
Creating Information-maximizing Natural Language Messages
Through Image Captioning-Retrieval

Fabian Karl1,2 and Mikko Lauri1 and Chris Biemann2

fabian.alexander.karl@gmail.com
lauri@informatik.uni-hamburg.de

biemann@informatik.uni-hamburg.de
1Computer Vision, Department of Informatics, MIN, Universität Hamburg

2Language Technology, Department of Informatics, MIN, Universität Hamburg

Abstract

In this work, we propose the Image
Captioning-Retrieval (ICR) problem that
states the objective of language genera-
tion as information exchange. To solve
the ICR problem, we design and imple-
ment an end-to-end neural network archi-
tecture that describes the content of im-
ages in natural language, and retrieves them
solely based on these generated descrip-
tions. The main goal is to be able to gen-
erate information-maximizing natural lan-
guage messages. We experimentally show
a strong increase in message information
content while losing some grammatical cor-
rectness in the generated descriptions in a
semi-supervised setting where caption gen-
eration is trained towards retrieval quality.

1 Introduction

Human thinking and reasoning are deeply con-
nected to words and language. Turing (1950) fa-
mously defined the ability to hold a complex con-
versation as artificial intelligence. While this no-
tion is debated (Searle, 1980), it is widely accepted
that it is language that makes us human. An artifi-
cial system capable of producing human language
will be received by us as human-like.

Current conversational and language produc-
ing systems can broadly be categorized into three
classes: rule-based systems, supervised learning
systems, and Reinforcement Learning (RL) mod-
els. Rule-based systems produce outputs by a set
of conditionals and rules of varying complexity.
This approach works well for expert systems and
the understanding of simple commands. Due to

the predictability and traceability, rule-based lan-
guage systems dominate commercial applications.
Supervised learning systems apply supervised opti-
mization strategies to predict appropriate language
outputs for given inputs (Vinyals and Le, 2015).
A prerequisite is a corpus of conversational train-
ing examples containing input sentences and cor-
responding output sentences. RL-based conversa-
tional systems (English and Heeman, 2005; Li et
al., 2016) seek to learn a dialog policy that guides
how the artificial agent should follow when inter-
acting with a user.

While current state-of-the-art systems are ar-
guably able to produce language that seems human-
like, their objective is stated as mere production
of well-sounding sentences. However, production
of grammatically correct sentences as an end goal
falls short of the motivation humans have for lan-
guage production, namely the exchange of infor-
mation (Kirby, 2007). In Mathur and Singh (2018)
it is noted that especially sequence-to-sequence
models cannot solve the language modelling prob-
lem, since ”the objective function that is being
optimized does not capture the actual objective
achieved through human communication, which is
typically longer term and based on exchange of
information rather than next step prediction”. The
main driver of a conversational system should not
be the direct production of sentences in a human-
readable language, but the optimal amount of infor-
mation exchange between agents (Steels, 2015).

In this work, we examine language generation
through an alternative objective of maximum infor-
mation exchange. We propose to train a language
production system directly with the motivation of
maximizing information content, rather than using
language modelling objectives. To achieve this,



Figure 1: The Image Captioning-Retrieval (ICR) problem simulates a natural language message passed
from one agent to another, and is composed of Image Captioning (IC) and Natural Language Image Search
(NLIS).

we propose the Image Captioning-Retrieval (ICR)
problem. The ICR problem simulates a message
passed from one agent to another, and is composed
of two parts: Image captioning (IC) and natural
language image search (NLIS) as illustrated in Fig-
ure 1. IC describes or captions a given image with
a sentence in natural language. NLIS takes the
caption as an input and retrieves the closest image
out of a set of candidate images. By combining IC
and NLIS, we can train our language production
system directly with the motivation of information
exchange. The constraint that the communication
takes place in human-understandable language is
ensured by producing captions in natural language.
For this, we first pre-train the IC system in a super-
vised fashion using pairs of images and captions,
and subsequently continue to train the overall sys-
tem on the retrieval task. This can be viewed as
a semi-supervised setting since captions are im-
proved not through direct supervision on gold cap-
tions, but on indirect supervision on discriminating
between pictures in the retrieval task.

