
Making Fast Graph-based Algorithms with Graph Metric Embeddings

Andrey Kutuzov†, Mohammad Dorgham‡, Oleksiy Oliynyk‡,
Chris Biemann‡, and Alexander Panchenko?, ‡

†Language Technology Group, University of Oslo, Oslo, Norway
‡Language Technology Group, Universität Hamburg, Hamburg, Germany

?Skolkovo Institute of Science and Technology, Moscow, Russia

Abstract
The computation of distance measures be-
tween nodes in graphs is inefficient and does
not scale to large graphs. We explore dense
vector representations as an effective way to
approximate the same information: we intro-
duce a simple yet efficient and effective ap-
proach for learning graph embeddings. In-
stead of directly operating on the graph struc-
ture, our method takes structural measures of
pairwise node similarities into account and
learns dense node representations reflecting
user-defined graph distance measures, such
as e.g. the shortest path distance or distance
measures that take information beyond the
graph structure into account. We demon-
strate a speed-up of several orders of magni-
tude when predicting word similarity by vector
operations on our embeddings as opposed to
directly computing the respective path-based
measures, while outperforming various other
graph embeddings on semantic similarity and
word sense disambiguation tasks and show
evaluations on the WordNet graph and two
knowledge base graphs.

When operating on large graphs, such as trans-
portation networks, social networks, or lexical re-
sources, the need for estimating similarities be-
tween nodes arises. For many domain-specific
applications, custom graph node similarity mea-
sures sim : V × V → R have been defined on
pairs of nodes V of a graph G = (V,E). Exam-
ples include travel time, communities, or seman-
tic distances for knowledge-based word sense dis-
ambiguation on WordNet (Miller, 1995). For in-
stance, the similarity sij between the cup.n.01 and
mug.n.01 synsets in the WordNet is 1

4 according
to the inverted shortest path distance as these two
nodes are connected by the undirected path cup→
container← vessel← drinking vessel← mug.

In recent years, a large variety of such node
similarity measures have been described, many of

which are based on the notion of a random walk
(Fouss et al., 2007; Pilehvar and Navigli, 2015;
Lebichot et al., 2018). As given by the structure
of the problem, most such measures are defined as
traversals of edges E of the graph, which makes
their computation prohibitively inefficient.

To this end, we propose the path2vec model1,
which solves this problem by decoupling devel-
opment and use of graph-based measures, and –
in contrast to purely walk-based embeddings – is
trainable to reflect custom node similarity mea-
sures. We represent nodes in a graph with dense
embeddings that are good in approximating such
custom, e.g. application-specific, pairwise node
similarity measures. Similarity computations in a
vector space are several orders of magnitude faster
than computations directly operating on the graph.

First, effectiveness of our model is shown in-
trinsically by learning metric embeddings for
three types of graphs (WordNet, FreeBase, and
DBPedia), based on several similarity mea-
sures. Second, in an extrinsic evaluation on the
Word Sense Disambiguation (WSD) task (Nav-
igli, 2009) we replace several original measures
with their vectorized counterparts in a known
graph-based WSD algorithm by Sinha and Mi-
halcea (2007), reaching comparable levels of per-
formance with the graph-based algorithms while
maintaining computational gains.

The main contribution of this paper is the
demonstration of the effectiveness and efficiency
of the path2vec node embedding method (Kutu-
zov et al., 2019). This method learns dense vector
embeddings of nodes V based on a user-defined
custom similarity measure sim, e.g. the short-
est path distance or any other similarity measure.
While our method is able to closely approximate
quite different similarity measures as we show

1https://github.com/uhh-lt/path2vec

https://github.com/uhh-lt/path2vec

on WordNet-based measures and therefore can be
used in lieu of these measures in NLP components
and applications, our main point is the increase
of speed in the similarity computation of nodes,
which gains up to 4 orders of magnitude with re-
spect to the original graph-based algorithms.

