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Abstract

Contextualized word embeddings (CWE)
such as provided by ELMo (Peters et al.,
2018), Flair NLP (Akbik et al., 2018), or
BERT (Devlin et al., 2019) are a major re-
cent innovation in NLP. CWEs provide se-
mantic vector representations of words de-
pending on their respective context. Their
advantage over static word embeddings has
been shown for a number of tasks, such
as text classification, sequence tagging, or
machine translation. Since vectors of the
same word type can vary depending on the
respective context, they implicitly provide
a model for word sense disambiguation
(WSD). We introduce a simple but effective
approach to WSD using a nearest neigh-
bor classification on CWEs. We compare
the performance of different CWE mod-
els for the task and can report improve-
ments above the current state of the art
for two standard WSD benchmark datasets.
We further show that the pre-trained BERT
model is able to place polysemic words into
distinct ‘sense’ regions of the embedding
space, while ELMo and Flair NLP do not
seem to possess this ability.

1 Synonymy and Polysemy of Word
Representations

Lexical semantics is characterized by a high degree
of polysemy, i.e. the meaning of a word changes
depending on the context in which it is currently
used (Harris, 1954). Word Sense Disambiguation
(WSD) is the task to identify the correct sense of
the usage of a word from a (usually) fixed inven-
tory of sense identifiers. For the English language,
WordNet (Fellbaum, 1998) is the most commonly
used sense inventory providing more than 200K
word-sense pairs.

To train and evaluate WSD systems, a number
of shared task datasets have been published in the
SemEval workshop series. In the lexical sample
task (Kilgarriff, 2001; Mihalcea et al., 2004), a
training set and a test set is provided. The rel-
atively large data contains one sense-annotated
word per training/test instance. The all-words task
(Edmonds and Cotton, 2001; Snyder and Palmer,
2004) only provides a small number of documents
as test data where each ambiguous word is anno-
tated with its sense. To facilitate the comparison
of WSD systems, some efforts have been made
to provide a comprehensive evaluation framework
(Raganato et al., 2017), and to unify all publicly
available datasets for the English language (Vial et
al., 2018b).

WSD systems can be distinguished into three
types — knowledge-based, supervised, and semi-
supervised approaches. Knowledge-based systems
utilize language resources such as dictionaries, the-
sauri and knowledge graphs to infer senses. Su-
pervised approaches train a machine classifier to
predict a sense given the target word and its con-
text based on an annotated training data set. Semi-
supervised approaches extend manually created
training sets by large corpora of unlabeled data to
improve WSD performance. All approaches rely
on some way of context representation to predict
the correct sense. Context is typically modeled via
dictionary resources linked with senses, or as some
feature vector obtained from a machine learning
model.

A fundamental assumption in structuralist lin-
guistics is the distinction between signifier and
signified as introduced by Ferdinand de Saussure
(Saussure, 2001) in the early 20th century. Com-
putational linguistic approaches, when using char-
acter strings as the only representatives for word
meaning, implicitly assume identity between signi-
fier and signified. Different word senses are simply
collapsed into the same string representation. In
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this respect, word counting and dictionary-based
approaches to analyze natural language texts have
been criticized as pre-Saussurean (Pêcheux et al.,
1995). In contrast, the distributional hypothesis not
only states that meaning is dependent on context.
It also states that words occurring in the same con-
texts tend to have a similar meaning (Harris, 1954).
Hence, a more elegant way of representing mean-
ing has been introduced by using the contexts of
a word as an intermediate semantic representation
that mediates between signifier and signified. For
this, explicit vector representations, such as TF-
IDF, or latent vector representations, with reduced
dimensionality, have been widely used. Latent vec-
tor representations of words are commonly called
word embeddings. They are fixed length vector
representations, which are supposed to encode se-
mantic properties. The seminal neural word embed-
ding model Word2Vec (Mikolov et al., 2013), for
instance, can be trained efficiently on billions of
sentence contexts to obtain semantic vectors, one
for each word type in the vocabulary. It allows
synonymous terms to have similar vector repre-
sentations that can be used for modeling virtually
any downstream NLP task. Still, a polysemic term
is represented by one single vector only, which
represents all of its different senses in a collapsed
fashion.