Our contribution is two-fold. Firstly, we show
that solving the ICR problem gives rise to natural
language messages, while experimentally showing
a strong increase in message information content.
Secondly, we qualitatively present that the descrip-
tions generated by our model capture more details
of images as compared to plain IC systems.

The remainder of the paper is organized as fol-
lows. In Section 2, we review relevant related
works in image captioning, natural language image

search and neural learning architectures. Section
3 describes our overall approach, detailing the re-
spective subsystems and their combination. The
experimental setup is laid out in Section 4, before
reporting quantitative evaluation results in Section
5. Qualitative observations are discussed in Section
6, Section 7 draws conclusions and provides direc-
tions for further work in natural language learning
through conversations.

2 Related Work

State-of-the-art natural language production sys-
tems apply supervised learning, in particular the
sequence-to-sequence model of Vinyals and Le
(2015). This approach was inspired by machine
translation (Sutskever et al., 2014), and has since
been replicated multiple times. While an in-depth
survey of natural language generating systems is
beyond the scope of the present paper, we direct
the interested reader to the recent survey of Gatt
and Krahmer (2018). In our subsequent review, we
discuss the two key subtasks of our ICR problem
(Fig. 1), IC and NLIS, and the interplay of systems
solving these two tasks.

Given an input image, an IC system outputs a de-
scription of the image in natural language. In turn,
given as input a textual description of an image, an
NLIS system finds the image that best matches the
input description among a set of candidate images.
We review techniques and ideas most closely re-
lated to our focus on the information exchange mo-



tivation for language generation. These approaches
typically combine an IC network and an NLIS net-
work and train them jointly. For a recent general
survey of deep learning techniques applied to IC,
we refer the reader to Hossain et al. (2019).

Most related to our work, the idea of scoring im-
age descriptions based on the amount of informa-
tion carried in the sentence is proposed in Hodosh
et al. (2013). Instead of using traditional n-gram
based evaluation measures like the BLEU (Pap-
ineni et al., 2002) or the CIDEr score (Vedantam
et al., 2015), Hodosh et al. (2013) propose to use
an NLIS system, pre-trained on human-annotated
image-caption-pairs, to score the created image cap-
tions. The idea is widely used in other recent works
in IC (Devlin et al., 2015; Vinyals et al., 2017;
Karpathy and Fei-Fei, 2017; Donahue et al., 2017).
The general architecture of these models contains
an IC encoder-decoder model that encodes image
information into textual form, and an image scor-
ing system that evaluates the created captions using
an NLIS system. The IC model is often a combina-
tion of a convolutional neural network (CNN) and
a long-short-term memory network (LSTM).

Adversarial training is employed by several state-
of-the-art works in IC (Dai et al., 2017; Liang et
al., 2017; Liu et al., 2018). An NLIS network
is applied to discriminate between generated and
real samples. In Shetty et al. (2017), the objective
is altered from merely reproducing ground truth
captions to matching a distribution of human gener-
ated captions by applying an approximate Gumbel
sampler.

RL is employed in some recent approaches such
as the method by Ren et al. (2017b). A reward
function is derived by considering visual-semantic
embedding similarities: input images and captions
both are mapped into a embedding space, and their
similarity in this space is measured by an appropri-
ate metric.

In contrast to the reviewed work we explicitly de-
fine information exchange as the primary objective
for IC and NLIS. Through this we clearly sepa-
rate us from related studies that use information
exchange merely as a performance indicator or a
general guidance.

3 Image Captioning Retrieval Network

Our ICR network is an IC network and an NLIS
network, combined by a Gumbel softmax layer.

3.1 Image Captioning

The IC model receives an image and returns multi-
ple probability distributions over a vocabulary.

The input for the model is an image xim ∈
Rh×w×c, where h,w,c are the height, width and
color dimension, together with a sequence of words.
The model output is a probability distribution over
a fixed vocabulary V . Each word is thus assigned a
likelihood of being the next word.

The input image is resized to a fixed size and
fed through an image encoder (e.g. CNN) with
the parameters θφ that extract the most important
image features in a vector φ(xim,θφ ) ∈ Rk, where
k is the length of the feature vector.