1 Graph Metric Embeddings Model

Definition of the Model Path2vec learns em-
beddings of the graph nodes {vi, vj} ∈ V such
that the dot products between pairs of the respec-
tive vectors (vi · vj) are close to the user-defined
similarities between the nodes sij . In addition,
the model reinforces the similarities vi · vn and
vj · vm between the nodes vi and vj and all their
respective adjacent nodes {vn : ∃(vi, vn) ∈ E}
and {vm : ∃(vj , vm) ∈ E} to preserve local struc-
ture of the graph. The model preserves both global
and local relations between nodes by minimizing∑

(vi,vj)∈B((v
>
i vj − sij)2−α(v>

i vn+v>
j vm)),

where sij = sim(vi, vj) is the value of a ‘gold’
similarity measure between a pair of nodes vi and
vj , vi and vj are the embeddings of the first
and the second node, B is a training batch, α
is a regularization coefficient. The second term
(vi · vn + vj · vm) in the objective function is a
regularizer that aids the model to simultaneously
maximize the similarity between adjacent nodes
while learning the similarity between the two tar-
get nodes (one adjacent node is randomly sampled
for each target node).

We use negative sampling to form a training
batch B adding p negative samples (sij = 0) for
each real (sij > 0) training instance: each real
node (synset) pair (vi, vj) with ‘gold’ similarity
sij is accompanied with p ‘negative’ node pairs
(vi, vk) and (vj , vl) with zero similarities, where
vk and vl are randomly sampled nodes from V .
Embeddings are initialized randomly and trained
using the Adam optimizer (Kingma and Ba, 2015)
with early stopping. Once the model is trained, the
computation of node similarities is approximated
with the dot product of the learned node vectors,
making the computations efficient: ŝij = vi · vj .

Relation to Similar Models Our model bears
resemblance to the Skip-gram model (Mikolov
et al., 2013), where the vector dot product vi ·
ṽj of vectors of pairs of words (vi, vj) from
a training corpus is optimized to a high score
close to 1 for observed samples, while the dot
products of negative samples are optimized to-

wards 0. In the Skip-gram model, the target is
to minimize the log likelihood of the conditional
probabilities of context words wj given current
words wi: L = −

∑
(vi,vj)∈Bp

log σ(vi · ṽj) −∑
(vi,vj)∈Bn

log σ(−vi · ṽj), where Bp is the
batch of positive training samples, Bn is the batch
of the generated negative samples, and σ is the sig-
moid function. At this, Skip-gram uses only local
information, never creating the full co-occurrence
count matrix. In our path2vec model, the target
dot product values sij are not binary, but can take
arbitrary values in the [0...1] range, as given by the
custom distance metric. Further, we use only a sin-
gle embedding matrix with vector representations
of the graph nodes, not needing to distinguish tar-
get and context.

Another related model is Global Vec-
tors (GloVe) (Pennington et al., 2014),
which learns co-occurrence probabilities
in a given corpus. The objective function
to be minimized in GloVe model is L =∑

(vi,vj)∈B f(sij)(vi · ṽj − log sij + bi + bj)
2,

where sij counts the co-occurrences of words vi
and vj , bi and bj are additional biases for each
word, and f(sij) is a weighting function handling
rare co-occurrences. Like the Skip-gram, GloVe
also uses two embedding matrices, but it relies
only on global information, pre-aggregating
global word co-occurrence counts.

Computing Training Similarities In general
case, our model requires computing pairwise node
similarities sij for training between all pairs of
nodes in the input graph G. This step could be
computationally expensive, but it is done only
once to make computing of similarities fast. Be-
sides, for some metrics, effective algorithms exist
that compute all pairwise similarities at once, e.g.
Johnson (1977) algorithm for computing shortest
paths distances with the worst-case performance
of O(|V |2 log |V | + |V ||E|). As the input train-
ing dataset also grows quadratically in |V |, train-
ing time for large graphs can be slow. To address
this issue, we found it useful to prune the input
training set so that each node vi ∈ V has only
k ∈ [50; 200] most similar nodes. Such pruning
does not lead to loss of effectiveness.

2 Computational Efficiency

Experimental Setting In this section, we com-
pare efficiency of our method as compared to
the original graph based similarity metrics. We

30
40

23.4
0.713
0.007
0.007
0.007

Computation time, sec.

Leacock-Chodorow (WordNet)
Wu-Palmer (WordNet)

Shortest paths (WordNet)
FSE embeddings

Leacock-Chodorow (path2vec)
Wu-Palmer (path2vec)

Shortest paths (path2vec)

0 10 20 30 40

30
6.7

0.713
0.007
0.007

Computation time, sec.