To capture polysemy as well, the idea of word
embeddings has been extended to encode word
sense embeddings. Neelakantan et al. (2014) first
introduced a neural model to learn multiple em-
beddings for one word depending on different
senses. The number of senses can be defined by
a given parameter, or derived automatically in a
non-paramentric version of the model. However,
employing sense embeddings in any downstream
NLP task requires a reliable WSD system in an ear-
lier stage to decide how to choose the appropriate
embedding from the sense inventory.

Recent efforts to capture polysemy for word
embeddings give up on the idea of a fixed word
sense inventory. Contextualized word embeddings
(CWE) do not only create one vector representa-
tion for each type in the vocabulary, they also they
produce distinct vectors for each token in a given
context. The contextualized vector representation
is supposed to represent word meaning and context
information. This enables downstream tasks to ac-
tually distinguish the two levels of the signifier and
the signified allowing for more realistic modeling

of natural language. The advantage of such contex-
tually embedded token representations compared to
static word embeddings has been shown for a num-
ber of tasks such as text classification (Zampieri
et al., 2019) and sequence tagging (Akbik et al.,
2018).

Contribution: We show that CWEs can be uti-
lized directly to approach the WSD task due to their
nature of providing distinct vector representations
for the same token depending on its context. To
learn the semantic capabilities of CWEs, we em-
ploy a simple, yet interpretable approach to WSD
using a k-nearest neighbor classification (kNN) ap-
proach. We compare the performance of three dif-
ferent CWE models on four standard benchmark
datasets. Our evaluation yields that not all con-
textualization approaches are equally effective in
dealing with polysemy, and that the simple kNN
approach suffers severely from sparsity in training
datasets. Yet, by using kNN, we include prove-
nance into our model, which allows to investigate
the training sentences that lead to the classifier’s
decision. Thus, we are able to study to what extent
polysemy is captured by a specific contextualiza-
tion approach. For two datasets, we are able to
report new state-of-the-art (SOTA) results.

2 Related Work

2.1 Neural Word Sense Disambiguation

Several efforts have been made to induce differ-
ent vectors for the multiplicity of senses a word
can express. Bartunov et al. (2016), Neelakantan
et al. (2014), or Rothe and Schütze (2015) induce
so-called sense embeddings in a pre-training fash-
ion. While Bartunov et al. (2016) induce sense em-
beddings in an unsupervised way and only fix the
maximum number of senses per word, Rothe and
Schütze (2015) require a pre-labeled sense inven-
tory such as WordNet. Then, the sense embeddings
are mapped to their corresponding synsets. Other
approaches include the re-use of pre-trained word
embeddings in order to induce new sense embed-
dings (Pelevina et al., 2016; Remus and Biemann,
2018). Panchenko et al. (2017) then also use in-
duced sense embeddings for the downstream task
of WSD. Camacho-Collados and Pilehvar (2018)
provide an extensive overview of different word
sense modeling approaches.

