0.22 0.85 0.35 10:70� 10:78 0.20 0.31 0.24 2.39 ± 3.23

0.25 0.22 0.86 0.35 10:93� 10:67 0.16 0.39 0.22 3.78 ± 4.64$

0.3 0.21 0.86 0.34 11:39� 10:49 0.12 0.47 0.19 6.27 ± 7.13

0.35 0.18 0.87 0.30 13:52� 11:36 0.06 0.56 0.11 13.30 ± 17.93

0.4 0.13 0.89 0.22 19:49� 17:91 0.03 0.68 0.06 31.15 ± 36.82$

123

Token-based spelling variant detection in Middle Low German texts 693

8.2 Simplification rules

In this section we present rules that remove variation from the texts. These are

applied before the Levenshtein distance presented in the previous section is used to

generate candidates. Therefore spelling variants with a higher Levenshtein distance

than the specified threshold can be obtained. In the remainder of the section, we

present three different methods of rule-based simplifications (Kol, Nie, and Sup)

and evaluate them on GML data.

The first set of simpflication rules (Kol) consists of 26 rewrite rules that are

applied to the types. These rules have been developed by linguists using three

Middle Low German texts (Koleva et al. 2017). They use regular expressions with

lookahead and lookbehind, such as in (4), which substitutes g with gh unless the g
appears after an n or a g or before any of g, h or t.

(4) (?\![ng])g(?![ght]) ! gh

An advantage of such a ruleset is that it allows for a very fine-grained handling of

spelling variation, e.g. treating characters differently according to their context.

However, a disadvantage is that creating such a ruleset requires expert knowledge

and is time-consuming.

We compare this ruleset with two other rulesets (Nie and Sup) that are

deliberately simpler and therefore easier to create. The rulesets are simply defined

by a set of undirected correspondences between characters or one character and a

character bigram as in (5a). This allows for the following edit operations: (1)

deletion/insertion with left context (e.g. gh ! g), (2) substitution (e.g. i ! j), and
(3) merges/splits (e.g. ij ! y). This is similar to the rule pattern used by Pilz et al.

(2006) with the difference that the rules are not weighted. Allowing for merges in

the rules can capture some of the recall that was obtained by adding merges and

splits to the Levenshtein distance in the previous section. Except for deletions, these

operations are not context-sensitive. In our pipeline, the context of differences

between two types will be considered in the SVM filter that is applied afterwards.

To transform the set of undirected correspondences into a ruleset with a unique

order, two sorting operations are applied. First, each of the correspondences is

sorted by length and then alphabetically such that the correspondences [‘g’, ‘gh’]

and [‘gh’, ‘g’] both lead to the same rule, namely gh! g. Then the rules themselves

Table 8 Precision, recall, F1, and average number of candidates for the standard and the modified

Levenshtein distance (development set)

Dist. text-eval OOV-eval

P R F1 C P R F1 C

1 0.22 0.85 0.35 10:61� 10:84 0.20 0.27 0.23 2.10 ± 3.22

Mod 0.21 0.88 0.33 11:94� 11:91 0.17 0.38 0.24 3.33 ± 5.34

2 0.04 0.95 0.08 65:43� 56:47 0.04 0.64 0.07 25.86 ± 47.71

123

694 F. Barteld et al.

are sorted by length and alphabetically, to get the fixed ordering in which the rules

are applied. Finally, rules that would substitute the same character are substituted

with rules that map all of the characters involved in these rules to the same

character. As an example, the two correspondences [‘i’, ‘j’] and [‘y’, ‘i’] lead, after

sorting, to the two rules i ! j and i ! y, in that order. The second rule would never

be applied, leaving the characters j and y separate in the simplified language. To

avoid this, these rules are replaced with the rules i ! y and j ! y. This matches the

fact that i, j, and y are equivalent according to the given correspondences. The

ruleset for the correspondences in (5a) is given in (5b).

(5) a. [[‘g’, ‘gh’], [‘i’, ‘j’], [‘y’, ‘i’]]

b. gh ! g

i ! y

j ! y

For a specific type, the rules are applied in the specified order. With the rules in

(5b) the spelling variants ghjnc and ginc (‘went’) will both be simplified to gync.
For these rulesets that are obtained from correspondences between characters, we

compare a manually created set of such rules (Nie) with sets extracted from the

training set (Sup). Nie is created on the basis of a list of graphemes and allographes

in Middle Low German taken from Niebaum (2000).

For Sup, we take all the spelling variant pairs from the training set that have a

Levenshtein distance (with the modification of including merges and splits) of 1 and

extract the corresponding rules from them. In order to avoid extracting rules from

errors (potential misspellings, transcription, and annotation errors, cf. Barteld 2017),

we prune the ruleset by applying a frequency threshold to the rules, i.e., a minimal

number of pairs that a rule appears with. We also use a precision threshold for the

rules (Ernst-Gerlach and Fuhr 2006). The precision is calculated on the training set.