Leacock-Chodorow (NLTK)
Wu-Palmer (NLTK)

FSE embeddings
Leacock-Chodorow (path2vec)

Wu-Palmer (path2vec)

0 10 20 30

Figure 1: Similarity computation: graph vs vectors.

trained the model on a graph of 82,115 noun
synsets from WordNet. Using NLTK (Bird et al.,
2009) we computed the following metrics: (1)
Leacock-Chodorow similarities (LCH) based on
the shortest path between two synsets in the Word-
Net hypernym/hyponym taxonomy and its max-
imum depth; (2) inverted shortest path distance
(ShP); (3) Wu-Palmer similarities (WuP) based on
the depth of the two nodes in the taxonomy and
the depth of their most specific ancestor node.
For instance, for LCH this procedure took about
30 hours on an Intel Xeon E5-2603v4@1.70GHz
CPU using 10 threads. We pruned similarities to
the first 50 most similar ‘neighbors’ of each synset
and trained path2vec on this dataset.

Discussion of Results Figure 1 presents com-
putation times for pairwise similarities between
one synset and all other 82,115 WordNet noun
synsets. We compare running times of calcu-
lating two original graph-based metrics to Ham-
ming distance between 128D FSE binary embed-
dings (Subercaze et al., 2015) and to dot product
between their dense vectorized 300D counterparts
(using CPU). Using float vectors (path2vec) is 4
orders of magnitude faster than operating directly
on graphs, and 2 orders faster than Hamming dis-
tance. The dot product computation is much faster
as compared to shortest path computation (and
other complex walks) on a large graph. Also, low-
dimensional vector representations of nodes take
much less space than the pairwise similarities be-
tween all the nodes. The time complexity of cal-
culating the shortest path between graph nodes (as
in ShP or LCH) is in the best case linear in the
number of nodes and edges. Calculating Ham-
ming distance between binary strings is linear in
the sum of string lengths, which are equivalent of
vector sizes (Hamming, 1950). At the same time,
the complexity of calculating dot product between
float vectors is linear in the vector size and is eas-
ily parallelized.

LCH ShP WuP LCH ShP WuP

WordNet 100 100 100 51.3 51.3 47.4
path2vec 93.5 95.2 93.1 53.2 55.5 55.5

TransR 77.6 77.6 72.5 38.6
node2vec 75.9 75.9 78.7 46.2
DeepWalk 86.8 86.8 85.0 53.3
FSE 90.0 90.0 89.0 55.6

Table 1: Spearman correlations with WordNet similar-
ities (left) and human judgments (right) ×100.

3 Evaluation on Semantic Similarity

Experimental Setting We use noun pairs from
the SimLex999 dataset (Hill et al., 2015), mea-
suring Spearman rank correlation between ‘gold’
WordNet distances for these pairs and the vec-
tor distances produced by the graph embedding
models (trained on WordNet) to see how well the
models fit the training objective. We also test the
plausibility of the model’s output to human judg-
ments. For this, we use human-annotated similari-
ties from the same SimLex999. Some SimLex999
lemmas can be mapped to more than one WordNet
synset. We chose the synset pair with the highest
dot product between the embeddings from the cor-
responding model.

Baselines Our model is compared against five
baselines: raw WordNet similarities by respec-
tive measures; DeepWalk (Perozzi et al., 2014);
node2vec (Grover and Leskovec, 2016); FSE
(Subercaze et al., 2015); TransR (Lin et al., 2015).
DeepWalk, node2vec, and TransR models were
trained on the same WordNet graph. We used
all 82,115 noun synsets as vertices and hyper-
nym/hyponym relations between them as edges.
During the training of DeepWalk and node2vec
models, we tested different values for the number
of random walks (in the range from 10 to 100), and
the vector size (100 to 600). For DeepWalk, we ad-
ditionally experimented with the window size (5
to 100). All other hyperparameters were left at
default values. FSE embeddings of the WordNet
noun synsets were provided to us by the authors,
and consist of 128-bit vectors.

