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Abstract

We tackle the tasks of automatically identi-
fying comparative sentences and categorizing
the intended preference (e.g., “Python has bet-
ter NLP libraries than MATLAB” → Python,
better, MATLAB). To this end, we manually
annotate 7,199 sentences for 217 distinct tar-
get item pairs from several domains (27% of
the sentences contain an oriented comparison
in the sense of “better” or “worse”). A gradi-
ent boosting model based on pre-trained sen-
tence embeddings reaches an F1 score of 85%
in our experimental evaluation. The model can
be used to extract comparative sentences for
pro/con argumentation in comparative / argu-
ment search engines or debating technologies.

1 Introduction

Everyone faces choice problems on a daily ba-
sis: from choosing between products (e.g., which
camera to buy), to more generic preferences for
all kinds of things: cities to visit, universities to
study at, or even programming languages to use.
Informed choices need to be based on a compar-
ison and objective argumentation to favor one of
the candidates. Often, people seek support from
other people—for instance, a lot of questions like
“How does X compare to Y?” are asked on ques-
tion answering platforms.

The Web also contains pages about compar-
ing various objects: Specialized web resources
systematize human experts results for domain-
specific comparisons (for insurances, cameras,
restaurants, hotels, etc.) while systems like Wol-
framAlpha aim at providing comparative function-
ality across domains. Still, such pages and sys-
tems usually suffer from coverage issues relying
on structured databases as the only source of infor-
mation ignoring the rich textual content available
on the web.

No system is currently able to satisfy open-
domain comparative information needs with suf-
ficient coverage and explanations of the compared
items’ relative qualities. Indeed, information re-
trieval systems and web search engines are able
to directly answer many factoid questions (one-
boxes, direct answers, etc.) but do not yet treat
comparative information needs any different than
standard queries. Search engines show the default
“ten blue links” for many comparative informa-
tion needs even though a direct answer enriched
by pro/cons for the different options might be the
much more helpful result.

One reason might be that despite the wealth of
comparisons on the web with argumentative ex-
planations, there is still no widespread technology
for its extraction. In this work, we propose the
first steps towards closing this gap by proposing
classifiers to identify and to categorize compara-
tive sentences.

The task of identifying and categorizing com-
parative sentences is to decide for a given sentence
whether it compares at least two items and, if so,
which item “wins” the comparison. For instance,
given the sentence Python is better suited for data
analysis than MATLAB due to the many available
deep learning libraries, the system should cate-
gorize it as comparative and that it favors Python
(Python “wins” over MATLAB). Identifying and
categorizing comparative sentences can be viewed
as a sub-task of argumentation mining (Lippi and
Torroni, 2016) in the sense that detected compar-
ative sentences (and probably also their context
sentences) can support pro/con analyses for two or
more items. Such comparative pro/cons might be
used to trigger reactions in debates (one advantage
of some item can be countered by some advantage
of the other item, etc.) or they can form the ba-
sis for answering comparative information needs
submitted to argument search engines.



Our main contributions are two-fold:

1. We release CompSent-19, a new corpus con-
sisting of 7,199 sentences containing item
pairs (27% of the sentences are tagged as
comparative and annotated with a prefer-
ence);

2. We present an experimental study of super-
vised classifiers and a strong rule-based base-
line from prior work.

The new CompSent-19 corpus,1 pre-trained
sentence categorization models, and our source
codes2 are publicly available online.

2 Related Work

A number of online comparison portals like Go-
Compare or Compare.com provide access to struc-
tured databases where products of the same class
can be ranked along with their aspects. Other
systems like Diffen.com and Versus.com try to
compare any pair of items on arbitrary proper-
ties. They reach high coverage through the inte-
gration of a large number of structured resources
such as databases and semi-structured resources
like Wikipedia, but still list aspects side by side
without providing further verbal explanations—
none of the portals aim at extracting comparisons
from text. Promising data sources for textual com-
parisons are question answering portals like Quora
or Yahoo! Answers that contain a lot of “How does
X compare to Y?”-questions with human answers
but the web itself is an even larger source of tex-
tual comparisons.