Table 9 shows the results for the different rulesets combined with the modified

Levenshtein distance from the previous section. Nie, the ruleset based on the list of

GML grapheme variants given in Niebaum (2000), shows the highest recall in both

settings (0.92/0.77) indicating that the list is quite comprehensive. However, the aim

of Niebaum (2000) is a presentation of possible grapheme variants and therefore

does not take the precision of the variation into account. Consequently, the precision

of the ruleset is quite low which makes the ruleset inappropriate for our purpose.

Kol shows a better precision. This was expected as the ruleset from Koleva et al.

(2017) applies the rules in a context-dependent fashion and was created with high

precision in mind. The F1 value is therefore a lot better. The rulesets that are learned

from the spelling variant pairs have a better recall then Kol. And despite their

simplicity, they do not show the same high loss in precision as the ruleset based on

Niebaum (2000).

Still, the precision for all rulesets is quite low as it can not be better than the

precision of using only Lev(mod). This will be addressed by the filters presented in

the next section. For the experiments with the filter, we use the learned rules with a

frequency of at least 40 and a precision threshold of 0:75 in combination with Lev

(mod). This combination leads to one of the rulesets where the precision is still at

123

Token-based spelling variant detection in Middle Low German texts 695

0:24 while recall is improved from 0:38 to 0:61 in the OOV-eval setting. In the text-

eval setting, this ruleset leads to one of the results with the second best recall (0:91)
and the second best F1 value. The ruleset is given in (6).

(6) [[‘ij’, ‘i’], [‘s’, ‘z’], [‘i’, ‘j’], [‘ff’, ‘f’], [‘j’, ‘y’], [, ‘a’], [‘f’, ‘v’],

[‘gh’, ‘g’], [‘u’, ‘v’], [‘ij’, ‘y’], [‘sz’, ‘s’], [‘th’, ’t’]]

By combining this ruleset with the Lev(mod) (S+Lev(mod)), we were able to

improve recall from 0:88 (text-eval)/0:38 (OOV-eval) to 0:91/0:61 with a loss in

precision of just 0:04/0:00, while using a distance of 2 leads to a recall of 0:95/0:64
with a loss in precision of 0:12 and 0:01, respectively. However, the precision is still
very low (0:17/0:15).

Table 9 Precision, recall, F1, and average number of candidates for different rulesets (development set)

Freq. Prec. text-eval OOV-eval

P R F1 C P R F1 C

Lev(1) 0.22 0.85 0.35 10:61� 10:84 0.20 0.27 0.23 2.10 ± 3.22

Lev(mod) 0.21 0.88 0.33 11:94� 11:91 0.17 0.38 0.24 3.33 ± 5.34

Kol 0.19 0.89 0.31 13:17� 12:50 0.15 0.52 0.24 5.12 ± 9.06

Nie 0.06 0.92 0.11 42:45� 34:51 0.03 0.77 0.07 33.73 ± 55.79

10 0.7 0.15 0.92 0.25 17:45� 15:02 0.13 0.68 0.21 8.25 ± 13.78

10 0.75 0.15 0.89 0.26 16:24� 14:64 0.14 0.61 0.22 6.87 ± 11.86

10 0.8 0.20 0.88 0.32 12:59� 12:49 0.17 0.39 0.23 3.55 ± 5.82

10 0.85 0.20 0.88 0.33 12:12� 12:08 0.17 0.38 0.24 3.42 ± 5.59

10 0.9 0.21 0.88 0.33 11:94� 11:91 0.17 0.38 0.24 3.33 ± 5.34

20 0.7 0.16 0.92 0.27 15:86� 14:17 0.13 0.66 0.22 7.53 ± 12.18

20 0.75 0.17 0.91 0.29 14:96� 13:91 0.15 0.61 0.24 6.42 ± 10.81

20 0.8 0.20 0.88 0.33 12:28� 12:16 0.17 0.39 0.24 3.45 ± 5.51

20 0.85 0.20 0.88 0.33 12:05� 11:95 0.17 0.38 0.24 3.39 ± 5.45

20 0.9 0.21 0.88 0.33 11:94� 11:91 0.17 0.38 0.24 3.33 ± 5.34

30 0.7 0.16 0.92 0.27 15:85� 14:17 0.13 0.66 0.22 7.50 ± 12.16

30 0.75 0.17 0.91 0.29 14:95� 13:91 0.15 0.61 0.24 6.39 ± 10.79

30 0.8 0.20 0.88 0.33 12:27� 12:16 0.17 0.38 0.24 3.42 ± 5.46

30 0.85 0.20 0.88 0.33 12:04� 11:96 0.17 0.38 0.24 3.38 ± 5.43

30 0.9 0.21 0.88 0.33 11:94� 11:91 0.17 0.38 0.24 3.33 ± 5.34

40 0.7 0.16 0.92 0.28 15:72� 14:19 0.14 0.65 0.23 7.10 ± 11.54

40 0.75 0.17 0.91 0.29 14:93� 13:90 0.15 0.61 0.24 6.34 ± 10.65

40 0.8 0.20 0.88 0.33 12:27� 12:16 0.17 0.38 0.24 3.42 ± 5.46

40 0.85 0.20 0.88 0.33 12:04� 11:96 0.17 0.38 0.24 3.38 ± 5.43

40 0.9 0.21 0.88 0.33 11:94� 11:91 0.17 0.38 0.24 3.33 ± 5.34

123

696 F. Barteld et al.

9 Candidate filtering

In this section, we present approaches to improve the precision of the generation

methods shown in the previous section by filtering candidate pairs using supervised

machine learning. The first filter works on the type level and uses a SVM with

radial-basis-function kernel to classify pairs of types as spelling variants or non–

spelling variants. The second filter works on the token level and uses a

convolutional neural network (CNN) to classify pairs of types with a left and a

right context as spelling variants or non–spelling variants.

