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Abstract

We propose a sparse sequence autoencoder model for unsu-
pervised acoustic unit discovery, based on bidirectional LSTM
encoders/decoders with a sparsity-inducing bottleneck. The
sparsity layer is based on memory-augmented neural networks,
with a differentiable embedding memory bank addressed from
the encoder. The decoder reconstructs the encoded input fea-
ture sequence from an utterance-level context embedding and
the bottleneck representation. At some time steps, the input to
the decoder is randomly omitted by applying sequence dropout,
forcing the decoder to learn about the temporal structure of the
sequence. We propose a bootstrapping training procedure, af-
ter which the network can be trained end-to-end with standard
back-propagation. Sparsity of the generated representation can
be controlled with a parameter in the proposed loss function.
We evaluate the units with the ABX discriminability on minimal
triphone pairs and also on entire words. Forcing the network to
favor highly sparse memory adressings in the memory compo-
nent yields symbolic-like representations of speech that are very
compact and still offer better ABX discriminability than MFCC.
Index Terms: unsupervised learning, sparse autoencoders,
acoustic unit discovery

1. Introduction
Unsupervised or zero resource speech processing is a relatively
new and growing field that deals with speech processing setups
where usually no transcriptions or labels are known. In many
tasks, only raw audio data is available. One of the first suc-
cessful applications is voice search by example, where a large
collection of audio data can be queried by a voice query [1].

Transcribed and labeled speech data is needed to train su-
pervised speech recognition systems, but is usually costly to
obtain. Unlabeled speech data on the other hand is much eas-
ier to obtain in larger quantities, even for languages for which
much less resources are available as compared to e.g. English.
In this paper, we consider the problem of inducing an acoustic
unit inventory [2, 3] and perform self-labeling of untranscribed
speech data. Such a system can be a building block of sys-
tems that learn lexical inventories [4] from speech data alone,
or could possibly aid in augmenting or replacing linguistically
motivated phonemes in supervised automatic speech recogni-
tion (ASR). It might also allow speech processing in languages
where no transcribed resources are available.

Variance and variability in recordings of speech and its rep-
resentations (e.g. FBANK, MFCC) are a common problem in
automatic speech processing tasks, whether supervised or un-
supervised. Speaker and environment characteristics, distance
to, and the type of microphone used will cause large differences
in acoustic speech representations, making (direct) similarity
comparisons difficult.

We propose a novel neural architecture based on a sequence
autoencoder. We force the encoder and decoder to develop a
symbolic-like representation, with the goal of reconstructing in-
put speech representation with limited information. We aim to
solve the problem of speech variability that the automatic units
should be able to capture by using an utterance-level context
embedding. The decoder can use this embedding to infer the
”style” of the utterance in addition to its (sparse) input repre-
sentation generated by the encoder.

2. Related Work
Several approaches to unsupervised acoustic modeling and
acoustic unit discovery have been proposed:

Segmental approaches: These approaches separate seg-
mentation and clustering of acoustic units. Garcia and Gish [5]
developed one of the first of such systems. Segments are found
based on spectral discontinuities in the signal and the clustering
algorithm uses the polynomial trajectory of the cepstral features
to compare speech units of varying length.

Autoencoder approaches: Badino et al. [6] proposed
k-means on framewise binarized autoencoder representations,
where temporal smoothing of the frame level representations
can be achieved with Hidden Markov Models (HMMs). Several
autoencoder architectures are compared in [7], standard bottle-
neck autoencoders do not seems to produce representation with
better minimal pair discriminability than MFCC features.

Bayesian non-parametric models: Lee and Glass [8] pro-
posed a Dirichlet process mixture model, where each mixture is
a HMM representing an acoustic unit. Chen et al. [9] proposed
Dirichlet process Gaussian mixture model (DPGMM) cluster-
ing for acoustic frame-level unit modeling in their winning en-
try for unsupervised acoustic unit modeling of the ZeroSpeech
2015 challenge on acoustic sub-word modeling [10]. Heck et
al. [11] proposed DPGMM clustering on PLP features followed
by obtaining unsupervised feature transformations by retrain-
ing with a speaker-independent GMM-HMM on the obtained
labels. This is also the winning entry for automatic unit discov-
ery of the ZeroSpeech challenge 2017 [12]. Noteworthy is that
while the re-training using a GMM-HMM with speaker adapta-
tions improves on the DPGMM results, the DPGMM clustering
on its own on PLP features on a frame-level basis already pro-
vides strong results.