The respective image annotation is embedded
in a dense word embedding, yielding the second
model input xse ∈ Rt×d , where t is the number of
words in a sentence and d is the dimensionality
of the dense word embedding. The embedded
sentence is fed through a sentence encoder (e.g.
LSTM) resulting in a t × l tensor, where l is the
length of the feature vector.

Now xim is replicated t times and concatenated
with the sentence features. This results in a
t × (l + k) tensor, which is fed through a block
of fully connected layers and a final softmax layer,
squeezing the model output into t probability distri-
butions with P(yt |xse

1→t−1,φ(x
im,θφ )), where yt is

the probability over the vocabulary V at timestep t,
xse is the information from the previous words and
φ(xim,θφ ) is the image vector.

At training time, xse and the target y∈Rt×d , with
the same shape as xse, are representations of the
same ground truth sentence. This training tech-
nique is called teacher forcing. xse is shifted one
time-step into the future by adding a start-symbol
at its beginning. This way, word yt equals xse

t+1 and
the model is trained to predict the next word of the
same sentence xse. An end-symbol is appended to
y, so input and output have the same length and the
model is trained on how to end the sentence. The
loss is calculated through the cross-entropy of the
predicted probability distribution and the ground
truth distribution. This allows a quick and stable
learning process but also leads to the so-called ex-
posure bias (Ranzato et al., 2016).

At inference, only the image vector φ(xim,θφ )
is available. The model starts with x̂se, containing
only the start-symbol, as first input and generates
P(ŷt). Depending on the selection mode, one word
yt from P(ŷt) is selected and appended to the pre-



Figure 2: Our ICR model. Annotations and images are both transformed into feature representations,
which are mapped into a shared embedding space. The distance in this space defines the similarity of the
image-annotation pair.

vious input x̂se
1→t−1. It then serves as new input for

the next prediction step.

3.2 Natural Language Image Search
Our NLIS model is realized through an image and a
sentence encoder that are trained on the triplet rank-
ing loss (Karpathy et al., 2014; Ren et al., 2017a;
Karpathy and Fei-Fei, 2017; Wang et al., 2017;
Faghri et al., 2018; Liu et al., 2018).

Both encoders are similar to the ones used in
our IC model. Images xim are transformed into
feature representations φ(xim,θφ ) ∈ Rdφ , where φ

is the image encoder (e.g. CNN), with model pa-
rameters θφ . Correspondingly, sentences xse are
embedded and transformed into a feature represen-
tation through a model ψ(xse,θψ) ∈ Rdψ , where ψ

is the sentence encoder (e.g. LSTM) with model
parameters θψ .

fim(xim,Wim,θφ ) =
∥∥W T

imφ(xim,θφ )
∥∥

2 (1)

fse(xse,Wse,θψ) =
∥∥W T

se ψ(xse,θψ)
∥∥

2 (2)

Both feature representations are mapped into a
shared embedding space of size e by linear pro-
jection with weight matrices Wim ∈ Rdφ×e and
Wse ∈ Rdψ×e. The resulting projections are nor-
malized with the L2 norm to lie on the unit hyper-
sphere.

s(im,se) = fim(xim,Wim,θφ ) · fse(xse,Wse,θψ) (3)

The similarity between an image-sentence pair
is defined as the inner product between the two

normalized vectors, resulting in the cosine similar-
ity (Subhashini and Kumar, 2010).

L (θ ,Bim,Bse) =
1
N

N

∑
n=1

L(imn,sen,Bim′ ,Bse′)

(4)
For a batch of images, Bim = {xim}N

n=1, and corre-
sponding sentences, Bse = {xse}N

n=1, the batch loss
is calculated by comparing every image against
every sentence and vice versa. In every iteration,
one image-sentence pair is selected as true pair,
marked as (imn,sen). The similarity of this pair
is compared to the similarities between the image
and all other sentences or the sentence and all other
images respectively. A batch of sentences, without
the correct sentence, is denoted as Bse′ and a batch
of images without the correct image as Bim′ .

All possible parameters to be optimized are de-
fined by θ = {θφ ,θψ ,Wim,Wse}. Depending on the
experimental setup, however, θφ and/or Wim are not
optimized or finetuned.