Discussion of Results The left part of Table 1
shows results with the WordNet similarity scores
used as gold standard. Path2vec outperforms
other graph embeddings, achieving high correla-
tions with WordNet similarities. This shows that
our model efficiently approximates different graph
measures. The right part of Table 1 shows results

100 200 300 400 500 600
Vector size

0.35

0.40

0.45

0.50

0.55
S

pe
ar

m
an

's
 c

or
re

la
tio

n

WordNet graph (noun synsets)

path2vec
Deepwalk
node2vec
TransR
WordNet

100 200 300 400 500 600
Vector size

0.0

0.2

0.4

0.6

P
ea

rs
on

's
 c

or
re

la
tio

n

Freebase graph (FB15k-237)

100 200 300 400 500 600
Vector size

0.4

0.5

0.6

0.7

0.8

P
ea

rs
on

's
 c

or
re

la
tio

n

DBpedia graph (DB100k)

Figure 2: Evaluation on different graphs on SimLex999 (left) and shortest path distance (middle, right).

for the correlations with human judgments (Sim-
Lex999). We report the results for the best models
for each method, all of them (except FSE) using
vector size 300 for comparability.

Figure 2 (left) compares path2vec to the base-
lines, as measured by the correlations with Sim-
Lex999 human judgments. The WordNet line de-
notes the correlation of WordNet similarities with
SimLex999 scores. For the path2vec models, there
is a tendency to improve the performance when the
vector size is increased (horizontal axis), until a
plateau is reached beyond 600. Note that node2vec
fluctuates, yielding low scores for 200 dimensions.
The reported best DeepWalk models were trained
with the 10 walks and window size 70. The re-
ported best node2vec models were trained with
25 walks. Interestingly, path2vec and DeepWalk
models consistently outperform the raw WordNet.

4 Evaluation inside a WSD Algorithm

Experimental Setting To showcase how our ap-
proach can be be used inside a graph-based al-
gorithm, we employ word sense disambiguation
(WSD) task, reproducing the approach of (Sinha
and Mihalcea, 2007). We replace graph similar-
ities with the dot product between node embed-
dings and study how it influences the WSD perfor-
mance. The WSD algorithm starts with building a
graph where the nodes are the WordNet synsets of
the words in the input sentence. The nodes are
then connected by edges weighted with the sim-
ilarity values between the synset pairs. The fi-
nal step is selecting the most likely sense for each
word based on the weighted in-degree centrality
score for each synset.

Discussion of Results Table 2 presents the WSD
micro-F1 scores using raw WordNet similarities,
300D path2vec, DeepWalk and node2vec mod-
els, and the 128D FSE model. We evaluate on
the following all-words English WSD test sets:

Model Senseval2 Senseval3 SemEval-15

Random sense 0.381 0.312 0.393

Graph-based vs vector-based measures

LCH (WordNet) 0.547↓0.000 0.494↓0.000 0.550↓0.000
LCH (path2vec) 0.527↓0.020 0.472↓0.022 0.536↓0.014

ShP (WordNet) 0.548↓0.000 0.495↓0.000 0.550↓0.000
ShP (path2vec) 0.534↓0.014 0.489↓0.006 0.563↑0.013

WuP (WordNet) 0.547↓0.000 0.487↓0.000 0.542↓0.000
WuP (path2vec) 0.543↓0.004 0.489↑0.002 0.545↑0.003

Various baseline graph embeddings trained on WordNet

TransR 0.540 0.466 0.536
node2vec 0.503 0.467 0.489
DeepWalk 0.528 0.476 0.552
FSE 0.536 0.476 0.523

Table 2: F1 scores of a graph-based WSD algorithm on
WordNet versus its vectorized counterparts.

Senseval-2 (Palmer et al., 2001), Senseval-3 (Mi-
halcea et al., 2004), and SemEval-15 Task 13
(Moro and Navigli, 2015). The raw WordNet sim-
ilarities have a small edge over their vector ap-
proximations in the majority of the cases yet the
path2vec models consistently closely follow them
while outperforming other graph embedding base-
lines: We indicate the differences with respect to
the original with a subscript number.