The 2015 and 2017 ZeroSpeech challenges also targeted
acoustic unit discovery [10, 12] as part of the evaluation and
have established the use of the ABX discriminability [13, 14]
to intrinsically compare how well semantically relevant sounds
are mapped by a discovered representation.

Lightly supervised: Lightly supervised systems consider
some other form of available information besides raw speech
data. The systems in [15] and [16] use weak top-down con-
straints in the form of same-type annotations.
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Figure 1: Sequence encoder / decoder with a memory compo-
nent as sparsity bottleneck.

3. Proposed Model
The proposed network in this paper jointly infers a segmen-
tation and a classification on an utterance level with an un-
supervised training objective. Although the network outputs
a label for each frame individually, in contrast to frame-level
(or window-level) autoencoders, the network has access to the
temporal structure of a full utterance. Figure 1 illustrates the
proposed network. Encoder and decoder are bidirectional long
short-term memories (LSTMs) [17, 18]. Between encoder and
decoder, we apply dropout at the sequence level, i.e. we ran-
domly omit vectors in the sequence between them while train-
ing the network. Metaphorically speaking, this achieves that the
encoder is never sure that its outputs get passed on to the de-
coder and must transmit the most salient information about the
current and surrounding frames. The decoder must also learn to
predict missing frames and corrects accordingly when new in-
formation is available from the encoder. Note that without this,
the decoder could simply rely only on the inputs from the en-
coder at each time step and ignore its state, ultimately ignoring
the temporal structure entirely and the network structure would
be more similar to a regular autoencoder. We use mean squared
error (MSE) for the reconstruction loss.

3.1. Memory Component

Figure 2 illustrates the memory component. It is similar to the
one used in [19]. For an input x we use softmax(Wx+ b), a
standard single-layer network without an activation function for
the key addressing. We set the dimensions of W such that the
output of Wx has as many elements as there are value embed-
dings. After the softmax operation, we multiply each of the out-
puts with a corresponding value memory embedding and sum
all vectors. This is the output vector of the memory module and
it is a weighted sum over the value memory embeddings.

Note that the memory component that we used can also be
understood as a form of key-value separated attention [20, 21,
22], where we compare a query by attending to a key memory
(instead of attending to RNN states) and output separate vectors
from a value memory. The key memory, in our case, is the
matrix W . The memory module is smooth and can be used
and trained with back-propagation. As part of a bigger neural
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Figure 2: Memory module consisting of an input query key
adressing network and a value memory bank containing fixed-
sized embeddings.

network, it can be placed between any layers, the input query
dimension can be the same as the output vector dimension.

The goal of the memory network, within the context of the
sparse sequence autoencoder, is to sparsify the outputs of en-
coder network. However, without additional constraints, the
output of the softmax layer will not necessarily be sparse and
performs a soft-clustering over the output. We use the follow-
ing constraint described in the next section on the softmax layer
of the addressing network to achieve varying degrees of sparse-
ness of this clustering, up to a quasi-hard clustering.

3.2. Enforcing Sparsity

We propose the following sparsity-inducing constraint for the
softmax layer, based onL∞ regularization. Let σ1, ..., σn be the
outputs of the softmax layer in the memory component, then:

Softmax-L∞ = 1− sup
n
σi (1)

This regularization loss is zero, iff one of the softmax out-
puts is one and all other outputs are zero (perfect sparsity, one-
hot encoding), because the softmax layer enforces the linear
constraint that the sum of all outputs is one and all elements
are positive. The regularization term is multiplied by a sparsity
weight and is added to the loss of the full network.

3.3. Context Vector

We concatenate a context vector at each time step to the outputs
of the encoder and memory component and use this combined
vector as input to the decoder. We compare separately trained
Unspeech context embeddings [23] as static additional input to
the network and propose a simple integrated alternative inspired
by sequence summary networks [24] that does not require extra
training: we sum all encoder states to a single vector with the
same size as the encoding states.