9.1 Type-level filter

The candidates generated in the previous steps are filtered using a SVM. The

features are the same as described in our previous work (Barteld 2017). They

comprise character n-grams from the aligned pairs and the cosine similarity between

their two word embeddings. The embeddings are the same as we used in our

previous work as well and are obtained using singular value decomposition with

positive pointwise mutual information (SVD). In preliminary experiments, these

embeddings outperformed alternative approaches using neural networks, e.g. using

the skip-gram with negative-sampling method (SGNS) (Mikolov et al. 2013). This is

in line with the results of Hamilton et al. (2016) who conclude that “SVD is more

sensitive, as it performs well on detection tasks even when using a small dataset”.

SVD provided better results than SGNS, even when using subword information

(Bojanowski et al. 2017).

The classifier is trained on a training set that consists of generated candidates,

which are labeled whether they are an actual spelling variant pair or not. This data

set has two characteristics that are relevant for training the classifier: First, as

pointed out above, the set of instances labeled as negative contains falsely labeled

instances. Therefore this might best be approached as (PU learning) (Li and Liu

2005). Second, the dataset is highly imbalanced.

In our previous work, these two issues of the training set were addressed by

including only pairs of types where each type appeared at least 10 times in the data

to get a set of reliable negative instances and used random undersampling to tackle

the imbalance. We compare this approach with the use of a bagging classifier.

Bagging addresses both the imbalanced data and the PU learning (Galar et al. 2012;

Mordelet and Vert 2014). As a base classifier, we use an SVM as well. This is

implemented using the Python libraries Scikit-learn (Pedregosa et al. 2011) and

Imbalanced-learn (Lemaitre et al. 2017).

Table 10 shows the results of generating candidates with Levenshtein distance

thresholds 1 and 2 or when generating the candidates with S+Lev(mod) as described

in the previous sections along with the different SVM filters. For comparison, we

repeat the results of using only lookup generation and no filtering. We also included

the results for the perfect type-based spelling variant detection.

When comparing the simple SVM with the BSVM, the results are mixed: In the

text-eval setting, the simple BSVM performs comparably to the simple SVM. But in

123

Token-based spelling variant detection in Middle Low German texts 697

the OOV-eval setting it outperforms the simple SVM in terms of F1 value for all

generators. This is achieved by a better balance between precision and recall.

As for candidate generation in the text-eval setting, a Levenshtein distance of 1

and S+Lev(mod) show comparable results in terms of F1 value. However, this F1

value is close to the upper bound for type-based spelling variant detection. This

underlines the need for token-based spelling variant detection. In the OOV-eval

setting using S+Lev(mod) leads to better results.

For the token-level filter, we use the combination of S+Lev(mod) with a BSVM

filter. This combination performs comparably to using a Levenshtein distance of 1

and a simple SVM but with a better recall in the text-eval setting. In the OOV-eval

setting, this combination leads to the best results overall.

9.2 Token-level filter

The approaches presented above work on the type level, i.e., candidates are

generated and filtered regardless of the context. However, as noted above, two types

might be spelling variants only in specific contexts. Therefore, we apply a filter that

uses the context to filter out spelling variant candidates. We use a neural network

that is similar to the CNN architecture proposed by Kim (2014) for sentence

classification on the spelling variant candidate with n tokens before and after. The

network is depicted in Fig. 3a. The words are on the one hand represented using the

same (context) embeddings as with the type-based classifier. Differing from Kim

(2014), the embeddings are not fine-tuned in the training. Furthermore, we

concatenate a second (surface) embedding to the context embedding. This is similar

to Chakrabarty et al. (2017), but instead of using LSTMs to obtain the surface (what

they call syntactic) embedding, we create it using convolutional filters of length 2

Table 10 Precision, recall, F1, and average number of candidates for the SVM filter (development set)