5 Evaluation on Knowledge Base Graphs

5.1 Experimental Settings

To show the utility of our model besides the Word-
Net graph, we also applied it to two graphs de-
rived from knowledge bases (KBs). More specif-
ically, we base our experiments on two publicly
available standard samples from these two re-
sources: the FB15k-237 (Toutanova and Chen,
2015) dataset contains 14,951 entities/nodes and
is derived from Freebase (Bollacker et al., 2008);
the DB100k (Ding et al., 2018) dataset contains
99,604 entities/nodes and is derived from DBPe-

dia (Auer et al., 2007).
It is important to note that both datasets were

used to evaluate approaches that learn knowledge
graph embeddings, e.g. (Lin et al., 2015; Xie et al.,
2016; Joulin et al., 2017) on the task on knowl-
edge base completion (KBC), to predict missing
KB edges/relations between nodes/entities. The
specificity of our model is that it learns a given
graph similarity metric, which is not provided in
these datasets. Therefore, we use only the graphs
from these datasets, computing the shortest path
distances between all pairs of nodes using the al-
gorithm of Johnson (1977). Instead of the KBC
task, we evaluate on the task of predicting node
similarity, here using the shortest path distance.
We generate a random sample of node pairs for
testing from the set of all node pairs (these pairs
are excluded from training). The test set contains
an equal number of paths of length 1-7 (in total
1050 pairs each, 150 pairs per path length).

5.2 Discussion of Results

Figure 2 (middle and right) shows evaluation re-
sults on the knowledge base graphs. Path2vec is
able to better approximate the target graph metric
than the standard graph embedding models. As
dimensionality of the embeddings increases, the
model more closely approximates the target met-
ric, but the performance drop for the models with
a low number of dimensions is not drastic, allow-
ing more effective computations while maintain-
ing a reasonable efficiency level. Regarding the
competitors, DeepWalk comes closest to the per-
formance of our approach, but does not seem to
make use of the additional dimensions when train-
ing on larger vector sizes; on the DBPedia dataset,
this issue is shared between all baselines, where
correlation to the true path lengths decreases as
representation length increases.

6 Related Work

Representation learning on graphs received much
attention recently in various research communi-
ties, see Hamilton et al. (2017a) for a thorough
survey on the existing methods. All of them (in-
cluding ours) are based on the idea of project-
ing graph nodes into a latent space with a much
lower dimensionality than the number of nodes.
Existing approaches to graph embeddings use ei-
ther factorization of the graph adjacency matrix
(Cao et al., 2015; Ou et al., 2016) or random

walks over the graph as in Deepwalk (Perozzi
et al., 2014) and node2vec (Grover and Leskovec,
2016). A different approach is taken by Subercaze
et al. (2015), who directly embed the WordNet tree
graph into Hamming hypercube binary represen-
tations. Their ‘Fast similarity embedding’ (FSE)
model provides a quick way of calculating seman-
tic similarities based on WordNet. The FSE em-
beddings are not differentiable though, consider-
ably limiting their use in deep neural architectures.
TransR (Lin et al., 2015) extends TransH (Wang
et al., 2014) and is based on the idea that an en-
tity may have a few aspects and different relations
are focused on them. So the same entities can be
close or far from each other depending on the type
of the relation. TransR projects entity vectors into
a relation specific space, and learns embeddings
via translation between projected entities.

We compare our path2vec model to these
approaches, yet we did not compare to the
models like GraphSAGE embeddings (Hamilton
et al., 2017b) and Graph Convolutional Networks
(Schlichtkrull et al., 2018) as they use node fea-
tures which are absent in our setup.

7 Conclusion

Structured knowledge contained in language net-
works is useful for NLP applications but is dif-
ficult to use directly in neural architectures. We
proposed a way to train embeddings that directly
represent a graph-based similarity measure struc-
ture. Our model, path2vec, relies on both global
and local information from the graph and is sim-
ple, effective, and computationally efficient. We
demonstrated that our approach generalizes well
across graphs (WordNet, Freebase, and DBpedia).
Besides, we integrated it into a graph-based WSD
algorithm, showing that its vectorized counterpart
yields comparable F1 scores on three datasets.

Path2vec enables a speed-up of up to four or-
ders of magnitude for the computation of graph
distances as compared to ‘direct’ graph measures.
Thus, our model is simple and general, hence it
may be applied to any graph together with a node
distance measure to speed up algorithms that em-
ploy graph distances.