3.4. Enforcing Diversity

A degenerate solution to minimize the sparsity constraint is to
place all inputs into a single memory component, i.e. clustering
all inputs into a single cluster. To discourage this degenerate so-
lution, we also propose a diversity constraint calculated over m
time steps of an utterance with n softmax outputs per timestep:

Diversity-L∞ = sup
n

∑m
j=0 σji

m
(2)



3.5. Training Procedure

With a random initialization, we found it difficult to train the
complete network together with the memory component di-
rectly from scratch, even with the diversity constraint. Most
of the time, the training will be stuck in a degenerate solution
of using either one memory component for all queries or two
alternating memory value components for speech and silence.

We propose the following iterative training procedure,
based on pre-training a network without the sparsity-inducing
memory component first:

1. Train the network without the sparsity layer until the re-
construction loss converges.

2. Run a cluster algorithm, e.g. k-means (n = number of
memory banks) on a subset of the randomly select se-
lected bottleneck features obtained by running the en-
coder of the network on a couple of input sequences.

3. Initialize the value memory bank weights of the memory
component to the cluster centers of step (2). Then train
the key addressing subnetwork on the cluster labels.

4. Connect the memory sub-module to the network by plac-
ing it between the encoder and decoder of the network
trained in (1) and continue training the full network with
added sparsity loss term to the loss function.

The proposed training procedure above fixes n (the number
of units) for simplicity to a manually set value. By swapping the
k-means initialization with a different cluster algorithm, e.g. a
density based one, n could also be inferred from the data.

4. Implementation
We implemented the model in Tensorflow [25] and make the
code publicly available1. Encoder and decoder are either 2-
layer respectively 4-layer stacked LSTMs with a hidden size
of 256. The bottleneck layer has a size of 32. We use ADAM
[26] for training the network with a learning rate of 0.001. For
initializing the memory subnetwork we use scikit-learn’s [27]
implementations for k-means++ [28] and DPGMM. The mem-
ory values are either initialized with the cluster centers from k-
means, or the mean vectors of the DPGMM components. They
are initialized from a subset of all training data, we randomly
sample 1000 utterances and subsample them further to obtain 2
million vectors for the initial clustering. We use Unspeech vec-
tors [23] trained on the same data with a size of 256 dimensions.
Feature vectors (MFCC and PLP) are created with Kaldi [29].
We also created our own phone and word alignments on Lib-
rispeech’s 360 hour clean subset [30] using force-alignment
with a strong speaker-independent GMM-HMM trained with
Kaldi (7% WER on clean read speech).

5. Evaluation
Visualization of different sparsity values: Figure 3 shows an
example input and reconstruction, along with pseudo-posteriors
of training runs with different sparsity weights in the sparsity
term of the loss function. The pseudo-posteriors are generated
by running a forward pass on the encoder and memory com-
ponent of the network and taking the output after the internal
softmax. It also shows that the reconstruction is similar to the
input, even though we zero out the connection between decoder
and encoder with a probability of 66.6% (sequence dropout).

1See https://gitlab.com/milde/sparsespeech
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Figure 3: Training runs with varying sparsity weights (n=16).

Table 1: Baseline ABX values on English (Librispeech).

ABX within ABX across
word triphone word triphone

MFCC 18.2 30.3 28.1 41.4
PLP 17.8 29.6 27.6 39.7
PLP-DPGMM 7.5 19.0 11.0 26.9

The decoder seems to be able to guess missing feature vectors
fairly well. Higher values for the sparsity weight yield sparser
representations; at a sparsity weight of 10.0 the representations
are mostly one-hot encoded.