For WSD, (semi-)supervised approaches with re-
current neural network architectures represent the
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current state of the art. Two major approaches were
followed. First, Melamud et al. (2016) and Yuan et
al. (2016), for instance, compute sentence context
vectors for ambiguous target words. In the predic-
tion phase, they select nearest neighbors of context
vectors to determine the target word sense. Yuan et
al. (2016) also use unlabeled sentences in a semi-
supervised label propagation approach to overcome
the sparse training data problem of the WSD task.
Second, Kågebäck and Salomonsson (2016) em-
ploy a recurrent neural network to classify sense
labels for an ambiguous target word given its sur-
rounding sentence context. In contrast to earlier
approaches, which relied on feature engineering
(Taghipour and Ng, 2015), their architecture only
uses pretrained GloVe word embeddings (Penning-
ton et al., 2014) to achieve SOTA results on two
English lexical sample datasets. For the all-words
WSD task, Vial et al. (2018a) also employ a recur-
rent neural network. But instead of single target
words, they sequentially classify sense labels for
all tokens in a sentence. They also introduce an
approach to collapse the sense vocabulary from
WordNet to unambiguous hypersenses, which in-
creases the label to sample ratio for each label,
i.e. sense identifier. By training their network on
the large sense annotated datasets SemCor (Miller
et al., 1993) and the Princeton Annotated Gloss
Corpus based on WordNet synset definitions (Fell-
baum, 1998), they achieve the highest performance
so far on most all-words WSD benchmarks. A sim-
ilar architecture with an enhanced sense vocabulary
compression was applied in (Vial et al., 2019), but
instead of GloVe embeddings, BERT wordpiece
embeddings (Devlin et al., 2019) are used as in-
put for training. Especially the BERT embeddings
further improved the performance yielding new
state-of-the-art results.

2.2 Contextualized Word Embeddings

The idea of modeling sentence or context-level se-
mantics together with word-level semantics proved
to be a powerful innovation. For most downstream
NLP tasks, CWEs drastically improved the perfor-
mance of neural architectures compared to static
word embeddings. However, the contextualization
methodologies differ widely. We, thus, hypothesize
that they are also very different in their ability to
capture polysemy.

Like static word embeddings, CWEs are trained
on large amounts of unlabeled data by some vari-

ant of language modeling. In our study, we in-
vestigate three most prominent and widely applied
approaches: Flair (Akbik et al., 2018), ELMo (Pe-
ters et al., 2018), and BERT (Devlin et al., 2019).

Flair: For the contextualization provided in the
Flair NLP framework, Akbik et al. (2018) take a
static pre-trained word embedding vector, e.g. the
GloVe word embeddings (Pennington et al., 2014),
and concatenate two context vectors based on the
left and right sentence context of the word to it.
Context vectors are computed by two recurrent neu-
ral models, one character language model trained
from left to right, one another from right to left.
Their approach has been applied successfully es-
pecially for sequence tagging tasks such as named
entity recognition and part-of-speech tagging.

ELMo: Embeddings from language models
(ELMo) (Peters et al., 2018) approaches contextual-
ization similar to Flair, but instead of two character
language models, two stacked recurrent models for
words are trained, again one left to right, and an-
other right to left. For CWEs, outputs from the
embedding layer, and the two bidirectional recur-
rent layers are not concatenated, but collapsed into
one layer by a weighted, element-wise summation.

BERT: In contrast to the previous two ap-
proaches, Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019)
does not rely on the merging of two uni-directional
recurrent language models with a (static) word em-
bedding, but provides contextualized token embed-
dings in an end-to-end language model architec-
ture. For this, a self-attention based transformer
architecture is used, which, in combination with a
masked language modeling target, allows to train
the model seeing all left and right contexts of a
target word at the same time. Self-attention and
non-directionality of the language modeling task re-
sult in extraordinary performance gains compared
to previous approaches.

According to the distributional hypothesis, if the
same word regularly occurs in different, distinct
contexts, we may assume polysemy of its mean-
ing (Miller and Charles, 1991). Contextualized
embeddings should be able to capture this prop-
erty. In the following experiments, we investigate
this hypothesis on the example of the introduced
models.
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SE-2 (Tr) SE-2 (Te) SE-3 (Tr) SE-3 (Te) S7-T7 (coarse) S7-T17 (fine) SemCor WNGT

#sentences 8,611 4,328 7,860 3,944 126 245 37,176 117,659
#CWEs 8,742 4,385 9,280 4520 455 6,118 230,558 1,126,459

#distinct words 313 233 57 57 327 1,177 20,589 147,306
#senses 783 620 285 260 371 3,054 33,732 206,941

avg #senses p. word 2.50 2.66 5.00 4.56 1.13 2.59 1.64 1.40
avg #CWEs p. word & sense 11.16 7.07 32.56 17.38 1.23 2.00 6.83 5.44

avg k′ 2.75 - 7.63 - - - 3.16 2.98

Table 1: Properties of our datasets. For the test sets (Te), we do not report k′ since they are not used as
kNN training instances.