Mining and categorizing comparative sentences
from the web could support search engines in an-
swering comparative queries (with potential argu-
mentation justifying the preference in the mined
sentence itself or in its context) but also has opin-
ion mining (Ganapathibhotla and Liu, 2008) as an-
other important application. Still, previous work
on recognizing comparative sentences has mostly
been conducted in the biomedical domain. For in-
stance, Fiszman et al. (2007) identify sentences
explicitly comparing elements of drug therapy
via manually developed comparative and direc-
tion patterns informed by a lot of domain knowl-
edge. Later, Park and Blake (2012) trained a high-
precision Bayesian Network classifier for toxicol-

1https://zenodo.org/record/3237552
2https://github.com/uhh-lt/comparative

ogy publications that used lexical clues (compar-
atives and domain-specific vocabulary) but also
paths between comparison targets in dependency
parses. More recently, Gupta et al. (2017) de-
scribed a system for the biomedical domain that
also combines manually collected patterns for lex-
ical matches and dependency parses in order to
identify comparison targets and comparison type
using the as gradable, non-gradable, superlative-
taxonomy of Jindal and Liu (2006).

Developing a system for mining comparative
sentences (with potential argumentation support
for a preference) from the web might utilize spe-
cialized jargon like hashtags for argumentative
tweets (Dusmanu et al., 2017) but at the same time
faces the challenges recognized for general web
argument mining (Šnajder, 2017): web text is typ-
ically not well formulated, misses argument struc-
tures, and contains poorly formulated claims. In
contrast to the use of dependency parses for min-
ing comparative sentences in the biomedical do-
main, such syntactic features are often impossible
to derive for noisy web text and were even shown
to not really help in identifying argument struc-
tures from well-formulated texts like persuasive
essays or Wikipedia articles (Aker et al., 2017;
Stab and Gurevych, 2014); simpler structural fea-
tures such as punctuation subsumed syntactic fea-
tures in the above studies.

The role of discourse markers in the identifi-
cation of claims and premises was discussed by
Eckle-Kohler et al. (2015), who found such mark-
ers to be moderately useful for identifying ar-
gumentative sentences. Also Daxenberger et al.
(2017) noted that claims share lexical clues across
different datasets. They also concluded from
their experiments that typical argumentation min-
ing datasets were too small to unleash the power
of recent DNN-based classifiers; methods based
on feature engineering still worked best.

3 Dataset

As there is no large publicly available cross-
domain dataset for comparative argument min-
ing, we create one composed of sentences anno-
tated with markers BETTER (the first item is bet-
ter or “wins”) / WORSE (the first item is worse or
“looses”) or NONE (the sentence does not contain
a comparison of the target items). The BETTER-
sentences represent a pro argument in favor of the
first compared item (or a con argument for the sec-

https://zenodo.org/record/3237552
https://github.com/uhh-lt/comparative


ond item) while the roles are exchanged for the
WORSE-sentences.

In our dataset, we aim to minimize domain-
specific biases to rather capture the nature of com-
parison and not the nature of particular domains.
We thus decided to control the specificity of do-
mains via the selection of the comparison targets.
We hypothesized and could confirm in preliminary
experiments that comparison targets usually have
a common hypernym (i.e., they are instances of the
same class), which we utilize for the selection of
the compared item pairs.

The most specific domain we choose is Com-
puter Science with comparison targets like pro-
gramming languages, database products and tech-
nology standards such as Bluetooth or Ethernet.
Many computer science concepts can be compared
objectively (e.g., via transmission speed or suit-
ability for certain applications). The comparison
targets were manually extracted from Wikipedia
“List of”-articles that cover computer science. In
the annotation process, annotators were asked to
label sentences from this domain only if they had
some basic knowledge in computer science.

The second, broader domain is Brands. It con-
tains items of various types (e.g., cars, electron-
ics, or food). As brands are present in every-
day life, we assume basically anyone to be able
to label sentences containing well-known brands
such as Coca-Cola or Mercedes. Again, target
items for this domain were manually extracted
from Wikipedia “List of”-articles.

The third Random domain is not restricted to
any topic. For each of 24 randomly selected seed
words,3 10 similar words were collected based on
the distributional similarity JoBimText API (Bie-
mann and Riedl, 2013).