Dist. Filter text-eval OOV-eval

P R F1 C P R F1 C

lookup 0.36 0.74 0.49 5:68� 7:90 1.00 0.00 0.00 0:00� 0:00

1 – 0.22 0.85 0.35 10:61� 10:84 0.20 0.27 0.23 2:10� 3:22

1 SVM 0.36 0.80 0.50 6:17� 7:91 0.48 0.20 0.29 0:64� 0:91

1 BSVM 0.35 0.81 0.49 6:49� 8:16 0.51 0.22 0.31 0:67� 0:94

Mod – 0.17 0.91 0.29 14:93� 13:90 0.15 0.61 0.24 6:34� 10:65

Mod SVM 0.33 0.87 0.47 7:47� 8:33 0.22 0.57 0.32 3:97� 6:66

Mod BSVM 0.34 0.88 0.49 7:22� 8:46 0.40 0.50 0.45 1:91� 2:93

2 – 0.04 0.95 0.08 65:43� 56:47 0.04 0.64 0.07 25:86� 47:71

2 SVM 0.17 0.92 0.29 14:99� 14:38 0.10 0.63 0.18 9:37� 15:29

2 BSVM 0.17 0.91 0.29 14:51� 15:78 0.21 0.60 0.31 4:46� 6:97

gold 0.34 1.00 0.51 8:08� 10:32 0.78 1.00 0.87 1:97� 3:96

123

698 F. Barteld et al.

and 3 that are applied to the (padded) sequence of characters for each word. This

part of the network is depicted in Fig. 3b. The surface representation is not pre-

trained.

For the sequence of words, we apply convolutional filters of length 2 up to the

context length + 1. In this way, the longest filters see each of the context words to

one side combined with the target word. We apply 50 filters of each length on the

character level and on the word level.

For the training data, we generate all candidates for each of the tokens in the

training set. Each pair of token and candidate is labeled whether it is a spelling

variant pair or not. Again, the data is imbalanced and contains actual spelling

variants in the set of negative pairs. To account for this, the network is trained on

batches of 20 positive and 20 negative pairs sampled randomly from the training

data. We train for 10 epochs, where one epoch consists of training on
npos
20

batches

with npos denoting the number of positive training examples. The parameters are

updated via backpropagation using Adam (Kingma and Ba 2014). Rectified Linear

Units are used for non-linearity. The architecture was implemented using Keras

(Chollet et al. 2015).

Table 11 shows the results for different context sizes. Furthermore, the

table contains results for configurations using only the context embeddings or the

surface embeddings, respectively. This shows that both representations help to

detect spelling variants. However, the results for the text-eval and the OOV-eval

setting diverge: For the text-eval setting, applying the token-based filter improves

the results with all settings. A context size of 1 or 2 using both context embeddings

and surface embeddings to represent the words gives the best results. For the OOV-

eval setting, however, applying the token-based filter leads to a drop in F1 value as

the loss in recall is not matched by the gain in precision. In the next section, we will

look at possible reasons for this.

. . . sprak de koninge werliken dussen . . .

. . . .
.
.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

. . .

sigmoid

word representation

conv(s)

max-pooling

dense

k o n i n g e

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. +

context embedding surface embedding

embedding

conv(s)

max-pooling

(a) CNN (b)Word representation

Fig. 3 Network architecture

123

Token-based spelling variant detection in Middle Low German texts 699

10 Results and error analysis

Table 12 presents the results on the test set. These show the same pattern as on the

development set: With type-level generation and filtering, we are able to improve

the recall compared to a simple lookup approach. In the text-eval setting, the loss in

precision is low, leading to a comparable F1 value. In the OOV-eval setting, where a

lookup is not available, both recall and precision are improved, compared to

candidate generation using the Levenshtein distance. In both settings the new

generation approach with a filter on the type level (S+Lev(mod)-BSVM) leads to an

improvement over our previous approach (Lev(1)-SVM).

Token-level filtering on the other hand is only helpful (in terms of F1 value) in

the text-eval setting. In the OOV-eval setting, the loss in recall is too high compared

to the gain in precision. The reason for this seems to be the high number of types

that are infrequent in the test set for OOV-eval. This is evident in Table 13, which

Table 11 Precision, recall, F1, and average number of candidates for the CNN filter (development set)

Embedd Size text-eval OOV-eval

P R F1 C P R F1 C

S+Mod-BSVM 0.34 0.88 0.49 7:22� 8:46 0.40 0.50 0.45 1:91� 2:93

both 1 0.56 0.63 0.59 3:16� 3:48 0.66 0.21 0.31 0:30� 0:77

both 2 0.53 0.65 0.58 3:45� 4:04 0.62 0.22 0.33 0:35� 0:85

both 3 0.53 0.62 0.57 3:24� 4:02 0.62 0.19 0.29 0:29� 0:79

cont. 1 0.53 0.65 0.58 3:44� 3:94 0.69 0.19 0.29 0:26� 0:72

cont. 2 0.48 0.63 0.55 3:63� 4:62 0.62 0.20 0.30 0:31� 0:84

cont. 3 0.49 0.56 0.52 3:20� 4:47 0.64 0.17 0.27 0:26� 0:71

surf. 1 0.48 0.69 0.56 4:03� 4:61 0.62 0.22 0.33 0:35� 0:86

surf. 2 0.45 0.72 0.55 4:45� 5:24 0.59 0.23 0.33 0:38� 0:93

surf. 3 0.47 0.68 0.56 4:02� 4:81 0.59 0.20 0.30 0:34� 0:83

Table 12 Precision, recall, F1, and average number of candidates for different pipelines (test set)