Acknowledgments
This was supported by the DFG under “JOIN-T”
(BI 1544/4) and “ACQuA” (BI 1544/7) projects.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
2007. DBpedia: A nucleus for a web of open data.
In The Semantic Web: Proceedings of the 6th Inter-
national Semantic Web Conference, 2nd Asian Se-
mantic Web Conference, ISWC 2007 + ASWC 2007,
pages 722–735, Busan, South Korea. Springer.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly
Media, Inc.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250, Vancouver, BC, Canada.
ACM.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015.
GraRep: Learning graph representations with global
structural information. In Proceedings of the 24th
ACM International on Conference on Information
and Knowledge Management, pages 891–900, Mel-
bourne, Australia. ACM.

Boyang Ding, Quan Wang, Bin Wang, and Li Guo.
2018. Improving knowledge graph embedding us-
ing simple constraints. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 110–121, Melbourne, Australia. Association
for Computational Linguistics.

Francois Fouss, Alain Pirotte, Jean-Michel Renders,
and Marco Saerens. 2007. Random-walk compu-
tation of similarities between nodes of a graph with
application to collaborative recommendation. IEEE
Transactions on knowledge and data engineering,
19(3):355–369.

Aditya Grover and Jure Leskovec. 2016. Node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 855–864, San Francisco, CA, USA. ACM.

William Hamilton, Rex Ying, and Jure Leskovec.
2017a. Representation learning on graphs: Methods
and applications. IEEE Data Engineering Bulletin,
40(3):52–74.

William Hamilton, Zhitao Ying, and Jure Leskovec.
2017b. Inductive representation learning on large
graphs. In Advances in Neural Information Process-
ing Systems, pages 1024–1034, Long Beach, CA,
USA.

Richard Hamming. 1950. Error detecting and error
correcting codes. Bell System technical journal,
29(2):147–160.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating Semantic Models With
(Genuine) Similarity Estimation. Computational
Linguistics, 41(4):665–695.

Donald B. Johnson. 1977. Efficient algorithms for
shortest paths in sparse networks. Journal of the
ACM (JACM), 24(1):1–13.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Maximilian Nickel, and Tomas Mikolov. 2017. Fast
linear model for knowledge graph embeddings.
arXiv preprint arXiv:1710.10881.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR), San Diego, CA, USA.

Andrey Kutuzov, Mohammad Dorgham, Oleksiy
Oliynyk, Chris Biemann, and Alexander Panchenko.
2019. Learning graph embeddings from WordNet-
based similarity measures. In Proceedings of the
Eighth Joint Conference on Lexical and Compu-
tational Semantics (*SEM 2019), pages 125–135,
Minneapolis, MN, USA. Association for Computa-
tional Linguistics.

Bertrand Lebichot, Guillaume Guex, Ilkka Kivimäki,
and Marco Saerens. 2018. A constrained random-
ized shortest-paths framework for optimal explo-
ration. arXiv preprint arXiv:1807.04551.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the 29th AAAI Conference on Artificial
Intelligence, pages 2181–2187, Austin, TX, USA.
AAAI Press.

Rada Mihalcea, Timothy Chklovski, and Adam Kilgar-
riff. 2004. The Senseval-3 English lexical sample
task. In Senseval-3: Third International Workshop
on the Evaluation of Systems for the Semantic Anal-
ysis of Text, pages 25–28, Barcelona, Spain. Associ-
ation for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Advances in Neural Information Process-
ing Systems 26, pages 3111–3119, Lake Tahoe, NV,
USA. Curran Associates, Inc.

George A. Miller. 1995. WordNet: A lexical
database for English. Communications of the ACM,
38(11):39–41.

Andrea Moro and Roberto Navigli. 2015. Semeval-
2015 task 13: Multilingual all-words sense disam-
biguation and entity linking. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 288–297. Association for
Computational Linguistics.