LSH(im,se, ˆim, ŝe) =

∑
ŝe
[α− s(im,se)+ s(im, ŝe)]++

∑
ˆim

[α− s(im,se)+ s( ˆim,se)]+

(5)

LSH is defined as the sum of hinges and describes
the classic triplet ranking loss. Let α be the mar-
gin that the similarity of all wrong image-sentence
pairs should be smaller than the similarity of the



correct image-sentence pair. s(im,se) describes
the similarity of the correct image-sentence pair
while s(im, ŝe) describes the similarity between an
incorrect image-sentence pair. In order to avoid
negative losses, we use positive values only, as
defined by the notation [x]+ = max(0,x). The sec-
ond term is symmetrical to the first term. In the
first term, an image is fixed and the similarity with
different candidate sentences is calculated and re-
turned. In the second term, a sentence is fixed
and all other images are iterated over to calculate
the similarities. Faghri et al. (2018) report a steep
increase in accuracy on the NLIS task when us-
ing triplet ranking loss with the max of hinges,
LMH. This refers to selecting the one (negative)
sample with the highest loss in every mini-batch.
The only difference between LMH and LSH is the
selection of the biggest error, maxŝe[α−s(im,se)+
s(im, ŝe)]+, instead of the summation of errors,
∑ŝe[α− s(im,se)+ s(im, ŝe)]+.

3.3 Image Captioning-Retrieval
Our ICR network is a combination of the two mod-
els described above. In order to overcome the prob-
lem of discrete word representations being not dif-
ferentiable, the Gumbel softmax trick (Jang et al.,
2016) is used to transform one-hot probability dis-
tributions into pseudo-one-hot-representations.

The original Gumbel-Max trick (Gumbel, 1954)
is a simple and efficient way to draw samples from
a categorical distribution with class probabilities π .
g ∈ (0,1) is called the Gumbel distribution and is
calculated from u, drawn from a uniform distribu-
tion between 0 and 1.

g =−log(−log(Uniform(0,1))) (6)

z = onehot
(

argmax
i

[gi + log(π)]
)

(7)

Since argmax is non-differentiable, the continu-
ous softmax function is used as an approximation.
τ is the temperature of the softmax. The smaller τ

is, the closer the distribution is to a one-hot encod-
ing. yi is the resulting k-dimensional word distribu-
tion.

yi =
exp((log(πi)+gi)/τ)

∑
k
j=1 exp((log(πi)+gi)/τ)

for i, ...,k

(8)

A second challenge is the sampling of novel sen-
tences. Our ICR model needs a complete input

sentence xse to be able to determine the probabil-
ity for every sub-sentence xse

t1:ti . This can either be
achieved by creating complete and novel sentences
with our IC model in a pre-step or by directly using
the Gumbel softmax trick in this phase. Since the
Gumbel softmax activation function introduces ran-
domness into the selection process, unseen word
combinations can occur, from which the model will
not be able to recover. For this reason we decided
to use the first-mentioned approach.

When feeding the novel image annotation
through our ICR model, it will be fed through the
IC model again and reproduce the output ŷ. The
output is transformed with the Gumbel softmax ac-
tivation function, which selects one word randomly
based on its probability and transforms it into a
value close to one. All other words will receive a
very low probability, close to 0. Let γ(ŷ) be the
Gumbel softmax output.

Together the original image vector φ(xim,θφ )
and γ(ŷ) are fed into the NLIS network to output a
similarity matrix, containing similarities between
every image and every sentence. From this simi-
larity matrix, either the sum or the max of hinges
loss (Section 3.2) can be calculated and used for
training.

4 Experimental Setup

Our experiments are designed to optimize informa-
tion exchange between the IC and the NLIS system.
Information exchange is measured by the image
retrieval score, which is reported in the percentage
of images ranked within the best 1, 5 or 10 ranked
images (r@1, r@5, r@10). The Consensus-based
Image Description Evaluation (CIDEr) (Vedantam
et al., 2015) score for the generated annotations
is presented alongside. CIDEr is an n-gram based
evaluation metric especially created for image an-
notation.

We use MSCOCO dataset with 2017 split (Lin
et al., 2014; Chen et al., 2015) for training and
validation. The dataset contains 118,287 training
and 5,000 validation images, all of them annotated
with five ground truth sentences.