Dist. Filter text-eval OOV-eval

P R F1 C P R F1 C

Lookup 0.29 0.69 0.41 5.62 ± 7.72 1.00 0.00 0.00 0:00� 0:00

1 – 0.16 0.85 0.27 12.17 ± 11.41 0.11 0.24 0.16 3:91� 5:55

Mod – 0.14 0.87 0.25 14.26 ± 12.53 0.09 0.40 0.14 8:56� 12:68

1 SVM 0.25 0.83 0.39 7.72 ± 8.53 0.22 0.24 0.23 2:06� 2:58

Mod BSVM 0.28 0.83 0.42 6.91 ± 7.96 0.27 0.34 0.30 2:33� 2:86

+ CNN (both, 1) 0.47 0.57 0.52 2.80 ± 3.36 0.40 0.18 0.25 0:84� 1:37

+ CNN (surf., 1) 0.45 0.51 0.48 2.65 ± 3.19 0.34 0.16 0.22 0:88� 1:44

123

700 F. Barteld et al.

shows the results calculated without the types that appear more than 10 times in the

whole data set. Here, the token-based filter leads to a high drop in recall in both

settings, resulting in a lower F1. One reason for this might be that the context

embeddings for such infrequent terms are either not existent or not very reliable.

This is consistent with the fact that using only surface embeddings as features for

the filter leads to better results with infrequent types. The gain in precision that

using context embeddings brings is not enough for infrequent types.

The results also indicate that—especially for the OOV-eval setting where a

spelling variant lookup cannot be used—the recall of the generator still is a

bottleneck for the pipeline: While we were able to improve the recall in the OOV-

eval setting from 0:24 with Levenshtein distance 1 to 0:40 using the modified

Levenshtein distance, this is still a very low recall.

When generating types in the OOV-eval setting—i.e., without the possibility of

using a lookup and generating types from the test data for the test data, the generator

using the modified Levenshtein distance misses spelling variants for 588 types. We

sampled 100 types from these and looked for patterns regarding the variants that

were not generated.

Most of the missed spelling variants have a Levenshtein distance of 2, combining

two variation patterns that are infrequent in the data and/or have a low precision.

Therefore, they are not captured by the modified Levenshtein distance. One example

is the type ober ‘over’, for which the two variants aver and auer are missed. The

difference [‘a’, ‘o’] appears in 129 spelling variant pairs in the training data,

however the precision of this conflation set on the training set is only 0:33. [‘b’, ‘v’]
and [‘b’, ‘u’] each only appear in one spelling variant pair in the training set and

their precision is well below 0:1.
Many of the missing spelling variants involve prefixation and suffixation. One

example of a prefix that appears often in spelling variant pairs is g(h)e: richten,
gerichten ‘(to) sentence’; coft, ghecoft ‘(to) buy’; nemet, genomen ‘(to) take’. While

in Standard Modern German this is an inflectional prefix, in historical variants of

German (as well as Low German), the usage of this prefix often counts as a mere

Table 13 Precision, recall, F1, and average number of candidates for different pipelines on types with

frequency lower 10 (test set)

Dist. Filter text-eval OOV-eval

P R F1 C P R F1 C

Lookup 0.54 0.03 0.05 0:03� 0:19 1.00 0.00 0.00 0:00� 0:00

1 – 0.21 0.51 0.30 1:29� 1:40 0.14 0.25 0.18 1:55� 2:35

Mod – 0.17 0.68 0.27 2:08� 2:33 0.10 0.51 0.17 4:47� 6:59

1 SVM 0.29 0.51 0.37 0:93� 1:06 0.21 0.25 0.23 1:04� 1:51

Mod BSVM 0.45 0.61 0.51 0:72� 0:92 0.33 0.45 0.38 1:24� 1:81

+ CNN (both, 1) 0.51 0.34 0.41 0:35� 0:68 0.42 0.26 0.32 0:55� 1:13

+ CNN (surf., 3) 0.51 0.36 0.42 0:37� 0:71 0.41 0.27 0.32 0:59� 1:17

Token-based spelling variant detection in Middle Low German texts 701

123

variation. An example suffix from the data is en—or better the lack of the suffix en,
as the variation stems from the fact that this inflectional suffix can be missing, e.g. in

the pairs hunderden, hundert ‘hundred’, and uint, vinden ‘(to) find’.

11 Conclusion and further work

In this paper, we presented a pipeline for spelling variant detection in non-standard

texts which is a challenge for many DH applications. Spelling variant detection is an

alternative to normalization for improving the performance of NLP tools on non-

standard data and facilitating searching in the texts. In contrast to normalization, this

approach works without reference to a target language. Therefore, it is usable even

when a target language does not exist or is not available. The pipeline presented in

this paper is trainable on examples for spelling variants from the non-standard data.

Given a token, i.e., a type with a specific context, the pipeline outputs spelling

variants for this type. This works by first generating spelling variant candidates.

These candidates are then filtered on the type level and subsequently filtered on the

token level. The pipeline was evaluated using precision, recall, and F1 on GML

texts in two settings that simulate the two use-cases of (i) training and applying NLP

tools on the non-standard data (OOV-eval) and (ii) searching in the data (text-eval).