3 Nearest Neighbor Classification for
WSD

We employ a rather simple approach to WSD us-
ing non-parametric nearest neighbor classification
(kNN) to investigate the semantic capabilities of
contextualized word embeddings. Compared to
parametric classification approaches such as sup-
port vector machines or neural models, kNN has
the advantage that we can directly investigate the
training examples that lead to a certain classifier
decision.

The kNN classification algorithm (Cover and
Hart, 1967) assigns a plurality vote of a sample’s
nearest labeled neighbors in its vicinity. In the most
simple case, one-nearest neighbor, it predicts the
label from the nearest training instance by some
defined distance metric. Although complex weight-
ing schemes for kNN exist, we stick to the simple
non-parametric version of the algorithm to be able
to better investigate the semantic properties of dif-
ferent contextualized embedding approaches.

As distance measure for kNN, we rely on cosine
distance of the CWE vectors. Our approach consid-
ers only senses for a target word that have been ob-
served during training. We call this approach local-
ized nearest neighbor word sense disambiguation.
We use spaCy1 (Honnibal and Johnson, 2015) for
pre-processing and the lemma of a word as the tar-
get word representation, e.g. ‘danced’, ‘dances’ and
‘dancing’ are mapped to the same lemma ‘dance’.
Since BERT uses wordpieces, i.e. subword units
of words instead of entire words or lemmas, we
re-tokenize the lemmatized sentence and average
all wordpiece CWEs that belong to the target word.
Moreover, for the experiments with BERT embed-
dings2, we follow the heuristic by Devlin et al.
(2019) and concatenate the averaged wordpiece
vectors of the last four layers.

1https://spacy.io/
2We use the bert-large-uncased model.

We test different values for our single hyper-
parameter k ∈ {1, . . . ,10,50,100,500,1000}. Like
words in natural language, word senses follow a
power-law distribution. Due to this, simple base-
line approaches for WSD like the most frequent
sense (MFS) baseline are rather high and hard to
beat. Another effect of the skewed distribution are
imbalanced training sets. Many senses described in
WordNet only have one or two example sentences
in the training sets, or are not present at all. This is
severely problematic for larger k and the default im-
plementation of kNN because of the majority class
dominating the classification result. To deal with
sense distribution imbalance, we modify the ma-
jority voting of kNN to k′ = min(k, |Vs|) where Vs

is the set of CWEs with the least frequent training
examples for a given word sense s.

4 Datasets

We conduct our experiments with the help of four
standard WSD evaluation sets, two lexical sam-
ple tasks and two all-words tasks. As lexical sam-
ple tasks, SensEval-2 (Kilgarriff, 2001, SE-2) and
SensEval-3 (Mihalcea et al., 2004, SE-3) provide
a training data set and test set each. The all-words
tasks of SemEval 2007 Task 7 (Navigli et al., 2007,
S7-T7) and Task 17 (Pradhan et al., 2007, S7-T17)
solely comprise test data, both with a substantial
overlap of their documents. The two sets differ
in granularity: While ambiguous terms in Task 17
are annotated with one WordNet sense only, in
Task 7 annotations are coarser clusters of highly
similar WordNet senses. For training of the all-
words tasks, we use a) the SemCor dataset (Miller
et al., 1993), and b) the Princeton WordNet gloss
corpus (WNGT) (Fellbaum, 1998) separately to
investigate the influence of different training sets
on our approach. For all experiments, we utilize
the suggested datasets as provided by the UFSAC
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Model SE-2 SE-3 S7-T7 (coarse) S7-T17 (fine)
SemCor WNGT SemCor WNGT

Flair 65.27 68.75 69.24 78.68 45.92 50.99
ELMo 67.57 70.70 70.80 79.12 52.61 50.11
BERT 76.10 78.62 73.61 81.11 59.82 55.16

Table 2: kNN with k = 1 WSD performance (F1%).
Best results for each testset are marked bold.

framework3 (Vial et al., 2018b), i.e. the respective
training data. A concise overview of the data can
be found in Table 1. From this, we can observe
that the SE-2 and SE-3 training data sets, which
were published along with the respective test sets,
provide many more examples per word and sense
than SemCor or WNGT.

