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Abstract. Question Answering systems are generally modelled as a
pipeline consisting of a sequence of steps. In such a pipeline, Entity
Linking (EL) is often the first step. Several EL models first perform
span detection and then entity disambiguation. In such models errors
from the span detection phase cascade to later steps and result in a drop
of overall accuracy. Moreover, lack of gold entity spans in training data is
a limiting factor for span detector training. Hence the movement towards
end-to-end EL models began where no separate span detection step is
involved. In this work we present a novel approach to end-to-end EL by
applying the popular Pointer Network model, which achieves competitive
performance. We demonstrate this in our evaluation over three datasets
on the Wikidata Knowledge Graph.

Keywords: Entity Linking · Question Answering · Knowledge Graphs
· Wikidata

1 Introduction

Knowledge Graph based Question Answering (KGQA) systems use a back-
ground Knowledge Graph to answer queries posed by a user. Let us take the
following question as an example (Figure 1): Who founded Tesla?. The stan-
dard sequence of steps for a traditional Entity Linking system is as follows:
The system tries to identify Tesla as a span of interest. This task is called
Mention Detection (MD) or Span Detection. Then an attempt is made to link
it to the appropriate entity in the Knowledge Base. In this work we focus on
Knowledge Bases in the form of graphs, hence the entity linker in this case
tries to link Tesla to the appropriate node in the graph. For a human, it is
evident that the question is looking for a person’s name who created an or-
ganisation named Tesla, since the text contains the relation founded. Hence,

? equal contribution



2 D. Banerjee et al.

User Question Entity Linking Query Building Answer

Who founded Tesla?

Who founded Tesla?

Nikola Tesla (Q9036)
Serbian-American inventor

Tesla (Q478214)
American automotive, 
energy storage company

tesla (Q163343)
SI unit of magnetic flux 
density

Who founded Tesla?   Q478214
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Fig. 1: Illustrating the use of Entity Linking in KGQA system.

it is important that the entity linker understands the same nuance and ig-
nores other entity nodes in the Knowledge Graph which also contain Tesla
in their labels, e.g., Nikola Tesla (Q9036, Serbian-American inventor),

tesla (Q163343, SI unit) when considering the example of the Wikidata
knowledge graph. The task of ignoring the wrong candidate nodes, and iden-
tifying the right candidate node instead, is called Entity Disambiguation (ED).
The cumulative process involving Mention Detection and Entity Disambiguation
is called Entity Linking (EL).

Typically, the MD and ED stages are implemented by different machine learn-
ing models which require separate training. Especially for the MD part, sentences
with marked entity spans are a requirement. In practice, such data is not easily
available. Moreover, errors introduced by the MD phase cascade on to the ED
phase. Hence, a movement towards end-to-end Entity Linkers began [12] [28].
Such systems do not require labelled entity spans during training. In spite of the
benefits of end-to-end models some challenges remain: Due to the lack of a span
detector at the initial phase, each word of the sentence needs to be considered
as an entity candidate for the disambiguation which leads to the generation of
a much larger number of entity candidates. To re-rank these candidates a large
amount of time is consumed, not just in processing the features of the candidates,
but also in compiling their features.

In this work, we remain cognizant of these challenges and design a system
that completely avoids querying the Knowledge Graph during runtime. PNEL
(Pointer Network based Entity Linker) instead relies on pre-computed and pre-
indexed TransE embeddings and pre-indexed entity label and description text
as the only set of features for a given candidate entity. We demonstrate that this
produces competitive performance while maintaining lower response times when
compared to another end-to-end EL system, VCG [28].

While there is a wide variety of KG embeddings to choose from, we confine
our experiments to pre-computed TransE over Wikidata supplied by PyTorch-
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BigGraph [14]. Our choice was based on the popularity and ease of availability
of these embeddings.

Traditionally, the Knowledge Graphs of choice for Question Answering re-
search have been DBpedia [13], Freebase [2] and YAGO [29]. However, in recent
times Wikidata [32] has received significant attention owing to the fact that it
covers a large number of entities (DBpedia 6M4, Yago 10M5, Freebase 39M6,
Wikidata 71M7). DBpedia, YAGO and Wikidata source their information from
Wikipedia, however DBpedia and YAGO filter out a large percentage of the
original entities, while Wikidata does not. While Wikidata has a larger number
of entities it also adds to noise which is a challenge to any EL system. Wiki-
data also allows direct edits leading to up-to-date information, while DBpedia
depends on edits performed on Wikipedia. Freebase has been discontinued and
a portion of it is merged into Wikidata [21]. Moreover DBpedia now extracts
data directly from Wikidata, apart from Wikipedia 8 [9]. Hence, we decide to
base this work on the Wikidata knowledge graph and the datasets we evaluate
on are all based on Wikidata.