In preprocessing, all annotations are cut or
padded to contain exactly 16 tokens. Tokens ap-
pearing less than 10 times are replaced with the un-
known word token. Every word is embedded with
a pre-trained English fasttext model (Bojanowski
et al., 2017). All images were encoded by ex-
tracting the last fully connected layer of ResNet50



Table 1: Performance of our IC and NLIS model af-
ter stand-alone pre-training on their respective task
(*Our), compared to VSA (Karpathy and Fei-Fei,
2017), UVS (Kiros et al., 2014), VSE++ (Faghri
et al., 2018), sm-LSTM (Huang et al., 2017), m-
RNN (Mao et al., 2014) and LRCN (Donahue et al.,
2017) on different measures as reported in the liter-
ature. NLIS results refer to 1,000 test images and
5,000 respective descriptions from MSCOCO 2017.
r@n shows the percentage of sentences/images
ranked under the top n ranks. BLEU4 and CIDEr
are received from the C40 test set of the official
2015 COCO Caption Challenge Competition. Re-
sults with most similar architectures are listed if
available.

Image captioning Image retrieval
System r@1 r@5 r@10 r@1 r@5 r@10
VSA 38.4 69.9 80.5 27.4 60.2 74.8
*Our 39.9 69.8 80.1 32.0 66.3 80.8
UVS 43.4 75.7 85.8 33.0 67.2 80.6
VSE++ 43.6 74.8 84.6 33.7 68.8 82.0
sm-LSTM 53.2 83.1 91.5 40.7 75.8 87.4

Image captioning
System BLEU4 CIDEr
VSA 0.446 0.692
*Our 0.472 0.753
UVS 0.517 0.752
m-RNN 0.578 0.896
LRCN 0.585 0.934

(2,048 nodes), pre-trained on ImageNet (Deng et
al., 2009).

IC and NLIS network are separately pre-trained
until they yield optimal annotation and ranking
results. Multiple hyperparameters (model archi-
tecture, number of epochs, learning rate, etc.) of
both models were empirically optimized to yield re-
sults close to state-of-the-art performance for their
respective task. For both models, sentences are en-
coded by 1,024 LSTM cells. Images are projected
onto vectors of the same size with a dense layer.
In our NLIS network, encoded sentence features
are also projected onto a 1,024 dimensional space
by a fully connected layer. In our IC model, sen-
tence and image features are concatenated and fed
through two dense layers (1,024 and 2,048 nodes),
before the final softmax layer. Between every layer
we added dropout layers with 0.4 dropout to pre-
vent the model from overfitting. When training
our NLIS model we used sum of hinges for one
epoch before switching to max of hinges loss. This
was necessary for a stable training. In all later ICR
experiments we used max of hinges loss.

Table 1 shows the performance of our models

after pre-training compared to related studies that
used similar techniques with similar network ar-
chitectures. The performance of our NLIS model
builds the baseline for further training with our
complete ICR model. In order to combine IC
and NLIS model in our final model, we imple-
mented both models in the same framework. Sim-
ply reusing models from related work was not pos-
sible due to the incompatibility of different neural
network frameworks.

In our main training loop, 20,000 images are
randomly selected per epoch and fed through our
ICR network. A loss is calculated for the generated
annotation and for the retrieved image. Mini-batch
size is set to 128 for all experiments. The model
was trained for 40 epochs with Adam as optimizer.
The learning rate is set to 0.0002 for the first 20
epochs and then decreased to 0.00002 for the rest
of the training process.

Optimizing all weights in the ICR network leads
to an unstable training process and often resulted in
sudden drops in performance. Freezing the weights
of the image projection layer from the beginning
of training (IP=F) or at a certain epoch (IP=17) sta-
bilized the training process. Freezing the weights
of the sentence encoder (SE=F) had a similar sta-
bilizing effect on the training. Training with only
self-generated sentences right from the start leads
to an instant decrease in performance since the
model has no time to adjust to flawed input sen-
tences. To counter this issue, novel self-generated
annotations are slowly added to existing ground
truth sentences. This is implemented by randomly
selecting an annotation from a list of both ground
truth annotations and generated ones. In the begin-
ning, this list contains only ground truth samples.
At every epoch, novel annotations are added. When
the list reaches a defined size (INF=5, 10, 15), a
random sentence is dropped from the list. This way,
novel sentences are slowly infused into the training
process.