By adding a rule-based simplfication step, using a modified Levenshtein distance

and a Bagging-SVM instead of a standard SVM, we were able to improve the type-

based spelling variant generation from our previous work. For the text-eval setting,

which estimates the performance of the candidate generation for searching in GML

texts, we were able to improve the F1 score from 0:39 to 0:42. This improvement is

largely due to an improvement for infrequent types: For types that occur less than 10

times, the original pipeline achieved an F1 score of 0:37, while the presented

pipeline achieved 0:51. Consequently the improvement in the OOV-eval setting that

focuses on unknown and therefore often infrequent types is more pronounced: Here

we were able to improve the F1 score from 0:23 to 0:30.
The main contribution of this work is the token-level filter. By applying this

filter, the F1 value increases to 0:52 in the text-eval setting. In the OOV-eval setting,
however, the token-level filter did not perform as well, leading to a drop in F1 value

when applying the filter. The reason for this is that the filter does not perform well

on infrequent types. Therefore, we plan to concentrate on such types in future work.

One approach that we will look into is applying the rule-based simplification to the

corpus before learning the context embeddings. This groups probable spelling

variants together and could thus lead to better representations.

However, as the pipeline uses separate filters, digital humanities researchers

using the spelling variant detection can choose between a higher recall or a higher

precision by simply leaving out, e.g. the token-level filter. To assist the users with

that, we plan to integrate the pipeline into an easy to use search application for DH

researchers, which would facilitate searching collections of unannotated non-

standard texts by suggesting and searching for spelling variants of the query. The

separation of the different parts of the pipeline will allow researchers to have fine-

grained control over the variants produced. Researchers could, for instance, remove

702 F. Barteld et al.

123

types that are generated by the Levenshtein generator or re-include types that are

filtered either by the type- or the token-level filter.

Acknowledgements The first author was supported by the German Research Foundation (DFG), grant
SCHR 999/5-2. We would like to thank the anonymous reviewers for their helpful remarks and Adam
Roussel for improving our English. All remaining errors are ours.

References

Adesam, Y., & Bouma, G. (2016). Old Swedish part-of-speech tagging between variation and external

knowledge. In Proceedings of the 10th SIGHUM workshop on language technology for cultural
heritage, social sciences, and humanities, (pp. 32–42). Berlin, Germany: Association for

Computational Linguistics.

Barteld, F. (2017). Detecting spelling variants in non-standard texts. In Proceedings of the student
research workshop at the 15th conference of the European chapter of the association for
computational linguistics, (pp. 11–22). Valencia, Spain: Association for Computational Linguistics.

Barteld, F., Schröder, I., & Zinsmeister, H. (2015). Unsupervised regularization of historical texts for POS

tagging. In Proceedings of the workshop on corpus-based research in the humanities (CRH), (pp. 3–
12). Warsaw, Poland.

Barteld, F., Schröder, I., & Zinsmeister, H. (2016). Dealing with word-internal modification and spelling

variation in data-driven lemmatization. In Proceedings of the 10th SIGHUM workshop on language
technology for cultural heritage, social sciences, and humanities, (pp. 52–62). Berlin, Germany:

Association for Computational Linguistics.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword

information. Transactions of the Association for Computational Linguistics, 5, 135–146.
Bollmann, M. (2012). (Semi-)automatic normalization of historical texts using distance measures and the

Norma tool. In Mambrini F, Passarotti M, Sporleder C (eds) Proceedings of the second workshop on
annotation of corpora for research in the humanities (ACRH-2), (pp. 3–14). Lisbon, Portugal.

Bollmann, M. (2013). POS tagging for historical texts with sparse training data. In Proceedings of the 7th
linguistic annotation workshop and interoperability with discourse, (pp. 11–18). Sofia, Bulgaria:
Association for Computational Linguistics.

Bollmann, M., & Søgaard, A. (2016). Improving historical spelling normalization with bi-directional

LSTMs and multi-task learning. In Proceedings of COLING 2016, the 26th international conference
on computational linguistics: technical papers, (pp. 131–139). Osaka, Japan.

Bollmann, M., Petran, F., & Dipper, S. (2011). Applying rule-based normalization to different types of

historical texts—An evaluation. In Proceedings of the 5th language & technology conference:
humanlanguage technologies as a challenge for computer science and linguistics (LTC 2011), (pp.
339–344). Poznan, Poland.

Bollmann, M., Bingel, J., & Søgaard, A. (2017). Learning attention for historical text normalization by

learning to pronounce. In Proceedings of the 55th annual meeting of the association for
computational linguistics (volume 1: long papers), (pp. 332–344). Vancouver, Canada : Association
for Computational Linguistics

Chakrabarty, A., Pandit, O.A., & Garain, U. (2017). Context sensitive lemmatization using two

successive bidirectional gated recurrent networks. In Proceedings of the 55th annual meeting of the
association for computational linguistics (volume 1: long papers), (pp. 1481–1491). Vancouver,
Canada: Association for Computational Linguistics.