In this work our contributions are as follows:

1. PNEL is the first approach that uses the Pointer Network model for solving
the End-to-End Entity Linking problem over Knowledge Graphs, inspired
by the recent success of pointer networks for convex hull and generalised
travelling salesman problems.

2. We are the first work to present baseline results for the entire LC-QuAD
2.0 [5] test set.

3. Our approach produces state-of-the-art results on the LC-QuAD 2.0 and
SimpleQuestions datasets.

The paper is organised into the following sections: (2) Related Work, outlin-
ing some of the major contributions in entity linking used in question answering;
(3) PNEL, where we discuss the pointer networks and the architecture of PNEL
(4)Dataset used in the paper (5) Evaluation, with various evaluation criteria,
results and ablation test (6) Error Analysis (7) Discussion and future direction.

2 Related Work

DBpedia Spotlight [17] is one of the early works for entity linking over DBpedia.
It first identifies a list of surface forms and then generates entity candidates.
It then disambiguates the entity based on the surrounding context. In spite of

4 https://wiki.dbpedia.org/develop/datasets/latest-core-dataset-releases
5 https://www.mpi-inf.mpg.de/departments/databases-and-information-

systems/research/yago-naga/yago/
6 https://developers.google.com/freebase/guide/basic concepts#topics
7 https://www.wikidata.org/wiki/Wikidata:Statistics
8 https://databus.dbpedia.org/dbpedia/wikidata
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being an early solution, it still remains one of the strongest candidates in our own
evaluations, at the same time it has low response times. Compared to PNEL it
lags behind in precision significantly. S-MART [33] generates multiple regression
trees and then applies sophisticated structured prediction techniques to link
entities to resources. S-MART performs especially well in recall on WebQSP in
our evaluations and the reason seems to be that they perform more complex
information extraction related tasks during entity linking, e.g., ”Peter Parker”
span fetches ”Stan Lee” 9. However compared to PNEL it has low precision.

The journey towards end-to-end models which combine MD and ED in one
model started with attempts to build feedback mechanisms from one step to the
other so that errors in one stage can be recovered by the next stage. One of the
first attempts, Sil et al [27], use a popular NER model to generate extra number
of spans and let the linking step take the final decisions. Their method however
depends on a good mention spotter and the use of hand engineered features. It
is also unclear how linking can improve their MD phase. Later, Luo et al [16] de-
veloped competitive joint MD and ED models using semi-Conditional Random
Fields (semi-CRF). However, the basis for dependency was not robust, using
only type-category correlation features. The other engineered features used in
their model are either NER or ED specific. Although their probabilistic graphi-
cal model allows for low complexity learning and inference, it suffers from high
computational complexity caused by the usage of the cross product of all possi-
ble document spans, NER categories and entity assignments. Another solution
J-NERD [20] addresses the end-to-end task using engineered features and a prob-
abilistic graphical model on top of sentence parse trees. EARL [6] makes some
rudimentary attempts towards a feedback mechanism by allowing the entity and
relation span detector to make a different choice based on classifier score in the
later entity linking stage, however it is not an End-to-End model.

Sorokin et al [28] is possibly the earliest work on end-to-end EL. They use fea-
tures of variable granularities of context and achieve strong results on Wikidata
that we are yet unable to surpass on WebQSP dataset. More recently, Kolitsas
et al [12] worked on a truly end-to-end MD (Mention Detection) and ED (Entity
Disambiguation) combined into a single EL (Entity Linking) model. They use
context-aware mention embeddings, entity embeddings and a probabilistic men-
tion - entity map, without demanding other engineered features. Additionally,
there are a few recent works on entity linking for short text on Wikidata [32],
which is also the area of focus of PNEL. OpenTapioca [4] works on a limited num-
ber of classes (humans, organisations and locations) when compared to PNEL,
but is openly available both as a demo and as code and is lightweight. Fal-
con 2.0 [24] is a rule based EL solution on Wikidata which is openly available
and fast, but it requires manual feature engineering for new datasets. Sevigli et
al. [26] performs ED using KG entity embeddings (DeepWalk [22]) on Wikidata,
but they rely on an external MD solution. PNEL and Sorokin et al both use
TransE entity embeddings and also perform MD and ED end-to-end in a single