ABX evaluation: In an ABX task, we test if stimulus A
or B is closer to X. The minimal pair ABX discriminability
[13, 14] is an error measure that applies this scheme to speech
sounds. We use two different forms of ABX tasks in our eval-
uation. In a word ABX task, A and B are different words, e.g.
A=dog B=cat1 X=cat2 where B is closer to X. In a triphone min-
imal pair (MP) task, e.g. A=beg B=bag1 X=bag2, A and B are
differentiated only by a center phone. The task includes all tri-
phone phoneme sequences that appear in the data, not only the
ones that form words. The ABX error measure discriminates
between within- and across-speaker tasks, in the former B and
X are from the same speaker and in the latter they are uttered by
different speakers. The distance metric is representation agnos-
tic and uses Dynamic Time Warping (DTW) [32] to compare if
A or B is closer (smaller distance) to X. For all posteriogram-
like outputs, we use the Kullback-Leibler (KL) divergence as
local comparison function, cosine distance otherwise.

The ZeroSpeech challenges in 2015 and 2017 used com-
paratively little speech data, 5 hours respectively 45 hours of
English speech. We assume that neural models need more unla-
beled data to learn effective representations and base our eval-
uation on training on the 360 hour subset of the Librispeech
corpus [30] for English read speech. While our model can work
with any feature representation, we follow the winning systems
of the ZeroSpeech 2017 challenge [12] and train on perceptual
linear predictive (PLP) features [33].

We use a randomized and unweighted version of the ABX
measure (the random seed is fixed between all comparisons) to
evaluate word and minimal-pair ABX. We sample 400 pairs of
speakers from the corpus and select either all common words
or triphone sequences for ABX tasks. We show baseline scores
for common feature representations and a PLP-DPGMM in Ta-
ble 1. Note that our ABX seems to be more difficult than the
English subset in Task 1 of the ZeroSpeech 2017 challenge, as



Table 2: Word and triphone minimal pair ABX error rates of the proposed model on 360 hours of English read speech (Librispeech).

context stacked training ABX within speakers ABX across speakers
vector layers memory init sparsity diversity n epochs word triphn-MP word triphn-MP

Encoder sum 2 k-means++ 10.0 0 10 10 7.8 18.4 9.2 22.4
Encoder sum 2 k-means++ 10.0 0 16 10 6.9 17.2 8.5 22.0
Encoder sum 2 k-means++ 10.0 0 20 10 6.7 16.8 9.2 22.5
Encoder sum 2 k-means++ 10.0 0 20 1 8.0 18.4 11.1 25.2
Encoder sum 2 k-means++ 10.0 0 42 10 7.8 17.9 12.6 26.5
Encoder sum 2 k-means++ 10.0 0 80 10 9.4 19.3 15.2 29.0

Unspeech 2 k-means++ 10.0 0 20 10 7.3 17.5 9.9 23.8
Unspeech 2 k-means++ 10.0 0 42 10 8.5 18.8 13.4 27.7

Encoder sum 2 k-means++ 0 0 16 10 8.8 18.0 16.2 29.5
Encoder sum 2 k-means++ 0.5 0 16 10 9.2 18.5 17.1 30.6
Encoder sum 2 k-means++ 5.0 0 16 10 6.7 16.4 8.2 20.1

Encoder sum 2 DPGMM 8.0 0 (max 80) 10 8.7 18.3 13.6 26.8
Encoder sum 2 DPGMM 10.0 0 (max 80) 10 8.5 18.1 13.4 26.6

Encoder sum 2 k-means++ 10.0 10.0 16 10 6.9 16.9 8.6 21.5
Encoder sum 2 k-means++ 2.0 10.0 16 10 5.5 14.5 6.7 18.2
Encoder sum 4 k-means++ 2.0 10.0 16 10 5.5 14.1 6.4 17.5
Encoder sum 4 k-means++ 2.0 100.0 16 10 5.3 14.1 6.4 17.1

Table 3: Triphone minimal pair ABX error rates on the Ze-
roSpeech 2017 test set (English), lower is better.