5 Experimental Results

We conduct two experiments to determine whether
contextualized word embeddings can solve the
WSD task. In our first experiment, we compare
different pre-trained embeddings with k = 1. In
our second experiment, we test multiple values of
k and the BERT pre-trained embeddings4 in order
to estimate an optimal k. Further, we qualitatively
examine the results to analyze, which cases can be
typically solved by our approach and where it fails.

5.1 Contextualized Embeddings
To compare different CWE approaches, we use
k= 1 nearest neighbor classification. Table 2 shows
a high variance in performance. Simple kNN with
ELMo as well as BERT embeddings beats the state
of the art of the lexical sample task SE-2 (cp. Ta-
ble 3). BERT also outperforms all others on the
SE-3 task.

However, we observe a major performance drop
of our approach for the two all-words WSD tasks
in which no training data is provided along with
the test set. For S7-T7 and S7-T17, the content and
structure of the out-of-domain SemCor and WNGT
training datasets differ drastically from those in
the test data, which prevents yielding near state-
of-the-art results. In fact, similarity of contextual-
ized embeddings largely relies on semantically and
structurally similar sentence contexts of polysemic
target words. Hence, the more example sentences
can be used for a sense, the higher are the chances

3Unification of Sense Annotated Corpora and Tools. We
are using Version 2.1: https://github.com/getalp/
UFSAC

4BERT performed best in experiment one.

k SE-2 SE-3 S7-T7 S7-T17

1 76.10 78.62 81.11 59.82
2 76.10 78.62 81.11 59.82
3 76.52 79.66 80.94 59.38
4 76.52 79.55 80.94 59.82
5 76.43 79.79 81.07 60.27
6 76.43 79.81 81.07 60.27
7 76.50 80.02 81.03 60.49
8 76.50 79.86 81.03 60.49
9 76.40 79.97 81.03 60.49

10 76.40 80.12 81.03 60.49
50 76.43 79.66 81.11 60.94

100 76.43 79.63 81.20 60.71
500 76.38 79.63 81.11 60.71

1000 76.38 79.63 81.11 60.71

MFS 54.79 58.95 70.94 48.44
Kågebäck (2016) 66.90 73.40 - -

Yuan et al. (2016) - - 84.30 63.70
Vial et al. (2018a) - - 86.02 66.81
Vial et al. (2019) - - 90.60 71.40

Table 3: Best kNN models vs. most frequent sense
(MFS) and state of the art (F1%). Best results
are bold, previous SOTA is in italics and our best
results are underlined.

that a nearest neighbor expresses the same sense.
As can be seen in Table 1, the SE-2 and SE-3 train-
ing datasets provide more CWEs for each word
and sense, and our approach performs better with
a growing number of CWEs, even with a higher
average number of senses per word as is the case
in SE-3.

Thus, we conclude that the nearest neighbor ap-
proach suffers specifically from data sparseness.
The chances increase that aspects of similarity other
than the sense of the target word in two compared
sentence contexts drive the kNN decision. More-
over, CWEs actually do not organize well in spher-
ically shaped form in the embedding space. Al-
though senses might be actually separable, the non-
parametric kNN classification is unable to learn a
complex decision boundary focusing only on the
most informative aspects of the CWE (Yuan et al.,
2016, p. 4).

5.2 Nearest Neighbors

K-Optimization: To attenuate for noise in the
training data, we optimize for k to obtain a more ro-
bust nearest neighbor classification. Table 3 shows
our best results using the BERT embeddings along
with results from related works. For SensEval-2
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and SensEval-3, we achieve a new state-of-the-art
result. We observe convergence with higher k val-
ues since our k′ normalization heuristic is activated.
For the S7-T*, we also achieve minor improve-
ments with a higher k, but still drastically lack be-
hind the state of the art.