Especially for brands and computer science, the
resulting item lists were large (4,493 in brands
and 1,339 in computer science). In a manual
inspection, low-frequency and ambiguous items
were removed (e.g., the computer science con-
cepts “RAID” (a hardware concept) and “Unity”
(a game engine) are also regularly used nouns).
The remaining items were combined into pairs.
For each item type (seed Wikipedia list or seed
word), all possible item combinations were cre-
ated. These pairs were then used to mine sentences

3Created using randomlists.com: book, car, carpenter,
cellphone, Christmas, coffee, cork, Florida, hamster, hiking,
Hoover, Metallica, NBC, Netflix, ninja, pencil, salad, soccer,
Starbucks, sword, Tolkien, wine, wood, XBox, Yale.

containing both items from a web-scale corpus.

Our sentence source is the publicly available in-
dex of the DepCC (Panchenko et al., 2018), an
index of more then 14 billion dependency-parsed
English sentences from the Common Crawl fil-
tered for duplicates. This index was queried for
sentences containing both items in each target pair.
For 90% of the pairs, we also added frequent com-
parative cue words4 to the query in order to bias
the results towards actual comparative sentences
but at the same time also allow for comparisons
that do not contain any of the anticipated cues.
This focused querying was necessary as a random
sampling would have resulted in only a very tiny
fraction of comparative sentences. Note that even
sentences containing a cue word do not necessarily
express a comparison between the desired targets
(e.g., dog vs. cat: He’s the best pet that you can
get, better than a dog or cat). It is thus especially
crucial to enable a classifier to learn not to rely on
the presence of the cue words only (which is very
likely in a random sample of sentences with very
few comparisons). For our dataset, we keep target
pairs with at least 100 retrieved sentences.

From all sentences for the target pairs, we ran-
domly sampled 2,500 instances in each category
as potential candidates for a crowd-sourced an-
notation that we conducted on the Figure Eight
platform in several small batches. Each sentence
was annotated by at least five trusted workers. Of
all annotated sentences, 71% received unanimous
votes, and at least 4 out of 5 workers agreed for
over 85%, at least 4 out of 5 workers agreed.

Our final Comparative Sentences Corpus 2019
(CompSent-19) is formed by the 7,199 sentences
for 271 distinct item pairs that remained after re-
moving the 301 sentences with an annotation con-
fidence below 50%, a Figure-Eight-internal mea-
sure combining annotator trust and voting. Ta-
ble 1 shows example sentences with their annota-
tion while Table 2 outlines the corpus characteris-
tics. Only a 27%-minority of the sentences are an-
notated as comparative (despite the selection bias
with comparative cue words); in 70% of these, the
favored item is named first.

4Better, easier, faster, nicer, wiser, cooler, decent, safer,
superior, solid, terrific, worse, harder, slower, poorly, uglier,
poorer, lousy, nastier, inferior, mediocre.



Table 1: Examples sentences for the three domains with their annotated comparative label (the first item is
BETTER/WORSE/NONE than the second item (note that the item order matters).

Domain Sentence Label

CompSci This time Windows 8 was roughly 8 percent slower than Windows 7. WORSE

CompSci I’ve concluded that it is better to use Python for scripting rather than Bash. BETTER

Brands These include Motorola, Samsung and Nokia. NONE

Brands Honda quality has gone downhill, Hyundai or Ford is a much better value. WORSE

Random Right now, I think tennis is easier than baseball. BETTER

Random I’ve grown older and wiser and avoid the pasta and bread like the plague. NONE

Table 2: Characteristics of our CompSent-19 dataset.

Label
Domain BETTER WORSE NONE Total

CompSci 581 248 1,596 2,425
Brands 404 167 1,764 2,335
Random 379 178 1,882 2,439

Total 1,364 593 5,242 7,199

4 Supervised Categorization of
Comparative Sentences

We split the 7,199 sentences of our CompSent-19
corpus into an 80% training set (5,759 sentences:
4,194 NONE, 1,091 BETTER, and 474 WORSE) and a
20% held-out set. During development, the ex-
periments were evaluated on the training set using
stratified 5-fold cross-validation; the held-out set
was only used for the final evaluation. If not stated
otherwise, scikit-learn (Pedregosa et al., 2011)
was used to perform feature processing, classifi-
cation, and evaluation.

4.1 Preprocessing
A first preprocessing step decides if the full sen-
tence or only a part of it should be used for feature
computation. Each sentence is considered to con-
sist of three parts: the beginning part are all words
before the first comparison target, the ending part
are all words after the second comparison target,
and the middle part are all words between the tar-
gets. Different combinations of partial sentence
representations were used in our classification ex-
periments.

