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Abstract

Operant motives are unconscious intrinsic
desires that can be measured by implicit
methods, such as the Operant Motive Test
(OMT) employs. During the OMT, par-
ticipants are asked to write freely associ-
ated texts to provided questions and im-
ages. Trained psychologists label these
textual answers with one of four motives.
The identified motives allow for psychol-
ogists to predict behavior, long-term de-
velopment, and subsequent success. We
use a long short-term memory neural net-
work (LSTM) combined with an attention
mechanism for classification of OMT tex-
tual answers and show state-of-the-art per-
formance over previous work. When inves-
tigating tokens that have high associated
attention weights with the Linguistic In-
quiry and Word Count (LIWC) tool, we
find a weak connection between LIWC cat-
egories and the OMT theory. Lastly, we au-
tomatically annotate and count motives per
participant and correlate counts with aca-
demic grades, finding a weak correlation
between certain motives and subsequent
academic success.

1 Introduction

The goal of our research is to classify psychometric
textual data. Furthermore, we aim to investigate al-
gorithmic decision making and validate automatic
annotation by predictions in accordance with the
psychometric theory. To pursue this goal, we per-
form multi-label classification on the Operant Mo-
tive Test (OMT, Section 2) with four labels. During
this OMT, participants textually answer questions
on images such as displayed in Figure 1 to provided
questions.

Recent advances in artificial neural network ar-
chitectures have established mechanisms that allow

Figure 1: Some examples of images to be inter-
preted by participants utilized for the operant mo-
tive test (OMT). Exemplary answers given in List-
ing 1 correspond to the first picture. (Kuhl and
Scheffer, 1999).

researchers to, in a limited fashion, inspect reasons
for algorithmic decisions. One of these mecha-
nisms is called attention and was found by Young
et al. (2018) to be among the most broadly investi-
gated and adopted elements of deep neural machine
learning. We want to investigate access to algorith-
mic decision making by employing this attention
mechanism (Section 3).

Lastly, the OMT theory states that some labeled
motives allow for predictions of subsequent aca-
demic success, which we inspect by counting an-
notated labels and correlating these counts with
participant’s academic grades.

Even though there is a high demand for the au-
tomation of psychological textual data analysis
(NLPsych), comparably little research has been per-
formed on this interdisciplinary task (Johannßen
and Biemann, 2018). Reasons for this circum-
stance include the lack of available labeled psy-
chological text data, as Husseini Orabi et al. (2018)
point out, and the mere difficulty of capturing psy-
chological traits solemnly from texts, especially
short texts. Since first, psychologists are skilled



workers for such a labeling task and secondly, said
task is difficult, labeling such psychometric tex-
tual data is costly. Also, interpretability and trans-
parency are crucial for gaining insights into the
nature of some tasks including security, medicine,
and psychology, which is often more valuable for
researchers than reaching the highest classification
performance scores (Zhang et al., 2018).

In this work, we focus on the following research
questions: i) Do neural architectures outperform
a previous non-neural machine learning approach
and if so, which architectures perform how well?
ii) Do the attention weights matter and reveal any
insights into algorithmic decision making? iii) Is
there a correlation between automatically predicted
motives and subsequent academic success?

We describe the OMT in Section 2. Thereafter,
we will discuss related work in Section 3. Sec-
tion 4 describes the data basis of this work and its
characteristics. Our research methodology will be
described in Section 5. Results will be presented
in Section 6. Finally, a conclusion will be drawn in
Section 7.

2 Operant Motive Test

Implicit or operant motives are unconscious intrin-
sic desires, which can be measured by psychologi-
cal implicit methods, which require participants to
use introspection for the assessment of psychologi-
cal attributes (Gawronski and De Houwer, 2014).
During the testing procedure, participants are asked
to write freely associated texts to provided ques-
tions and images. The OMT is such a test and
emerged from the Thematic Apperception Test
(TAT, (Murray, 1943)).