Senses in CWE space: We investigate how well
different CWE models encode information such as
distinguishable senses in their vector space. Fig-
ure 1 shows T-SNE plots (van der Maaten and Hin-
ton, 2008) of six different senses of the word “bank”
in the SE-3 training dataset encoded by the three
different CWE methods. For visualization pur-
poses, we exclude senses with a frequency of less
than two. The Flair embeddings hardly allow to dis-
tinguish any clusters as most senses are scattered
across the entire plot. In the ELMo embedding
space, the major senses are slightly more separated
in different regions of the point cloud. Only in the
BERT embedding space, some senses form clearly
separable clusters. Also within the larger clusters,
single senses are spread mostly in separated regions
of the cluster. Hence, we conclude that BERT em-
beddings actually seem to encode some form of
sense knowledge, which also explains why kNN
can be successfully applied to them. Moreover, we
can see why a more powerful parametric classifi-
cation approach such as employed by Vial et al.
(2019) is able to learn clear decision boundaries.
Such clear decision boundaries seem to success-
fully solve the data sparseness issue of kNN.

Error analysis: From a qualitative inspection of
true positive and false positive predictions, we are
able to infer some semantic properties of the BERT
embedding space and the used training corpora. Ta-
ble 4 shows selected examples of polysemic words
in different test sets, including their nearest neigh-
bor from the respective training set.

Not only vocabulary overlap in the context as in
‘along the bank of the river’ and ‘along the bank of
the river Greta’ (2) allows for correct predictions,
but also semantic overlap as in ‘little earthy bank’
and ‘huge bank [of snow]’ (3). On the other hand,
vocabulary overlap, as well as semantic relatedness
as in ‘land bank’ (5) can lead to false predictions.
Another interesting example for the latter is the con-
fusion between ‘grass bank’ and ‘river bank’ (6)
where the nearest neighbor sentence in the training
set shares some military context with the target sen-
tence. The correct sense (bank%1:17:01::Sloping

Land) and the predicted sense (bank%1:17:00::A
Long Ridge or Pile [of earth]) share high semantic
similarity, too. In this example, they might even
be used interchangeably. Apparently this context
yields higher similarity than any of the other train-
ing sentences containing ‘grass bank’ explicitly.

In Example (10), the targeted sense is an action,
i.e. a verb sense, while the predicted sense is a
noun, i.e. a different word class. In general, this
could be easily fixed by restricting the classifier de-
cision to the desired POS. However, while example
(12) is still a false positive, it nicely shows that the
simple kNN approach is able to distinguish senses
by word class even though BERT never learned
POS classes explicitly. This effect has been in-
vestigated in-depth by Jawahar et al. (2019), who
found that each BERT layer learns different struc-
tural aspects of natural language. Example (12)
also emphasizes the difficulty of distinguishing
verb senses itself, i.e. the correct sense label in
this example is watch%2:39:00::look attentively
whereas the predicted label and the nearest neigh-
bor is watch%2:41:00::follow with the eyes or the
mind; observe. Verb senses in WordNet are very
fine grained and thus harder to distinguish automat-
ically and by humans, too.

5.3 Post-evaluation experiment

In order to address the issue of mixed POS senses,
we run a further experiment, which restricts words
to their lemma and their POS tag. Table 5 shows
that including the POS restriction increases the
F1 scores for S7-T7 and S7-T17. This can be ex-
plained by the number of different POS tags that
can be found in the different corpora (c.f. Table 6).
The results are more stable with respect to their rel-
ative performance, i.e. SemCor and WNGT reach
comparable scores on S7-T17. Also, the results for
SE-2 and SE-3 did not change drastically. This can
be explained by the average number of POS tags a
certain word is labeled with. This variety is much
stronger in the S7-T* tasks compared to SE-*.