The second preprocessing step is carried out to
examine the importance of the lexicalized com-
parison targets for the classification. The targets
either stay untouched, are removed, or replaced
using two different replacement strategies. In the
first variant, both targets are replaced by the term
ITEM (oblivious replacement). In the second vari-

ant, the first object was replaced by ITEM A and
the second by ITEM B (distinct replacement).

4.2 Supervised Classification Models

We compare 13 models ranging from the lower-
capacity linear models, such as Logistic Regres-
sion, Naı̈ve Bayes, and SVMs with various ker-
nels to high-capacity ones based on decision trees
and their ensembles such as Random Forest, Ex-
tra Trees, and Gradient Boosting relying on de-
cision trees. Implementation-wise, twelve of the
tested models are available via scikit-learn, while
for XGBoost we used the implementation of Chen
and Guestrin (2016). Apart from XGBoost and the
Extra Trees Classifier, all models have been used
in previous argumentation mining studies.

4.3 Sentence Representations

We study the classification performance impact of
various feature types.

Bag of Words and Bag of Ngrams The bag-of-
words (BOW) model is a simple vector representa-
tion of text documents. All distinct words from the
corpus form the vocabulary V . Typically, a docu-
ment d is represented by a V -dimensional vector d
(Salton et al., 1975). When comparing different
classification models, we use BOW with binary
weights as a baseline but also try extensions like
tf- or tf-idf-weigthing and bag of token n-grams.
In general, BOW models have a rather high rep-
resentation length while being rather sparse at the
same time (many 0 feature scores).

Part-of-speech (POS) n-grams Another vector
representation is formed by the frequencies of the
500 most frequent POS bi-, tri and four-grams.5

5Using spaCy’s POS tagger: http://spacy.io/
api/annotation#pos-tagging.

http://spacy.io/api/annotation#pos-tagging
http://spacy.io/api/annotation#pos-tagging


Contains JJR A Boolean feature capturing the
presence of a JJR POS tag (comparative adjective).

Word Embeddings We rely on GloVe (Pen-
nington et al., 2014) embeddings of size 300 to
create a dense, low-dimension vector representa-
tion of a sentence.6 We average all word vectors
of a sentence, representing it by kind of a centroid
word—a simple method shown to be effective for
several tasks (Wieting et al., 2016).

Sentence Embeddings Bags of words and aver-
age word embeddings lose sequence information,
which intuitively should help for (directed) com-
parison extraction. Sentence embeddings aim to
learn representations for spans of text instead of
single words by taking sequence information into
account. Several methods like FastSent (Hill et al.,
2016) or SkipTought (Kiros et al., 2015) have been
proposed to create sentence embeddings. We use
InferSent (Conneau et al., 2017) that learns sen-
tence embeddings similar to word embeddings. A
neural network is trained on the Stanford Natu-
ral Language Inference (SNLI) dataset (Bowman
et al., 2015) containing 570,000 English sentence
pairs (each labelled as entailment, contradiction,
or neutral). InferSent combines the embeddings u
and v of the two sentences from a sentence pair
into one feature vector (containing the concatena-
tion, the element-wise product, and the element-
wise difference of u and v), that is then fed into a
fully connected layer and a softmax layer. We use
the pre-trained embeddings in our experiments.7

Dependency-based Features The HypeNet
method to detect hypernym relations between
words (Shwartz et al., 2016) combines distri-
butional and dependency path-based methods
to create a vector representation for word pairs.
The LexNet generalization of HypeNet encodes
tries to capture multiple semantic relationships
between two words also using dependency path
information (Shwartz and Dagan, 2016). Since
dependency paths have been one of the major
sources for comparison extraction in related work
from the biomedical domain (see Section 2), we
also include two LexNet-based features in our
experiments.

6Using spaCy’s en core web lg model:
http://spacy.io/models/en#section-en_
core_web_lg.

7http://github.com/facebookresearch/
InferSent

LexNet (original) In the original LexNet pa-
per, an LSTM (Hochreiter and Schmidhuber,
1997) is used to create path embeddings out of
the string paths. Since the details of the LSTM
encoder are not mentioned, we tested different ar-
chitectures and hyper-parameters and achieved the
best results with one LSTM layer with 200 neu-
rons, batch size of 128, RMSprop with learning
rate 0.01 and 150 epochs, and max pooling with a
pool size of 2. A Keras8 embedding layer is used
to create word embeddings of length 100 for the
string path components.