Listing 1 displays a few of the training in-
stances that correspond to the first picture of Figure
1, which displays some examples out of several.
Those images show one or multiple persons often
in unclear scenarios and situations. Applicants are
asked to answer four questions: i) What is impor-
tant for the persons in this situation and what is
s/he doing? ii) What is the person feeling? iii)
Why does the person feel this way? iv) How does
the story end? The four answers are concatenated
to a single string. On this string, it is possible
to annotate one of the three motives a) Affiliation
(German ’Anbindung’, letter A), b) Achievement
(German ’Leistung’, letter L) and c) Power (Ger-
man ’Macht’, letter M). The very first observed
motive applies to the whole string, which is the

so-called primacy rule (Kuhl and Scheffer, 1999).
Once participants express a motive, this motive is
saturated. Therefore, the following motives ought
to be ignored when analyzing the answers. If no
motive can be identified, a zero will be annotated
(the so-called zero rule).
A sie nimmt am Gespräch nicht teil und
wendet sich ab. gelangweilt. es
interessiert sie nicht, worüber die
anderen beiden reden. schlecht.

M weicht ängstlich zuruück. unterlegen.
wird zurechtgewiesen.
Gelegenheit den Fehler zu korrigieren
------- Translation -----

A she does not take part in the con-
versation and turns away. bored.
She does not care what the other
two are talking about. Bad.

M withdraws anxiously. Inferior.
is rebuked. Opportunity to
correct the mistake.

Listing 1: German text examples of OMT answers
with A being Affiliation and M being the power
motive. The texts correspond to the first picture of
Figure 1. Translations into English provided by the
authors.

Implicit motives allow for the prediction of clin-
ically measured non-verbal interpersonal commu-
nication such as the amount of smiling, laughing
or eye contact (McAdams et al., 1984) as well as
the job performance (Lang et al., 2012). Schef-
fer (2004) was able to show a significant (p < 0.02)
multiple regression correlation with a negative beta
slope (hence the lower the German grade, the better
with 1 being very good and 5 having failed) be-
tween the achievement motive and z-standardized
average grades of students from different depart-
ments.

3 Related Work

Previous approaches to predicting psychologi-
cal traits. So far, approaches to psychological
traits identification from texts often examined the
connection between language and mental diseases.
Current research mostly focuses on e.g. the detec-
tion of dementia (Masrani et al., 2017), crises (De-
masi et al., 2019), suicide risks (Matero et al.,
2019), mental illnesses (Zomick et al., 2019) or
anxiety (Shen and Rudzicz, 2017) by the use of
some form of natural language processing.

Nonetheless, some findings focus on motivation,
success or characteristics. Tomasello (2002) de-
scribes the psychology of language as the method
of focusing on the way people express themselves



rather than to focus on what meaning is conveyed.
Linguistic Inquiry and Word Count (LIWC) is

a tool developed by Pennebaker et al. (1999) for
text analysis, that utilizes previously validated cat-
egories containing word lists for which the mem-
bership ratio of an input sequence is being asserted.
Furthermore, the tool calculates statistical values
e.g. the average word length, the average count
of word per sentence or the frequency of words
longer than 6 characters. LIWC can be considered
to be a standard tool for the analysis of texts from
the psychological domain due to its broad utiliza-
tion among researchers (Johannßen and Biemann,
2018). The German version of LIWC has been
developed by Wolf et al. (2008).

So-called closed-class words are by far more
informative than open-class words in terms of psy-
chological language research. Closed-class words
are words that tend to not change over centuries,
which can be e.g. pronouns, prepositions or ad-
verbs. Open-class words, on the other hand, are
words that are strongly influenced by the time be-
ing, such as historical events or names. Pennebaker
et al. (2014) found a link between the usage of
closed-class words and academic success. During
the study, which used the LIWC tool on written
essays of college applicants and connected these to
subsequent academic success, the authors showed
that the rate of closed-class words are significantly
(p < 0.01) positively correlated to subsequent aca-
demic success, regardless of the chosen essay topic
or sought major.

In (Johannßen et al., 2019) we engineered hand-
crafted features to train a logistic model tree (LMT,
Landwehr et al. (2005)) for classifying the operant
motives. An LMT is a decision tree, which per-
forms logistic regressions at its leaves. The LMT
model reached an F-score of 80.1. The perplexities
of language models for each motive, closed-class
words, and ratios (words per sentence ratio, type-
token ratio) were the main features for classifica-
tion decisions.