6 Conclusion

In this paper, we tested the semantic properties of
contextualized word embeddings (CWEs) to ad-
dress word sense disambiguation.5 To test their
capabilities to distinguish different senses of a par-
ticular word, by placing their contextualized vector

5The source code of our experiments is publicly available
at: https://github.com/uhh-lt/bert-sense
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Example sentence Nearest neighbor

SE-3 (train) SE-3 (test)

(1) President Aquino, admitting that the death of Ferdinand
Marcos had sparked a wave of sympathy for the late
dictator, urged Filipinos to stop weeping for the man
who had laughed all the way to the bank[A Bank Building].

They must have been filled in at the
bank[A Bank Building] either by Mr Hatton himself
or else by the cashier who was attending to him.

(2) Soon after setting off we came to a forested valley along
the banks[Sloping Land] of the Gwaun.

In my own garden the twisted hazel, corylus avellana
contorta, is underplanted with primroses, bluebells and
wood anemones, for that is how I remember them grow-
ing, as they still do, along the banks[Sloping Land] of the
rive Greta

(3) In one direction only a little earthy bank[A Long Ridge]
separates me from the edge of the ocean, while in the
other the valley goes back for miles and miles.

The lake has been swept clean of snow by the wind,
the sweepings making a huge bank[A Long Ridge] on our
side that we have to negotiate.

(4) However, it can be possible for the documents to be
signed after you have sent a payment by cheque pro-
vided that you arrange for us to hold the cheque and not
pay it into the bank[A Financial Institution] until we have
received the signed deed of covenant.

The purpose of these stubs in a paying – in book is for
the holder to have a record of the amount of money he
had deposited in his bank[A Bank Building].

(5) He continued: assuming current market conditions do
not deteriorate further, the group, with conservative bor-
rowings, a prime land bank[A Financial Institution] and a
good forward sales position can look forward to another
year of growth.

Crest Nicholson be the exception, not have much of
a land bank[Supply or Stock] and rely on its skill in land
buying.

(6) The marine said, get down behind that grass
bank[A Long Ridge], sir, and he immediately lobbed a
mills grenade into the river.

The guns were all along the river bank[Sloping Land] as
far as I could see.

SemCor S7-T17

(7) Some 30 balloon[Large Tough Nonrigid Bag] shows are held
annually in the U.S., including the world’s largest con-
vocation of ersatz Phineas Foggs – the nine-day Albu-
querque International Balloon Fiesta that attracts some
800,000 enthusiasts and more than 500 balloons, some
of which are fetchingly shaped to resemble Carmen
Miranda, Garfield or a 12-story-high condom.

Homes and factories and schools and a big wide federal
highway, instead of peaceful corn to rest your eyes
on while you tried to rest your heart, while you tried
not to look at the balloon[Large Tough Nonrigid Bag] and
the bandstand and the uniforms and the flash of the
instruments.

(8) The condom balloon[Large Tough Nonrigid Bag] was denied
official entry status this year.

Just like the balloon[Large Tough Nonrigid Bag] would go
up and you could sit all day and wish it would spring a
leak or blow to hell up and burn and nothing like that
would happen.

(9) Starting with congressman Mario Biaggi (now serving a
jail sentence[The Period of Time a Prisoner Is Imprisoned]), the
company began a career of bribing federal, state and
local public officials and those close to public officials,
right up to and including E. Robert Wallach, close friend
and adviser to former attorney general Ed Meese.

When authorities convicted him of practicing medicine
without a license (he got off with a suspended
sentence[The Period of Time a Prisoner Is Imprisoned] of three
years because of his advanced age of 77), one of his vic-
tims was not around to testify: he was dead of cancer.”

(10) Americans it seems have followed Mal-
colm Forbes’s hot-air lead and taken to bal-
loon[To Ride in a Hot-Air Balloon] in a heady way.

Just like the balloon[Large Tough Nonrigid Bag] would go
up and you could sit all day and wish it would spring a
leak or blow to hell up and burn and nothing like that
would happen.