In the original study, paths were restricted to a
length of four with the first comparison target hav-
ing to be reachable from the lowest common head
of the two targets by following left edges only, the
second one by following right edges. With this
LexNet (original) restriction, a path was found for
only 1,519 of our 5,759 training sentences.

LexNet (customized) To overcome the
LexNet (original) coverage issue, we relaxed
the restriction by extending the maximal path
length to 16 and ignoring edge directions. With
this second LexNet (customized) setup, for
only 399 training sentences no path was found
(assigned to the artificial NOPATH).

5 Experiments

We conduct classification experiments using sev-
eral machine learning approaches and represen-
tations and analyse the results. We use com-
mon performance metrics: precision, recall and F1
per each class and micro-averaged when reporting
overall results.

5.1 Impact of Classification Models

To identify the best classification algorithm, we
used a fixed baseline set of feature representations:
a sparse bag-of-words model with binary weights
computed on the whole sentence (see Section 4.3).
We used F1 score to measure the models perfor-
mance.

Tree-based methods and linear models worked
well. Support Vector Machines with non-linear
kernels assigned NONE to all sentences. As XG-
Boost and Logistic Regression achieved high
F1 scores (see Figure 1), no further investiga-
tions on the performance of other algorithms were
done. A set of hyper-parameters for XGBoost was

8http://keras.io

http://spacy.io/models/en#section-en_core_web_lg
http://spacy.io/models/en#section-en_core_web_lg
http://github.com/facebookresearch/InferSent
http://github.com/facebookresearch/InferSent
http://keras.io


Figure 1: Impact of classification models: F1 scores on 5-fold cross validation of various classification algorithms
based on a baseline binary bag-of-words representation. The black bars show the standard deviation.

tested using exhaustive grid search and random-
ized search but with no significant performance
increase. For the futher experiments, we selected
XGBoost with 1,000 estimators. The main idea
behind boosting is to fit weak learners (i.e., classi-
fiers only performing slightly better than random
guessing) sequentially on modified versions of the
data subsequently combining them to produce the
final prediction. The XGBoost boosting method
used here is gradient boosting (Friedman, 2001)
with decision trees as learners. In gradient boost-
ing, Gm+1 is fitted on the residuals of Gm. Thus,
each following tree tries to improve on the training
examples on which the previous learner was weak.

In our experiments, we also tried various neu-
ral classification models based on neural net-
work, such as recurrent neural networks, e.g.
LSTM (Hochreiter and Schmidhuber, 1997) and
simpler feed-forward architectures. However,
none of them worked better than the simpler clas-
sifiers presented in this paper. We attribute this to
the size of our training dataset.

5.2 Impact of Feature Representations

The classification results of the best-performing
feature configurations in our three-class scenario
are presented in Figure 2. Each feature was tested
and evaluated using five stratified folds. The black
bars show the standard deviation. All scores were
calculated with scikit-learn’s metric module. All
features except for the LexNet (original) used the
middle part of the sentence and left the objects un-
touched. In the LexNet features, the comparison
targets were replaced with OBJECT A and OB-
JECT B, whereas LexNet (original) used the full
sentence.

The best single feature (InferSent of the text be-
tween objects) yields an overall F1 score 3 points
above the baseline with known compared objects

positions. The worst single feature (LexNet (origi-
nal)) scores 12 points below the baseline (see Sec-
tion 5.3). Bag-of-Unigrams (F1 score 0.848) and
InferSent (F1 score 0.842) deliver roughly equal
results.

Despite the fact that only 1,519 sentences got
a path embedding for LexNet (original), the fea-
ture is able to predict some sentences correctly (F1
score of 0.75 on this subset). This indicates that
this feature setup is reasonable and would proba-
bly work well if it had a higher coverage.

To our surprise, combining feature representa-
tions did not help, i.e., we were not able to exceed
over the score of the single best representation (In-
ferSent on the sentence middle part) in any setup,
which is why we do not report results on combi-
nations.

Using the full sentence worked second best.
Adding the beginning and/or ending part of the
sentence did not increase the F1 score at all, no
matter if the same or other representation type
than the one for the middle part is used. Us-
ing the beginning and ending part alone never re-
sulted in an F1 score above the baseline. Simi-
larly, replacing or removing the objects did not
increase the score significantly. In most cases,
the difference in the F1 score between no replace-
ment/removal and the best replacement/removal
strategy was only reflected in the third or fourth
decimal place. Hence, the actual objects are not
important at all for the classification, which hints
at the domain-independence of the dataset. This

Table 3: Performance (F1) of the best classifier-based
model compared to the rule-based baseline.