Deep learning. Since assessing psychological
traits solemnly from language is a challenging task,
many researchers circumvent this bottleneck by in-
cluding further personal information e.g. from so-
cial media platforms (Souri et al., 2018). Husseini
Orabi et al. (2018) adapted this approach when they
employed convolutional neural networks (CNN, Le-
Cun et al. (1998)) and recurrent neural networks
(RNN) in combination with further information

from social media as labels such as average age,
gender or posting frequency to enhance the detec-
tion of mental disorders.

In order to detect crises, Kshirsagar et al. (2017)
combined neural and non-neural techniques. The
data was obtained from the anonymous emotional
support network Koko1, which is available through
multiple messaging applications.

A long short-term memory neural network
(LSTM, (Hochreiter and Schmidhuber, 1997)) is a
type of RNN which, in turn, is a deep neural net-
work architecture, that allows for the neural cells to
access other cells of the same recurrent layer with
a time delay and thus develop a so-called memory.
An LSTM furthermore employs memory cells that
allow storing information of an arbitrary time hori-
zon. Forget and update gates allow for these cells
to purposely omit information and control, how
the memory is altered. LSTMs have successfully
solved the issues of vanishing or exploding gradi-
ents present in general RNNs (Hochreiter, 1998)
and have been utilized for classifying short texts.

Lai et al. (2015) designed a recurrent convolu-
tional neural network (RCNN) for text classifica-
tion with promising results. An RCNN is an RNN
with a max-pooling layer as its output. The main
advantages of an RCNN in comparison with RNNs
is the enhanced selection of targets or regions to
have an impact on algorithmic decision making.

Young et al. (2018) found attention mecha-
nisms as part of decoder-encoder-architectures to
be amongst these recent advancements in their
survey. Accordingly, attention mechanisms al-
low for decoders to assess their memory by re-
ferring back to their input sequence, which can
enhance the network’s performance. The idea
of employing attention to a sequence-to-sequence
(Seq2Seq) encoder-decoder system originated from
Bahadanau et al. (2015).

With a sequence of annotations hi being
(h1, . . . ,h(Tx)), a context vector ci represents the
weighted sum of the annotations via:

ci =
Tx

∑
j=1

αi jh j (1)

The weights αi j are computed as:

αi j =
exp(ei j)

∑
Tx
k=1 exp(eik)

(2)

1https://itskoko.com/



whilst ei j = a(si−1,h j), with a(. . .) being a
score function describing how well two words are
aligned.

In other words, the system encodes an input se-
quence (this could be e.g. a certain language or a
whole text to be summarized) into a context vec-
tor. This context vector together with hidden states
functions as input for the attention mechanism,
which computes attention weights and passes this
context vector together with the attention weights
on to the output layer. This process is illustrated in
Figure 2.

Figure 2: Illustration of the LSTM with attention
mechanism. The LSTM receives hidden states and
attention weights as inputs in order to output a
corresponding context vector, which thereafter gets
fed to a softmax output layer.

Attention mechanisms were successfully em-
ployed for various tasks. Gupta et al. (2018) uti-
lized a CNN on group images for learning the
global representation of the image and employed
an attention mechanism for merging faces in or-
der to learn local representations of only the faces,
thus leading to a network capable of detecting emo-
tions from entire groups of people. For this, the
authors employed a Seq2Seq system with attention
mechanism (the additional attention mechanism
was proposed by Vaswani et al. (2017)). Images
received automated descriptions by using a CNN
encoder, an attention layer, and an LSTM decoder
by Xu et al. (2015). Furthermore, the authors were
able to project the attention weights onto the im-
ages, visualizing the gaze of the network. Speech
has been analyzed for detecting emotions utilizing
an attention mechanism by Ramet et al. (2018).