(11) Any question as to why an author would believe this
plaintive, high-minded note of assurance is necessary
is answered by reading this book[A Published Written Work]
about sticky fingers and sweaty scammers.

But the book[A Written Version of a Play] is written around
a somewhat dizzy cartoonist, and it has to be that way.

(12) In between came lots of coffee drinking while watch-
ing[To Look Attentively] the balloons inflate and lots of
standing around deciding who would fly in what balloon
and in what order [. . . ].

So Captain Jenks returned to his harbor post to
watch[To Follow With the Eyes or the Mind; observe] the scout-
ing plane put in five more appearances, and to feel the
certainty of this dread rising within him.

Table 4: Example predictions based on nearest neighbor sentences. The word in question is marked in
boldface, subset with a short description of its WordNet synset (true positives green, false positives red).
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(a) BERT (b) Flair (c) ELMo

Figure 1: T-SNE plots of different senses of ‘bank’ and their contextualized embeddings. The legend
shows a short description of the respective WordNet sense and the frequency of occurrence in the training
data. Here, the SE-3 training dataset is used.

k SE-2 SE-3 S7-T7 S7-T17
SemCor WNGT SemCor WNGT

1 76.10 78.62 79.30 85.23 61.38 61.98
3 76.52 79.66 79.44 85.01 60.94 62.64
7 76.50 80.02 79.35 85.05 62.50 62.20

10 76.40 80.12 79.40 85.10 62.72 62.20
30 76.43 79.66 79.40 85.14 63.17 61.98
70 76.43 79.61 79.35 85.23 62.95 61.98

100 76.43 79.63 79.35 85.32 62.95 61.98
300 76.43 79.63 79.35 85.32 62.95 61.98

Table 5: Best POS-sensitive kNN models. Bold
numbers are improved results over Table 3.

representation into different regions of the shared
vector space, we used a k-nearest neighbor ap-
proach, which allows us to investigate their proper-
ties on an example basis. For experimentation, we
used pre-trained models from Flair NLP (Akbik et
al., 2018), ELMo (Peters et al., 2018), and BERT
(Devlin et al., 2019). Further, we tested our hypoth-
esis on four standard benchmark datasets for word
sense disambiguation. We conclude that WSD can
be surprisingly effective using solely CWEs. We
are even able to report improvements over state-of-
the-art results for the two lexical sample tasks of
SenseEval-2 and SensEval-3.

Further, experiments showed that CWEs in gen-
eral are able to capture senses, i.e. words, when
used in a different sense, are placed in different
regions. This effect appeared strongest using the
BERT pre-trained model, where example instances
even form clusters. This might give rise to future
directions of investigation, e.g. unsupervised word
sense-induction using clustering techniques.

Noun Adj Verb Other
avg #POS
per word

SE-2 (tr) 41.32 16.57 42.11 0.00 1.0
SE-2 (te) 40.98 16.56 42.46 0.00 1.0
SE-3 (tr) 46.45 3.94 49.61 0.00 1.0
SE-3 (te) 46.17 3.98 49.86 0.00 1.0
S7-T7 49.00 15.75 26.14 9.11 1.03
S7-T17 34.95 0.00 65.05 0.00 1.01
SemCor 38.16 14.70 38.80 8.34 1.10
WNGT 57.93 21.57 15.55 4.96 1.07

Table 6: Percentage of senses with a certain POS
tag in the corpora.

Since the publication of the BERT model, a num-
ber of extensions based on transformer architec-
tures and language model pre-training have been
released. In future work, we plan to evaluate also
XLM (Lample and Conneau, 2019), RoBERTa (Liu
et al., 2019) and XLNet (Yang et al., 2019) with our
approach. In our qualitative error analysis, we ob-
served many near-misses, i.e. the target sense and
the predicted sense are not particularly far away.
We will investigate if more powerful classification
algorithms for WSD based on contextualized em-
beddings are able to solve this issue even in cases
of extremely sparse training data.
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