Model BETTER WORSE NONE ALL

Rule-based Baseline 0.65 0.44 0.90 0.82
InferSent+XGBoost 0.75 0.43 0.92 0.85
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Figure 2: Impact of feature representation: F1 scores of sentence classification model based on XGBoost. The
black bars indicate the standard deviation in the 5-fold cross validation.

is also supported by the fact that adding the word
vectors of the comparison targets as features did
not increase the result in any configuration.

An interesting observation is that the simple
bag-of-words model performs equal to or better
than the majority of the more complex models in
this setup.

5.3 Comparison to a Rule-based Baseline

As a rule-based baseline, we adapt the closest clas-
sification approach to ours introduced by Gana-
pathibhotla and Liu (2008). Given a compara-
tive sentence and a pair of the objects being com-
pared, the model decides which one is superior
based on the author’s opinion. It distinguishes
two types of comparatives: opinionated (with ex-
plicit preference: better, worse, etc.) and with
context-dependent opinions (implicit preference:
lower, higher, etc.). Classification is performed
based on the list of the opinion words consid-
ering an opinion orientation borrowed from the
work by Hu and Liu (2004). However, our task
is different in two aspects. First, we classify sen-
tences in three not two classes. Second, we iden-
tify a comparison direction, i.e., infer a superior
object, in a single sentence (and not an overall
subjective opinion) without having access to ad-
ditional context assuming extraction of the objec-
tive information. As the authors did not share their
code and data, we fetched comparative adjectives
and adverbs from open language learning web re-
sources, e.g., sparklebox.co.uk. Then we manu-
ally organized them in two lists indicating whether

Table 4: Cross-domain evaluation in terms of total F1
for all classes (best results per row in bold).

Train \Test CompSci Brands Random

CompSci 0.82 0.84 0.84

Brands 0.76 0.83 0.83

Random 0.79 0.84 0.86

the sentence’s left-hand located object superior to
the right-hand (better, cheaper, easier, etc.) one
or not (worse, harder, lower, etc.). We classify
sentences containing a keyword from the first list
(74 words in total) as BETTER, from the second list
(63 words) as WORSE and NONE with no keywords
found. We added negation rules to invert the label
if the keyword is preceded by not or the second
compared object by but.

A comparison of the best statistical classifier
with this rule-based baseline is presented in Ta-
ble 3. The statistical model substantially out-
performs the rule-based baseline for the BETTER

and NONE classes while being comparable for the
WORSE class. The overall improvement of the
statistical model over the rule-based approach is
about 3 points in terms of F1 score (0.85 as the
best achieved performance). Furthermore, note
that reported performance of the rule-based model
could be a bit inflated as building of the dataset in-
volved the use of similar cue words as those used
in this baseline (cf. Section 3) even though these
cue word lists were build independently.



Table 5: Examples of XGBoost errors with the InferSent features. Confidence shows the confidence of the anno-
tators and is calculated as (judgments for majority class) / (total judgments).

Sentence Predicted Gold Confidence

1 Is Python better than Perl? BETTER NONE 0.6
2 Is Microsoft better because of Apple? BETTER NONE 1.0
3 Microsoft is the devil but Sony truly isn’t any better. WORSE NONE 1.0
4 Python is much better suited as a ”glue” language, while Java is better character-

ized as a low-level implementation language.
BETTER NONE 1.0

5 Its Azure PaaS/IaaS platform hasn’t overtaken Amazon yet in market share, but
Microsoft has enjoyed nine straight quarters of growth at 10 percent or better

NONE WORSE 1.0

6 arrrggghh...Python is a terrible language - only Perl sucks worse. WORSE BETTER 1.0
7 Good to see again a Renault ahead of a Ferrari. NONE BETTER 1.0

5.4 Cross-domain Evaluation

Table 4 presents results of a cross-domain evalua-
tion of our models. As one can observe our model
shows remarkably high cross-domain transfer with
some out-of-domain combinations outperforming
in-domain training, e.g., CompSci-Brands. While
a substantial drop is observed for a few other do-
main pairs, e.g., Random-CompSci, the perfor-
mance is still well above the majority class base-
line suggesting that some knowledge transfer hap-
pened even in these cases and comparative argu-
mentation is not highly domain-dependent.