On textual data, attention mechanisms have en-
hanced the performance of classification and com-
prehension tasks. Hermann et al. (2015) advanced
automated reading comprehension and question an-
swering for texts with minimal prior knowledge.
So-called self-attention was the enabler of seman-
tic role labeling (SRL) for Tan et al. (2018). Self-
attention is a special case of an attention mech-
anism, that only requires a single sequence to
compute its representation. Vinyals et al. (2015)
showed that a Seq2Seq model with attention mecha-
nism could enhance syntactic constituency parsing
to state-of-the-art performance.

A small subset of this data was annotated by uti-
lizing attention over words. The authors were able
to find the explanation of depressions from texts
with a performance as well as human annotators
had, which the authors refer to as gold explanation.

On the contrary, recent studies have questioned
the interpretability of attention weights and sug-
gested not to equate attention with explanation
(Jain and Wallace, 2019). The authors found that
if attention weights contribute to algorithmic deci-
sion making, the shuffling of these weights should
significantly worsen results.

4 Data

The available data set has been collected and hand-
labeled by researchers of the University of Trier.
More than 14,600 volunteers participated in an-
swering the OMT questions described in Section
2 to 15 provided images such as displayed in Fig-
ure 1. These participants produced 220,859 unique
answers. Each answer was labeled by psycholo-
gists, which were trained with the OMT manual
by Kuhl and Scheffer (1999). After pre-processing
and cleaning the data, 209,716 text instances re-
main. The test and development set both constitute
10% of the available data, which is 20,960 instances
each. The amount of motives in the available data
is unbalanced with power (M) being by far the most
frequent with 59%, achievement (L) constituting
19% of the data, affiliation (A) 17% and zero 5%
(shown in Table 2 and in Figure 3). The pairwise
annotator intraclass correlation was r = .85 on the
Winter scale (Winter, 1994).

5 Methodology

Our methodology can be divided into two parts:
the first is a natural language processing (NLP)
task, which addresses research questions i) and ii)



Figure 3: Graphical representation of the unevenly
distributed motive labels amongst the data set.

and the second task answers research question iii)
by counting classified motives per participant and
correlating this count to academic grades.

In order to test whether an LSTM with an at-
tention mechanism succeeds in outperforming the
former best model for classifying the OMT, we
employ the approach by Xu et al. (2015) on an
already existing code basis for multiple text classi-
fiers, which is utilized for further benchmarks as
well.2

As for the word representations, we employed
pre-trained fastText word embeddings for Ger-
man (Bojanowski et al., 2017), provided by the
developers.3 In contrast to Word2Vec word em-
beddings by Mikolov et al. (2013), fastText has
the capability of representing tokens not included
in the embedded words on the basis of character
n-grams. The OMT data (described in Section 4) is
noisy, has many spelling mistakes and would prob-
ably not sufficiently be represented by word-based
embeddings.

5.1 Benchmarking systems

To our knowledge, psychometrics closely related
to the TAT have not been classified with neural
methods yet. The only classification on the OMT
has been performed by utilizing an LMT model
in our previous work (2019), which we compare
to our neural approach. In order to put different
architectures into perspective and to explore the
relationship of our proposed LSTM system with at-
tention mechanism, we performed multiple bench-
marking experiments on the task of automatically
assigning the four classes of operant motives de-
scribed in Section 2 and thus aim to answer the
second research question of how well other neural

2https://github.com/prakashpandey9/Text-Classification-
Pytorch/tree/master/

3Facebook’s AI Research, https://fasttext.cc

approaches perform in comparison.
For this, we employed the following neural ar-

chitectures, as reviewed in Section 3: LSTM, CNN,
RNN, RCNN, Bi-LSTM with self-attention, LSTM
with attention and Seq2One (a Seq2Seq variant
with only one label as output) with attention. Since
neural approaches are non-deterministic (Lai et al.,
2015), we trained each model three times and aver-
aged the F-scores for a stable assessment of results.

Three modifications of the LSTM with attention
mechanism are employed: Firstly, we shuffled the
attention weights before they got applied to the
hidden states. Secondly, we reversed the direction
of the input sequence to honor the OMT primacy
rule. If this rule is followed and processing or-
der has an influence, processing from right-to-left
and classifying on the entire representation could
improve results since the most influential signal
(the first motive in the text) is accumulated last
into the representation. Thirdly, we add compa-
rable hand-crafted features as a fully connected
input to the final classification softmax layer (e.g.
part-of-speech (POS) tags, LIWC categories or the
perplexities of trained language models per target
motive), following Johannßen et al. (2019) to inves-
tigate in how far neural feature induction subsumes
these features.