Chollet F, et al. (2015). Keras. https://github.com/fchollet/keras

Chrupała, G. (2014). Normalizing tweets with edit scripts and recurrent neural embeddings. In

Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2:
short papers), (pp. 680–686). Baltimore, Maryland, USA: Association for Computational

Linguistics.

Ciobanu, M.A., & Dinu, L.P. (2014). Automatic detection of cognates using orthographic alignment. In

Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2:
short papers), (pp. 99–105). Baltimore, Maryland, USA: Association for Computational Linguistics.

Token-based spelling variant detection in Middle Low German texts 703

123

https://github.com/fchollet/keras

Costa Bertaglia, T.F., & Volpe Nunes, MdG. (2016). Exploring word embeddings for unsupervised

textual user-generated content normalization. In Proceedings of the 2nd workshop on noisy user-
generated text (WNUT), (pp. 112–120). Osaka, Japan: The COLING 2016 Organizing Committee.

Damerau, F. J. (1964). A technique for computer detection and correction of spelling errors.

Communications of the ACM, 7(3), 171–176.
Derczynski, L., Ritter, A., Clark, S., & Bontcheva, K. (2013). Twitter part-of-speech tagging for all:

Overcoming sparse and noisy data. In Proceedings of the international conference recent advances in
natural language processing (RANLP 2013), (pp. 198–206). Hissar, Bulgaria.

Dipper, S., Lüdeling, A., & Reznicek, M. (2013). NoSta-D: A corpus of German Non-Standard Varieties.

In M. Zampieri, S. Diwersy (eds) Non-standard data sources in corpus-based research, ZSM-

Studien, vol 5, Shaker, (pp. 69–76).

Ernst-Gerlach, A., & Fuhr, N. (2006). Generating search term variants for text collections with historic

spellings. In M. Lalmas, A. MacFarlane, S. Rüger, A. Tombros, T. Tsikrika & A. Yavlinsky (Eds.),

Advances in Information Retrieval. ECIR 2006. Lecture Notes in Computer Science (Vol 3936, pp.

49–60). Berlin: Springer.

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles for

the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 463–484.

Gomes, L., & Pereira Lopes, J.G. (2011). Measuring spelling similarity for cognate identification. In L.

Antunes, H. S. Pinto (Eds.), Progress in artificial intelligence: 15th Portuguese conference on
artificial intelligence. EPIA 2011. Lecture Notes in Computer Science (Vol 7026, pp. 624–633).

Berlin: Springer.

Hamilton, W.L., Leskovec, J., & Jurafsky, D. (2016). Diachronic word embeddings reveal statistical laws

of semantic change. In Proceedings of the 54th annual meeting of the association for computational
linguistics (volume 1: long papers), (pp. 1489–1501). Berlin, Germany: Association for Compu-

tational Linguistics.

Han, B., Cook, P., & Baldwin, T. (2013). Lexical normalization for social media text. ACM Transactions
on Intelligent Systems and Technology, 4(1), 5:1–5:27.

Hauser, A.W., & Schulz, K.U. (2007). Unsupervised learning of edit distance weights for retrieving

historical spelling variations. In Proceedings of the first workshop on finite-state techniques and
approximate search, (pp. 1–6). Borovets, Bulgaria.

Hogenboom, A., Bal, D., Frasincar, F., Bal, M., De Jong, F., & Kaymak, U. (2015). Exploiting emoticons

in polarity classification of text. Journal of Web Engineering, 14(1–2), 22–40.
Jurish, B. (2010a). Comparing canonicalizations of historical German text. In Proceedings of the 11th

Meeting of the ACL Special Interest Group on Computational Morphology and Phonology, (pp. 72–
77). Uppsala, Sweden: Association for Computational Linguistics.

Jurish, B. (2010b). More than words: Using token context to improve canonicalization of historical

German. Journal for Language Technology and Computational Linguistics (JLCL), 25(1), 23–39.
Jurish, B. (2011). Finite-state canonicalization techniques for historical German. Ph.D. thesis, University

of Potsdam, Germany.

Jurish, B., Thomas, C., & Wiegand, F. (2014). Querying the Deutsches Textarchiv. In U. Kruschwitz , F.

Hopfgartner & C. Gurrin (eds) MindTheGap2014 (pp. 25–30). Berlin, Germany.

Kestemont, M., Daelemans, W., & Pauw, G. D. (2010). Weigh your words–memory-based lemmatization

for Middle Dutch. Literary and Linguistic Computing, 25(3), 287–301.
Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of the 2014

conference on empirical methods in natural language processing (EMNLP), (pp. 1746–1751). Doha,
Qatar: Association for Computational Linguistics.

Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR abs/1412.6980.

Kobus, C., Yvon, F., & Damnati, G. (2008). Normalizing SMS: Are two metaphors better than one? In

Proceedings of the 22nd international conference on computational linguistics (Coling 2008), (pp.
441–448). Manchester, United Kingdom.

Koleva, M., Farasyn, M., Desmet, B., Breitbarth, A., & Hoste, V. (2017). An automatic part-of-speech

tagger for Middle Low German. International Journal of Corpus Linguistics, 22(1), 107–140.
Lemaitre, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A Python toolbox to tackle the

curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17),
1–5.