https://link.springer.com/chapter/10.1007/978-3-540-76298-0_52
https://www.nltk.org/book/
https://www.nltk.org/book/
https://dl.acm.org/citation.cfm?id=1376746
https://dl.acm.org/citation.cfm?id=1376746
https://dl.acm.org/citation.cfm?id=1376746
https://dl.acm.org/citation.cfm?id=2806512
https://dl.acm.org/citation.cfm?id=2806512
https://www.aclweb.org/anthology/P18-1011
https://www.aclweb.org/anthology/P18-1011
https://ieeexplore.ieee.org/document/4072747
https://ieeexplore.ieee.org/document/4072747
https://ieeexplore.ieee.org/document/4072747
https://dl.acm.org/citation.cfm?id=2939754
https://dl.acm.org/citation.cfm?id=2939754
http://sites.computer.org/debull/A17sept/p52.pdf
http://sites.computer.org/debull/A17sept/p52.pdf
https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://ieeexplore.ieee.org/document/6772729
https://ieeexplore.ieee.org/document/6772729
https://www.aclweb.org/anthology/J15-4004
https://www.aclweb.org/anthology/J15-4004
https://dl.acm.org/citation.cfm?id=321993
https://dl.acm.org/citation.cfm?id=321993
https://arxiv.org/abs/1710.10881
https://arxiv.org/abs/1710.10881
https://hdl.handle.net/11245/1.505367
https://hdl.handle.net/11245/1.505367
https://www.aclweb.org/anthology/S19-1014
https://www.aclweb.org/anthology/S19-1014
https://arxiv.org/abs/1807.04551
https://arxiv.org/abs/1807.04551
https://arxiv.org/abs/1807.04551
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://aclweb.org/anthology/W04-0807
http://aclweb.org/anthology/W04-0807
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.18653/v1/S15-2049
https://doi.org/10.18653/v1/S15-2049
https://doi.org/10.18653/v1/S15-2049

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys (CSUR), 41(2):10.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and
Wenwu Zhu. 2016. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1105–1114,
San Francisco, CA, USA. ACM.

Martha Palmer, Christiane Fellbaum, Scott Cotton,
Lauren Delfs, and Hoa Trang Dang. 2001. En-
glish tasks: All-words and verb lexical sample. In
Proceedings of SENSEVAL-2 Second International
Workshop on Evaluating Word Sense Disambigua-
tion Systems, pages 21–24, Toulouse, France. Asso-
ciation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543,
Doha, Qatar. Association for Computational Lin-
guistics.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. DeepWalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, New
York, NY, USA. ACM.

Mohammad T. Pilehvar and Roberto Navigli. 2015.
From senses to texts: An all-in-one graph-based ap-
proach for measuring semantic similarity. Artificial
Intelligence, 228:95–128.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convo-
lutional networks. In Proceedings of the European
Semantic Web Conference 2018: The Semantic Web,
pages 593–607, Heraklion, Greece. Springer.

Ravi Sinha and Rada Mihalcea. 2007. Unsupervised
graph-based word sense disambiguation using mea-
sures of word semantic similarity. In International
Conference on Semantic Computing (ICSC), pages
363–369, Irvine, CA, USA. IEEE.

Julien Subercaze, Christophe Gravier, and Frédérique
Laforest. 2015. On metric embedding for boost-
ing semantic similarity computations. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 8–14, Bei-
jing, China. Association for Computational Linguis-
tics.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on

Continuous Vector Space Models and their Compo-
sitionality, pages 57–66, Beijing, China. Associa-
tion for Computational Linguistics.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence, pages
1112–1119, Québec City, QC, Canada. AAAI Press.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016. Representation learning of
knowledge graphs with entity descriptions. In Pro-
ceedings of the 30th AAAI Conference on Artificial
Intelligence, pages 2659–2665, Phoenix, AZ, USA.
AAAI Press.

https://dl.acm.org/citation.cfm?id=1459355
https://dl.acm.org/citation.cfm?id=1459355
https://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf
http://www.aclweb.org/anthology/S01-1005
http://www.aclweb.org/anthology/S01-1005
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://dl.acm.org/citation.cfm?doid=2623330.2623732
https://dl.acm.org/citation.cfm?doid=2623330.2623732
https://www.sciencedirect.com/science/article/abs/pii/S000437021500106X
https://www.sciencedirect.com/science/article/abs/pii/S000437021500106X
https://link.springer.com/chapter/10.1007/978-3-319-93417-4_38
https://link.springer.com/chapter/10.1007/978-3-319-93417-4_38
https://ieeexplore.ieee.org/document/4338370
https://ieeexplore.ieee.org/document/4338370
https://ieeexplore.ieee.org/document/4338370
https://doi.org/10.3115/v1/P15-2002
https://doi.org/10.3115/v1/P15-2002
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://dl.acm.org/citation.cfm?id=3016100.3016273
https://dl.acm.org/citation.cfm?id=3016100.3016273