5.2 Psychometric predictions
After benchmarking, we utilize the most promising
system for predictions in accordance with the OMT
theory. 103 participating students answered the
questions to 15 images, resulting in 1,545 answer
sequences. Further, the data collection includes the
grade of their bachelor’s thesis, which was com-
pleted a few years after the OMT was taken. We
employ the experimental design of our previous
work (Johannßen et al., 2019) to ensure a fair com-
parison. For this, we predict the motives of each
of the 15 answers given per participant, count the
appearances per motive and correlate these to the
bachelor’s thesis grade.

5.3 Model training
All parameters of the models were tuned on a de-
velopment set. Different fixed input sizes were
considered for every architecture: Firstly we con-
sidered a fixed input length of 81 since the longest
answer contains 81 words. Secondly, the average
answer contains 20 words, which we considered
as fixed input size in order to take the primacy
rule (Section 2) into account. Shorter answers than



the fixed input length receive the padding token
(<pad>), longer ones were truncated. Human an-
notators are asked to ignore the rest of a sequence
after a very first motive could be identified. Terms
not observed in the training vocabulary were re-
placed by an out-of-vocab (OOV) token. Dropouts
of 0.3, 0.5 and 0.8 were evaluated, whereas 0.5 has
shown to perform best for the RNNs and has also
been suggested by Hinton et al. (2012). The num-
ber of iterations was set to 3,600 in 32 batches and
two epochs. The models received word embedded
fastText inputs with 100 and 300 dimensions, of
which the 300-dimensional embeddings reached
better results, and had two hidden layers with 256
cells each. Learning rates were set to 0.0001, 0.001
and 0.01 for each model, with 0.001 performing
best. All results are displayed in Table 1 and were
achieved with these unified best-performing param-
eters.

As for the LSTM with attention mechanism,
which has shown to perform best, the model con-
verged quickly to a loss of approx. 0.4 and oscil-
lates thereafter.

5.4 Attention weights assessment

As shown by Vaswani et al. (2017), the attention
mechanism (described in Section 3) has broadly
been believed to contribute to explainable artificial
intelligence by shedding light on algorithmic de-
cision making. Many authors have followed the
initial idea and e.g. applied heat maps according to
attention weights for input sequences and investi-
gated algorithmic decision making. Other studies
find contrary evidence that attention weights do
not necessarily reflect true meaning (Jain and Wal-
lace, 2019). Even though we are aware of these
controversies and limitations, we follow the critic’s
suggestion to investigate whether attention weights
make a difference in the performance of a system.
For this, we measure on which index the most atten-
tion weight mass is accumulated. We hypothesized
that this might often be the last token since atten-
tion weights usually traverse a sequence in search
(metaphorically speaking) for suiting candidates
and mostly does not find any of such, applying
the most of the available attention weight to the
last possible candidate – the last token. We will
further collect sequences that do not show this be-
havior and thus have the largest attention weight
mass assigned to other tokens than the last one.
These tokens will be evaluated with the LIWC tool.

We would expect the motives to be reflected in
the LIWC categories if they meant anything at all.
We automatically assembled all classified instances,
whose highest attention weight did not assemble on
the very last token, exceeded 0.3 and was classified
correctly.