9 https://github.com/UKPLab/starsem2018-entity-linking/issues/8#issuecomment-
566469263
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model. Sorokin et al has a more complex architecture when compared to PNEL.
Apart from using TransE embeddings, they fetch neighbouring entities and re-
lations on the fly during EL, which is a process PNEL intentionally avoids to
maintain lower response times. KBPearl [15] is a recent work on KG population
which also targets entity linking as a task for Wikidata. It uses dense sub-graphs
formed across the document text to link entities. It is not an end-to-end model
but is the most recent work which presents elaborate evaluation on Wikidata
based datasets, hence we include it in evaluations.
We also include QKBFly [19] and TagME [7] in our evaluations because KB-
Pearl includes results for these systems on a common dataset (LC-QuAD 2.0).
QKBFly performs on-the-fly knowledge base construction for ad-hoc text. It
uses a semantic-graph representation of sentences that captures per-sentence
clauses, noun phrases, pronouns, as well as their syntactic and semantic depen-
dencies. It retrieves relevant source documents for entity centric text from mul-
tiple souces like Wikipedia and other news websites. TagME is an older system
that spots entity spans in short text using a Lucene index built out of anchor text
in Wikipedia. It then performs a mutual-voting based disambiguation process
among the candidates and finishes with a pruning step.

3 PNEL

PNEL stands for Pointer Network based Entity Linker. Inspired by the use case
of Pointer Networks [31] in solving the convex hull and the generalised travelling
salesman problems, this work adapts the approach to solving entity linking.
Conceptually, each candidate entity is a point in an euclidean space, and the
pointer network finds the correct set of points for the given problem.

3.1 Encoding for Input

The first step is to take the input sentence and vectorise it for feeding into the
pointer network. We take varying length of n-grams, also called n-gram tiling
and vectorise each such n-gram.

Given an input sentence S = {s1, s2...sn} where sk is a token (word) in the
given sentence, we vectorise sk to vk, which is done in the following manner:

1. Take the following 4 n-grams: [sk], [sk−1, sk], [sk, sk+1], [sk−1, sk, sk+1]
2. For each such n-gram find the top L text matches in the entity label database.

We use the OKAPI BM25 algorithm for label search.
3. For each such candidate form a candidate vector comprising of the concate-

nation of the following features

(a) Rkl = Rank of entity candidate in text search (length 1), where 1 ≤ l ≤ L
(b) ngramlen = The number of words in the current n-gram under consid-

eration where 1 ≤ ngramlen ≤ 3 (length 1)
(c) k = The index of the token sk (length 1)
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P2: Q9036
Nikola Tesla
Serbian-American 
Inventor
Input n-gram: Tesla

P4: Q163343
tesla
SI unit 
Input n-gram: founded 
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Tesla
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Input n-gram: Tesla
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Fig. 2: The red and green dots represent entity candidate vectors for the given
question. The green vectors are the correct entity vectors. Although they belong
to the same entity they are not the same dots because they come from different
n-grams. At each time step the Pointer Network points to one of the input
candidate entities as the linked entity, or to the END symbol to indicate no
choice.

(d) posk = A one-hot vector of length 36 denoting the PoS tag of the word
under consideration. The 36 different tags are as declared in the Penn
Treebank Project [25]. (length 36)

(e) EntEmbedkl = TransE Entity Embedding (length 200)

(f) SentFTEmbed = fastText embedding of sentence S (length 300), which
is a mean of the embeddings of the tokens of S. In some sense this carries
within it the problem statement.

(g) TokFTEmbedk = fastText embedding of token sk (length 300). Addition
of this feature might seem wasteful considering we have already added
the sentence vector above, but as shown in the ablation experiment in
Experiment 6, it results in an improvement.

(h) DescriptionEmbedkl = fastText embedding of the Wikidata description
for entity candidate kl (length 300)
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Fig. 3: The word “Francisco” is vectorised in the following manner: 4 n-grams
represented by the underlines are considered and searched against an entity label
database. The top 50 search results are depicted for each of the n-grams result-
ing in 200 candidates. For the entity Q72495, for example, we fetch its TransE
embedding, add its text search rank, n-gram length, word index position as fea-
tures. Additionally we also append the fastText embedding for “Francisco” and
the entire fastText embedding for the sentence (average of word vectors) to the
feature. We then append the fastText embeddings for the label and description
for this entity. Hence we get a 1142 dimensional vector Vk120 corresponding
to entity candidate Q72495. For all 200 candidate entities for “Francisco”,
we have a sequence of two hundred 1142 dimensional vectors as input to the
pointer network. For the sentence above which has 7 words, this results in a
final sequence of 7 × 200 = 1400 vectors each of length 1142 as input to our
pointer network. Any one or more of these vectors could be the correct entities.