704 F. Barteld et al.

123

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8), 707–710.

Li X. L., Liu B. (2005). Learning from positive and unlabeled examples with different data distributions.

In J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge & L. Torgo (Eds.), Machine Learning: ECML
2005. Lecture Notes in Computer Science (Vol 3720, pp. 218–229). Berlin: Springer.

Ljubešić, N., Zupan, K., Fišer, D., & Erjavec, T. (2016). Normalising Slovene data: historical texts vs.

user-generated content. In Proceedings of the 13th Conference on Natural Language Processing
(KONVENS 2016), (pp. 146–155). Bochum, Germany.

Logačev, P., Goldschmidt, K., & Demske, U. (2014). POS-tagging historical corpora: The case of Early

New High German. In Proceedings of the thirteenth international workshop on treebanks and
linguistic theories (TLT-13), (pp. 103–112). Tübingen, Germany.

Mihov, S., & Schulz, K. U. (2004). Fast approximate search in large dictionaries. Computational
Linguistics, 30(4), 451–477.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in

vector space. CoRR abs/1301.3781.

Mordelet, F., & Vert, J.P. (2014). A bagging SVM to learn from positive and unlabeled examples. Pattern
Recognition Letters 37(Supplement C):201–209.

Niebaum, H. (2000). Phonetik und Phonologie, Graphetik und Graphemik des Mittelniederdeutschen. In

Sprachgeschichte: Ein Handbuch zur Geschichte der deutschen Sprache und ihrer Erforschung, 2nd
edn (pp. 1422–1430). Berlin, Boston: DeGruyter.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,

Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12(Oct):2825–2830.

Pettersson, E., Megyesi, B., & Nivre, J. (2012). Rule-based normalisation of historical text — A

diachronic study. In Proceedings of KONVENS 2012 (LThist 2012 workshop), (pp. 333–341).

Vienna, Austria.

Pettersson, E., Megyesi, B., & Nivre, J. (2013a). Normalisation of historical text using context-sensitive

weighted levenshtein distance and compound splitting. In Proceedings of the 19th Nordic conference
of computational linguistics (NODALIDA 2013), (pp. 163–179). Oslo, Norway.

Pettersson, E., Megyesi, B., & Tiedemann, J. (2013). An SMT approach to automatic annotation of

historical text. Proceedings of the Workshop on Computational Historical Linguistics at NODALIDA,
2013, (pp. 54–69). Oslo, Norway.

Pilz, T., Luther, W., Fuhr, N., & Ammon, U. (2006). Rule-based search in text databases with

nonstandard orthography. Literary and Linguistic Computing, 21(2), 179–186.
Piotrowski, M. (2012). Natural language processing for historical texts. Synthesis lectures on human

language technologies 17, Morgan & Claypool Publishers.

Schulz, K., & Mihov, S. (2001). Fast string correction with Levenshtein-automata. CIS-Report 01-127.
Tech. rep., CIS, University of Munich.

Schulz, K., & Mihov, S. (2002). Fast string correction with Levenshtein-automata. International Journal
on Document Analysis and Recognition, 5, 67–85.

Tjong Kim Sang, E., Bollmann, M., Boschker, R., Casacuberta, F., Dietz, F., Dipper, S., et al. (2017). The

CLIN27 shared task: Translating historical text to contemporary language for improving automatic

linguistic annotation. Computational Linguistics in the Netherlands Journal, 7, 53–64.
van der Goot, R., Plank, B., & Nissim, M. (2017). To normalize, or not to normalize: The impact of

normalization on part-of-speech tagging. In Proceedings of the 3rd workshop on noisy user-
generated text, (pp. 31–39). Copenhagen, Denmark: Association for Computational Linguistics.

Weissweiler L. & Fraser A. (2018). Developing a Stemmer for German Based on a Comparative Analysis

of Publicly Available Stemmers. In G. Rehm, T. Declerck (Eds.), Language Technologies for the
Challenges of the Digital Age. GSCL 2017. Lecture Notes in Computer Science (Vol 10713, pp. 81–
94). Cham: Springer.

Yang, Y., & Eisenstein, J. (2016). Part-of-speech tagging for historical English. In Proceedings of the
2016 conference of the North American chapter of the association for computational linguistics:
human language technologies (NAACL-HLT 2016), (pp. 1318–1328). San Diego, California, USA:

Association for Computational Linguistics

Token-based spelling variant detection in Middle Low German texts 705

123

Yujian, L., & Bo, L. (2007). A normalized Levenshtein distance metric. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(6), 1091–1095.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published

maps and institutional affiliations.

706 F. Barteld et al.

123

	Token-based spelling variant detection in Middle Low German texts
	Abstract
	Introduction
	Defining and quantifying spelling variation
	Related work
	Description of the data
	Evaluation
	A pipeline for spelling variant detection
	Lexicon-based variant generation
	Candidate generation using surface similarity
	Modified Levenshtein distance
	Simplification rules

	Candidate filtering
	Type-level filter
	Token-level filter

	Results and error analysis
	Conclusion and further work
	Acknowledgements
	References