6 Results

6.1 Model performance

Table 1 shows classification performance of the
different approaches on the test set. We were
able to improve over our previous classifier (Jo-
hannßen et al., 2019). Even though neural ap-
proaches often perform better than earlier ma-
chine learning (Zhang et al., 2018), only the re-
sults of the best-performing model, the LSTM with
an attention mechanism, outperforms the feature-
engineered LMT classification model by an F-score
of 81.55 (the LMT scored 81.10 and thus only
slightly worse) with a fixed input size of 20 to-
kens. The same model with the fixed size of the
longest answer of 81 tokens performed worse with
an F-score of 80.71 (not shown in Table 1). The
other approaches, also with a fixed input size of
20 tokens, performed worse, mostly around a 79
F-score except for the CNN. Including 129 hand-
crafted features, reversing the reading direction and
shuffling attention weights did not improve the re-
sults, thus indicating that firstly, attention matters,
secondly, the direction of classification is not as
important and thirdly, the LSTM attention model
learns the features (POS, LIWC categories, per-
plexity) incidentally. The confusion matrix of the
best-performing model is displayed in Table 2. The
same LSTM with attention mechanism enriched
by similar hand-crafted features does not improve
results further, indicating that the information from
these features is subsumed by the induced repre-
sentations. The inversion of the input sequence
resulted in lower scores, indicating that either the
model cannot make use of seeing earlier tokens
later to account for the primacy rule, or that the pri-
macy rule has not been followed consequently dur-
ing annotation. Shuffling of the attention weights
worsens the results, indicating that these weights
matter for the classification task.

6.2 Assessment of the attention weights

Table 1 shows that the LSTM with attention mech-
anism scored significantly lower when its attention
weights were shuffled compared to the one with



Model ∅ Accuracy ∅ Precision ∅ Recall ∅ F-score F σ

CNN 63.26 59.34 63.62 61.41 2.36
RNN 68.73 73.10 68.73 70.85 1.59
LSTM 77.84 78.05 77.84 77.92 0.65
Sequence to One (Seq2One) with attention 77.34 76.81 77.43 77.12 1.53
LSTM Attn with shuffled attention weights 79.03 78.05 79.03 78.54 0.13
RCNN 79.70 79.35 79.81 79.58 0.77
Bi-LSTM with self-attention 81.16 80.35 81.16 80.75 0.31
LSTM Attn with 129 addit. handcrafted features 80.85 79.86 80.86 80.35 1.23
LSTM Attn with a reversed direction 80.87 80.05 80.87 80.46 0.99
LSTM with an attention mechanism (LSTM Attn) 81.94 81.15 81.96 81.55 0.09
LMT with 129 handcrafted features (baseline) 81.56 80.90 81.60 81.10 0.00

Table 1: Performance comparison between the LMT and neural systems. All models classified with a
fixed input size of 20 tokens. The only system overcoming the strong baseline of the feature-based LMT
is an LSTM with attention mechanism. This system was also tested in reversed direction, with shuffled
attention weights and with 129 additional handcrafted features, all of which performed worse than the best
model. We averaged all scores (∅) from three trained models each, and provide the standard deviation
across runs (σ ).

Predicted

A
ct

ua
l

0 A L M Σ

5% 17% 19% 59% 100%
0 283 102 150 478 1,013
A 29 2,739 112 646 3,526
L 90 91 3,079 872 4,132

M 126 657 404 11,102 12,289
Σ 528 3,589 3,745 13,098 20,960

Table 2: The relative motive amounts and confu-
sion matrix of the best performing system (LSTM
Attn).

properly trained attention and assigned weights.
Jain and Wallace (2019) stated that this case had
occurred only rarely in their experiments, but that
if this circumstance holds true, they would assume
that attention weights could be considered for in-
terpretation and explanation.

We can observe that on average, 79.85% of the
available attention weight mass was assigned to the
very last token of each instance. It appears that the
mechanism considered one token at a time from left
to right and determines whether attention weight
mass should be assigned to the token in question.
If this is not the case, the attention weight mass is
being kept and the successor token is considered.
When the mechanism reaches the end of the se-
quence, it assigns whatever attention weight mass
is left to the very last token. The second and third
index with the highest following attention weight
masses are the second last and third last tokens re-

spectively. According to the OMT theory, the last
tokens of a sequence, in general, should not provide
the main information for encoding the whole se-
quence due to the primacy rule, this high attention
weight mass on the last token indicates, that for
the majority of classified instances, the attention
weights do not serve as a widely applicable means
to interpret the reasons for classification decisions
in this setup.

Besides these last tokens, we aimed to investi-
gate the mechanism further and compare these non-
concluding tokens to all tokens by automatically
assembling instances and attention weights.