Similarly, we applied the rule-based baseline
to three domains independently and obtained F1
of 0.80 for CompSci, 0.81 for Brands and 0.84 for
Random domains.

5.5 Error Analysis

The WORSE appeared to be the hardest class to
recognize: 1,311 sentences were incorrectly clas-
sified. We look at comparing the performance
of InferSent and LexNet (customized) thoroughly.
Both features caused the same errors on 607 sen-
tences. The InferSent feature made 220 additional
errors, while the LexNet feature made 484. Sur-
prisingly, the majority of errors was made on sen-
tences with a high annotation confidence: 425 of
the shared errors were made on sentences with
a confidence of one. InferSent made 156 er-
rors on highly confident sentences, while LexNet
made 356. Examples of errors made by the In-
ferSent feature are presented in Table 5.

The first two sentences look comparative, but
they are questions. Despite annotation of ques-
tions as NONE as explicitly stated in the guidelines,
InferSent frequently classified questions as com-
parative. Sentences three and four are compara-
tive, but they have no clear “winner” of the com-
parison. The guidelines instructs that only sen-

tences with obvious “winners” should be labeled
with BETTER or WORSE. InferSent was not able to
learn this restriction. Sentence six has three nega-
tive words in it. Sentence seven is hard to classify,
as it does not contain any comparative cue word.

The LexNet feature made errors in fairly simple
sentences like Right now Apple is worse than Mi-
crosoft ever was. While InferSent’s errors can be
coarsely grouped, the errors made by LexNet seem
to be more random. We assume that the amount of
training data for the neural network encoder is not
sufficiently large. However, the overall result of
LexNet indicates that the encoder trained on more
data would likely yield satisfactory results. The
performance for LexNet path embeddings shows
that this is a reasonable way to encode sentences.
The original setup found only paths for 26% of the
sentences, yet it yielded an F1 score 8 points above
the baseline. The customization made it even more
powerful. While we expected that a combination
of LexNet features and one of the other features
like InferSent would be beneficial, as they encode
different information (lexical and syntactical), this
turned out to be not the case.

We explain the relatively low performance of all
models on the WORSE class by the fact that peo-
ple tend to more often refer to use lexical BETTER-
constructions (when the firstly mentioned com-
pared object is favored) than WORSE-constructions,
similarly to many opinion mining datasets, where
the positive class is observed more frequently. Be-
sides, the tested models do not use explicit repre-
sentations of negations, which may lead to a con-
fusion of the BETTER and WORSE classes.

6 Conclusion

We tackle the task of identifying comparative
sentences and categorizing the preference. Di-
rect comparisons are a special kind of argumen-



tative premise and can be deployed in construct-
ing pro/con argumentation to support an informed
choice. As our contributions, we (1) create the
CompSent-19 corpus of 7,199 sentences from di-
verse domains (27% of the sentences being com-
parative and having an annotated preference direc-
tion), and (2) , we evaluate several feature-based
supervised approaches on our new corpus. The
best classifier could become part of a system that
is able to efficiently mine comparative sentences
from web-scale sources and to identify the direc-
tion of the comparisons.

The sentence categorization technology pre-
sented in this paper was successfully ap-
plied to build a comparative argument machine
by Schildwächter et al. (2019), where sentences
from the Web scale text corpus Common Crawl9

were used to argumentatively compare objects
specified by a user (e.g. whether Python is better
than MATLAB for NLP).10

It turned out that the words between the two
compared objects are the most important for de-
tecting comparisons and classifying its direction.
Promising directions for future work are exploit-
ing neural classification approaches, integration of
features based on contextualized word representa-
tions (Peters et al., 2018; Devlin et al., 2018), and
handling negations and complex complex implicit
syntactic comparative constructions.
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Jan Šnajder. 2017. Social media argumentation min-
ing: The quest for deliberateness in raucousness.
CoRR, abs/1701.00168.

Christian Stab and Iryna Gurevych. 2014. Identify-
ing argumentative discourse structures in persuasive
essays. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 46–56, Doha, Qatar. Association
for Computational Linguistics.



John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. In Proceedings of the 6th Inter-
national Conference on Learning Representations,
Vancouver, BC, Canada.