To increase ranking performance, true image-
sentence pairs were added to the output from the IC
network. In this case, one mini-batch contains 64
image-sentence pairs generated by our IC network
and 64 true image-sentence pairs directly from the
dataset (TP=T). Otherwise the whole mini-batch
contains only self-generated samples (TP=F). Both
methods result in a 128×128 similarity matrix for
one mini-batch. After the training phase, 1,000
validation images are captioned and retrieved to



Table 2: Ranking retrieval results for different experimental settings on 1000 validation images from
MSCOCO 2017. TP=True Pairs, SE=Sentence encoders trainable, IP=Image Projection layer trainable
or trained until which epoch, INF=Infusion list size, NLIS sum=Sum over all image scores, C=CIDEr

Sentence Retrieval Image retrieval
TP SE IP INF r@1 r@5 r@10 r@1 r@5 r@10 NLIS sum C
F T F 10 34.7 72.1 86.9 33.2 69.7 83.7 186.6 0.061
F F F 10 40.8 77.8 89.9 38.8 76.3 88.9 204.0 0.101
T T 17 10 44.4 79.9 90.5 40.8 79.1 89.7 209.6 0.049
T F T 10 47.6 84.2 93.6 43.1 81.8 92.5 217.4 0.094
T F T 15 46.2 86.4 93.6 46.0 83.0 93.0 222.0 0.083

Pre-training Baseline 39.9 69.8 80.1 32.0 66.3 80.8 179.1 0.753

determine the performance of our model.

5 Results

Table 2 shows various experimental settings and
their resulting ranking and CIDEr score. In the
last row, the baseline ranking and annotation per-
formance is reported. It represents our best per-
formance of the two models when trained on their
respective tasks alone.

The table shows that the usage of true image
pairs (TP) generally increases the ranking perfor-
mance of the network. The best experimental re-
sults were observed when freezing the sentence
encoder weights for the ICR training (SE=F) but
not the image projection layer (IP=T). An infusion
list size of 10 (INF=10) yields optimal sentence
retrieval scores while an infusion list size of 15
(INF=15) results in a 3 percent-point increase in
the r@1 for the NLIS score and the best overall
retrieval score (NLIS sum). Training runs with no
infusion list (not mentioned in Table 2) were aban-
doned early in the experimental phase, for they
resulted in unstable training and worse ranking
scores than our baseline.

Compared to the ranking performance of our
baseline (Table 1), we observe improvements for
all reported experiments. Under the same evalua-
tion set (1000 validation images), our best model
improves image r@1 results by 14.0 percentage
points resulting in 46.0% correctly retrieved im-
ages through our self-generated image descrip-
tions. 80.0% of all described images were retrieved
within the 10 top ranks. Not only could we in-
crease our retrieval performance immensely com-
pared to our baseline, but we also outperform all
related studies using similar image encoders. This
indicates that our self-generated sentences contain
more image information than the ground-truth an-

notations, created by human annotators. CIDEr
scores, however, decrease from our baseline perfor-
mance of 0.72 to around 0.10.

The increase in retrieval scores and the decrease
in CIDEr can be observed in Figure 3 as well. It
shows a selection of images and different annota-
tions. The first annotation is the annotation gener-
ated by our IC system, after pre-training (PT). GT
shows one of the ground truth captions for compar-
ison. The last sentence is the generated description
from our best performing (ICR) model. Word repe-
titions, missing of stop-words and the selection of
more specific and precise words (e.g. locomotive
instead of train) are at the same time responsible
for higher retrieval scores and lower CIDEr score.
Since n-gram based evaluation metrics use direct
comparison between prediction and ground-truth
sentence, using often occurring words (e.g. stop-
words) and general terminology (e.g. train) nor-
mally yields better results. Ironically, these words
often carry the least amount of information.

6 Discussion

A comparison between the images in Figure 3 and
their descriptions after the pre-training phase and
after the ICR training phase shows that the increase
in information exchange is not only visible in the
ranking scores, but also leads to arguably better
generated descriptions.

The sentences created after the pre-training are
almost exclusively grammatically correct and de-
scribe the image content more or less accurately.
Generated descriptions show less grammatical
structure after the IC system was trained to maxi-
mize the ranking performance, but the content of
the sentence describes the image in much more
detail and correctness.