Table 3 compares the four most prominent psy-
chologically validated LIWC category member-
ships in percent per motive of all tokes versus
non-final tokens with high attention weight masses.
Most of the LIWC category names appear to be
representative for the wordlists that they consist of.
E.g. positive emotion consists of e.g. love, nice and
sweet.

According to the OMT theory, people with a
strong achievement motive desire intrinsic excel-
lence. They tend to analyze problems thoroughly
and focus on tasks. This description is reflected by
cognitive mechanism that is almost twice as present
for high attention mass tokens as it is for all tokens
(27.39% compared to 14.11%). The categories oc-
cuptation (e.g. observe, conduct, advancing) with
24.66% and achieve – already with the same name
as the OMT motive – with 23.28% are high in
presence as well. Compared to rather low social,



High attention weight mass All tokens
LIWC per cent words LIWC per cent words

A
ch

ie
vm

en
t

mechanism
cognitive

27.39

capabilities
motivated

concentrated
intense social 15.17

-
-
-
-

occupation 24.66
mechanism
cognitive

14.11

achieve 23.28
references

other
11.44

insight 10.96 affect 10.49

A
ffi

lia
tio

n affect 12.12

interested
partner
secure

important social 19.76

-
-
-
-

emotion
positive

12.12
references

other
12.04

humans 9.09 affect 10.31

social 9.09
mechanism
cognitive

9.48

Po
w

er affect 33.95

humiliated
dominant

feels
can social 18.99

-
-
-
-

mechanism
cognitive

28.91
mechanism
cognitive

11.46

emotion
positive

24.93
references

other
11.25

insight 20.16 affect 9.91

Table 3: LIWC analysis of tokens that received
the most attention weight mass on the left with all
tokens on the right separated by predicted labels
(left) versus manually annotated labels (right).

affect and other references, the OMT theory for
the achievement motive appears to be better repre-
sented by tokens with high attention. Single words
include intense, concentrated, motivated and capa-
bilities.

Similarly, the LIWC categories for the affilia-
tion motive are affect, positive emotion, humans
and social for the left columns and apparently
reflect the description of a desire to solve prob-
lems cooperatively, whilst avoiding conflicts. How-
ever, scores for LIWC categories are rather low at
12.12% and 9.09%. The social LIWC category is
strongly present on the right column for all tokens
with 19.76%, as well as affect with 12.04%. The
other two LIWC categories of the right columns
other references and cognitive mechanism do not
appear to align well with the affiliation motive.

Even though the desire to influence and alter
one’s surrounding and fellow beings, the power
motive can be identified by positive expressions as
well as rather harsh ones. All LIWC categories of
these columns on the left appear to align with the
power motive, which are affect (33.95%), cognitive
mechanism (28.91%), positive emotion (24.93%)
and insight (20.16%). The corresponding LIWC
categories for all tokens on the right columns cor-
respond with the exception of other references but
are comparably weaker.

This comparison shows that tokens with high
attention mass per motive correspond to the OMT

theory e.g. occupation and insight for achievement,
whilst all tokens do show some correspondence
(e.g. social and affiliation), but in general, do not
align well with the OMT theory. Interestingly,
when removing the tokens (besides the last ones)
that received the most attention weight mass and re-
evaluating the answers with the LIWC tool to test
the counterhypothesis that high-attention tokens do
not reflect the classes, the categories shift to ones
that do not correspond to the OMT theory.

gelangweilt
bored

weil
because

sie
she every

jeden
day
tag

0

protected
geborgen weil

because
die
the

andere
other person

person
A

gefordert
challenged

will
wants

das
the

ziel
goal

erreichen
to reach

L

zu
to

maßregeln
disciplin

dominant
dominant

die
the

andere
other

M

Table 4: Heatmap according to the attention
weights displayed on four example snippets of
OMT answers in German with their glossed trans-
lations and targets (A for affiliation, M for power
and L for achievement).

Examples are given in Table 4, which displays
some tokens highlighted, according to the token’s
attention weight masses. These examples do not
reflect the whole data basis but illustrate a possible
aid for understanding the task at hand and might
help develop tool support for this task or related
psychometrics.