MP-ABX within MP-ABX across
Features 1s 10s 120s 1s 10s 120s

(A) MFCC [12] 12.0 12.1 12.1 23.4 23.4 23.4
(B) Heck et al. [11] 6.9 6.2 6.0 10.1 8.7 8.5
(C) Pellegrini et al. [31] 9.8 8.1 8.2 17.6 16.2 16.3

(1) Bottleneck (dense) 9.7 9.7 9.7 23.4 23.4 23.4
(2) Bottleneck 360h (dense) 9.6 9.7 9.7 22.2 22.2 22.2
(3) n=20, KL 13.4 13.3 13.3 22.2 22.3 22.3

(4) n=20, 360h, KL 11.1 10.7 10.6 17.1 16.8 16.7
(5) n=42, 360h, KL 12.2 12.0 12.0 21.7 21.5 21.4

(6) n=16,+div, 360h, KL 9.4 8.9 9.0 14.1 13.3 13.2
(7) + 4-layer LSTM, KL 9.5 9.0 8.9 14.0 12.8 12.4

(B) + VQ argmax 22.6 11.5 11.8 30.1 16.2 16.7
(7) + VQ argmax 11.1 10.5 10.3 15.9 14.7 14.2

the baseline scores are higher on the triphone minimal-pair task.
We computed the PLP-DPGMM with 1/10 of the training data
and restricted the maximum number of components to 80, as we
found it difficult to scale the DPGMM training to 360 hours.

In Table 2, we compare (sampled) word and triphone-MP
ABX error rates on different sparsity and cluster settings on
the 360 hour Librispeech set. DPGMM-based memory value
initialization (effectively running DPGMM clustering on the
encoder states) does not seem to be more effective than the
much faster and simpler k-means-based initialization. Using
the encoder-sum vector as context vector for the sequence is
slightly better than using a fixed and pretrained Unspeech con-
text embedding. With k-means, the best ABX scores across
speakers are obtained with k=16, while k=20 yields slightly bet-
ter within-speaker ABX scores. Training longer than 1 epoch
after the initial cluster initialization improves ABX errors by a
large margin. Disabling the sparsity constraint by setting it to
zero yielded very high ABX error rates, reflecting its important
role in our setup. The best ABX scores are obtained by ad-
ditionally using the diversity constraint. Using 4-layer LSTM
encoders and decoders is slightly more effective than 2 layers.

In Table 3 we use the evaluation scripts and English test
data of the ZeroSpeech 2017 challenge. (1) and (3) are trained
using the 45 hours train set of the challenge. The bottleneck
features are dense and from the pretrained network without the
memory component; they seem to provide improvements to

within-speaker ABX scores over the baseline (A). Pre-training
on more data does not seem to improve this significantly (2).
System (3), trained with a sparsity weight of 10.0, outputs a
quasi-symbolic representation. While this representation results
in higher within-ABX error rates than MFCCs (A), it performs
better across speakers. Systems (4) and (5), trained on an order
of magnitude more data with 360 hours but the same parame-
ters otherwise, drastically reduce within and across ABX error
rates over System (3). Reference system (B) provides lower
ABX error rates than our system (7), but the generated posteri-
ors are 1144-dimensional and they are not as sparse as the ones
generated by our system; for 10s the mean max. value is 0.386
vs. 0.986. In the last two rows, we compare (7) and (B) under
the constraint that the representation must be completely sparse
(symbolic) at each time step, i.e. we take the argmax and use
indices in the comparison. In this case, our system provides
significantly better ABX scores than the reference system (B).

6. Conclusion
We presented a novel neural approach to unsupervised acoustic
unit discovery, based on a sequence autoencoder with a spar-
sity inducing memory component. The proposed sparsity con-
straint restricts the model to develop a quasi-symbolic repre-
sentation. We propose an iterative training procedure, where
the network is pre-trained without the sparsity memory compo-
nent first. The architecture can be trained with standard back-
propagation. This makes it easily possible to scale the training
to larger training sizes. We were able to train the model on up
to 360 hours of speech in two days on a single GPU. Extending
this to much larger training sizes should be easily possible. Our
generated representations are very compact with few sub-word
units and are mostly one-hot encoded symbolic-like representa-
tions, with better ABX discriminability than MFCC.

We can also confirm that a PLP-DPGMM model is a strong
baseline for the ABX task, even though the training objective
operates on the frame level. It often produces many hundreds
of sub word units when not restricted, which may be imprac-
tical in certain tasks (see [34]). Also, we found it difficult to
scale DPGMM to larger training sizes. Scaling our model to
360 hours of data provides representations with better ABX
discriminability than PLP-DPGMM with speaker-independent
transformations [11] under the constraint that the output repre-
sentation needs to be completely sparse and symbolic.
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