The generated sentences after ICR training often



Figure 3: Next to every image, the description gen-
erated by the pre-trained IC model (PT), one of the
ground truth descriptions (GT) and the descriptions,
generated after training the ICR model.

contain repeating words, and they do not contain
the end-symbol anymore. Both of these effects are
likely due to the pre-training of the system. During
the pre-training phase, only correct sentences were
used as input for the model. In the ICR training
phase, new sentences are generated and used for
training. Additionally, since the Gumbel softmax
trick is a statistical sampling method, the word with
the highest probability is not always picked, as it
has been before with greedy picking. This means
the system encounters new situations that it has
to deal with. Since it was trained with teacher-
forcing, it has developed little robustness against
these novel situations. Interestingly, the ICR sys-
tem tries to fully use the maximum length of 16
tokens, possibly conveying the importance of im-
age elements with word repetition.

It is important to mention that the grounding be-
tween words and entities in the images stays intact
during the training. This means, the network keeps
using the same words for certain scenes or objects,
learned in the pre-training phase. This is highly rel-
evant for a system trying to learn language without
explicit targets. It means that the system keeps con-
nections between image entities and words, even
when trained on a different task. This allows us
to focus on a more implicit goal like information
exchange.

Regarding the first image in Figure 3, one can
see, that the description after the ICR training in-
cludes ”an old locomotive” instead of only ”a
train”. The description also contains ”wires over-
pass”, describing the electrical wires over the train,
even though this information was not present in any
of the 5 human annotated sentences. This shows
that the model is no longer explicitly trained on the
true sentences, but has a much more implicit objec-
tive. In order to optimize the ranking performance,
additionally, highly distinct image information is
reflected in the wording. The fourth image in Fig-
ure 3 shows similar increases in content and detail
description. The information that the elephant is

”walking through some river” is crucial to distinctly
rank this image higher than other elephant images.

In the third picture, the new description is less
general. The pre-trained system is producing a
generic sentence, more or less fitting to any tennis
scene. The description, generated after the ICR
training is more accurate in its context. The same
is true for images 2 and 3. In general, the image
content is described in more detail and in more
accuracy. The sentences are less grammatical than
before, however.

These findings are satisfying and show that our
objective trains our system to transfer information
while still creating human-readable sentences. The
fact that the created sentences are still grounded
show that our language system, once pre-trained,
keeps its relations between objects and words in-
tact. Our main goal of increasing the amount of
exchanged information is clearly reached. Our sec-
ondary goal of insuring the human-readability of
the generated language is partly satisfied and could
be addressed with future work.

7 Conclusion

We clearly show how training an IC network with
a more implicit objective like the ranking results



from our NLIS network can improve the amount
of information captured in the generated sentences.
The newly generated sentences are not grammati-
cally perfect but understandable by humans. More
importantly, after training our ICR model, gen-
erated descriptions capture more distinct details
of images and describe more aspects of the im-
ages. The ranking performance was increased by
a large margin, surpassing previous image search
approaches.

This work has strengthened our belief that lan-
guage generation and comprehension learning can
benefit from implicit objectives in a joint learning
setup as opposed to learn them from explicit su-
pervision separately. Language offers a mapping
from a high dimensional to discrete space. It of-
fers the exchange of complex information in an
equally complex but agreed-upon system. If in-
formation exchange is a major goal, more effort
should be placed in implicitly modeling, with ob-
jectives like information exchange in order to solve
tasks, requiring content that can only be transferred
by language. The proposed language game in this
work builds one of the most basic language games:
describing and finding an image.

More sophisticated games, like solving riddles,
answering questions, walking through a maze or
executing commands can all be implemented based
on language instructions. These games all have
to be designed in a way that succeeding is a di-
rect implication of information exchange. If this
approach is used, while language grounding and
correct grammar are enforced and guaranteed for,
we will have a chance of optimizing language gen-
eration and comprehension directly on target tasks,
which should result in more targeted and better-
suited systems as opposed to training on auxiliary
objectives.

In future work, conversation generation can also
be targeted. The challenge there is that conversa-
tion should only be as informative as required in a
given situation to not distract or cause an unneces-
sarily high cognitive load.
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