6.3 Correlation with bachelor’s thesis grades

As described in Section 5, in order to analyze the
predictive power of motives, we count predicted
motives and correlate these counts to academic
grades. While we previously found a weak correla-
tion of r =−0.2 between power motive counts and
the bachelor’s thesis grade, the experiment in this
work revealed a a correlation of r =−0.25 between
the bachelor’s thesis grade and the achievement
motive in this work, i.e. the higher the achieve-
ment motive count, the better the German grade
value (1 equals good, 5 equals having failed). The
power motive is positively correlated with a small
r = 0.14, i.e. the higher the power motive count,
the worse the German grade. Figure 4 shows scat-
ter plot displaying the counts of the power and
achievement motives and the achieved bachelor’s
thesis grade.

This discrepancy of both model’s predictions
is anomalous. If both models performed compa-
rably well on the same type of data, both mod-



els should reveal comparable correlations between
counted motives and grades. The investigation of
each model’s motive predictions per student shows
that the LSTM with attention mechanism often as-
signs the power motive but never zero, whilst the
LMT model assigns zero on 17.76% of all cases,
indicating that the LMT model often did not predict
any motive. Thus, even though the models behave
comparably well on test data of the same origin as
the training data, they differ in their algorithmic
decision making on data from a different origin.

Figure 4: After predicting motives, the four motives
per participants were counted. The power motive
has the highest frequency. By counting predicted
motives and correlating them to academic grades,
a weak correlation of r =−0.25 could be observed
between the achievement motive (blue dots) and
the bachelor’s thesis grade (in Germany, the best
grade is 1, reading: the higher the achievement
motive count, the better the grade). In contrast, the
plots shows that the higher the power motive counts
(orange dots), the worse the grade with r = 0.14.

7 Conclusion and outlook

We were able to outperform prior classification
of the OMT by employing an LSTM with an at-
tention mechanism achieving an F-score of 81.55
and thus can positively answer research question
i), asking whether our proposed model could out-
perform our former approach. Other architectures
such as the RNN, LSTM, Bi-LSTM or the RCNN
mostly reached an F-score of approx. 79. Atten-
tion weights only matter in thus far that the shuf-

fling of these weights worsens the results, asked by
research question ii). The attention weight mass
mostly accumulates on the very last token and thus
does not allow for insights in the general case. For
these cases where the attention weight mass was
distributed among other tokens than the last one
of a sequence, an analysis with the LIWC tool
showed conformity of LIWC categories with the
corresponding operant motives compared to these
of all words. This indicates an overlap between
the memberships per word of both linguistic assess-
ments. This behavior of the highest attention mass
on last tokens could be canceled out by employing
a Bi-LSTM with attention mechanism and concate-
nating the attention weights of both systems, which
we consider for future experiments. When remov-
ing these tokens and re-evaluating the sequence
with the LIWC tool, the results shift, which has
to be investigated further. Research question iii)
questioned a correlation between identified motives
and subsequent academic success as prior research
has shown. This correlation could slightly be out-
performed with r =−0.25 between the counted
achievement motives and bachelor’s thesis grade,
which is a weak correlation much different to for-
mer predictions of the LMT model that assigned
zeros more often than the LSTM model with atten-
tion mechanism. Since zero marks indecisiveness,
it can be assumed that the LMT model does not
generalize as well as the LSTM – though this as-
sumption would have to be further examined by e.g.
having trained psychologists assess the outputs of
both models. Furthermore, direct predictions from
language to grades could be investigated, hence
losing information at the intermediate step of auto-
matically annotated motives.

Nonetheless, further validation is appropriate
due to recent debates upon attention weights as
indicators of interpretation. One approach for val-
idation would be to provide trained psychologists
for labeling the OMT with tokens that received
comparably much attention weight mass and with
tokens that did not to measure how many cases
would have been identified by said psychologists.
Furthermore, we aim to provide annotators with
a tool with attention-based highlighting for possi-
bly saving time and expenses during the labeling
process. Further numerical improvements could
result from using contextualized embeddings, e.g.
Bidirectional Encoder Representations from Trans-
formers (BERT, Devlin et al. (2019)).
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