(i) TextMatchMetrickl = This is a triple of values, each ranging from 0
to 100, that measures the degree of text match between the token un-
der consideration sk and the label of the entity candidate kl. The three
similarity matches are simple ratio, partial ratio, and token sort ratio.
In case of simple ratio the following pair of text corresponds to perfect
match: "Elon Musk" and "Elon Musk". In case of partial ratio the fol-
lowing pair of text corresponds to a perfect match: "Elon Musk" and

"Musk". In case of token sort ratio the following pair of text corresponds
to a perfect match: "Elon Musk" and "Musk Elon". (length 3)
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For each token sk we have an expanded sequence of token vectors, comprising
of 4 n-grams, upto 50 candidates per n-gram, where each vector is of length
1142. Hence each token sk is transformed into 4 × 50 = 200 vectors, each a
1142 length vector (see Figure 3). We may denote this transformation as sk →
{vk1, vk2....vk200}. Note that there may be less than 50 search results for a given
token so there may be less than 200 entity candidates in the final vectorisation.
Each of these vk vectors is an entity candidate.

Fig. 4: K=Number of search candidates per n-gram. On the left: K vs F1 score
on a set of 100 WebQSP test questions, with average word length of 6.68. F1 is
maximum for K=40 and 50. On the right: K vs time taken for PNEL to return
a response. The relationship appears to be close to linear.

3.2 Training

For the entire sentence, a sequence of such vectors is provided as input to the
pointer network. During training the labels for the given input sequence are the
index numbers of the correct entities in the input sequence. Note that the same
entity appears multiple times because of n-gram tiling. During each decoding
time step the decoder produces a softmax distribution over the input sequence
(see Figure 2), which in our implementation has a maximum sequence length
of 3000. Additionally the BEGIN, END, PAD symbols add to a total of 3003

symbols to softmax over. The cross entropy loss function is averaged over the
entire output sequence of labels and is considered the final loss for the entire
input sequence.

3.3 Network Configuration

We use a single layer bi-LSTM [10] pointer network with 512 hidden units in
a layer and an attention size of 128. Addition of an extra layer to the network
did not result in an improvement. The Adam optimizer [11] was used with an
initial learning rate of 0.001. A maximum input sequence length of 3000 and a
maximum output length of 100 were enforced.
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4 Datasets

For reasons explained in Section 1 we evaluate on Wikidata based datasets. We
use the following:

– WebQSP: We use the dataset released by Sorokin et al [28] where the orig-
inal WebQSP dataset by Yih et al [35], which was based on Freebase, has
been adapted and all Freebase IDs converted to their respective Wikidata
IDs. WebQSP contains questions that were originally collected for the We-
bQuestions dataset from web search logs (Berant et al [1]). WebQSP is a
relatively small dataset consisting of 3098 train 1639 test questions which
cover 3794 and 2002 entities respectively. The dataset has a mixture of sim-
ple and complex questions. We found some questions in the test set that had
failed Freebase to Wikidata entity ID conversions. We skipped such questions
during PNEL’s evaluation.

– SimpleQuestions: To test the performance of PNEL on simple questions,
we choose SimpleQuestions [3], which as the name suggests, consists only
of Simple Questions. The training set has more than 30,000 questions while
the test set has close to 10,000 questions. This dataset was also originally
based on Freeebase and later the entity IDs were converted to corresponding
Wikidata IDs. However out of the 10,000 test questions only about half are
answerable on the current Wikidata.

– LC-QuAD 2.0: Unlike the first two datasets, LC-QuAD 2.0 [5] is based on
Wikidata since its inception and is also the most recent dataset of the three.
It carries a mixture of simple and complex questions which were verbalised
by human workers on Amazon Mechanical Turk. It is a large and varied
dataset comprising of 24180 train questions and 6046 test questions which
cover 33609 and 8417 entities respectively.

5 Evaluation

In this section we evaluate our proposed model(s) against different state-of-the-
art methods for KGQA. As notations, PNEL-L stands for PNEL trained on
LC-QuAD 2.0. PNEL-W and PNEL-S stand for PNEL trained on WebQSP and
SimpleQuestions respectively.

5.1 Experiment 1 : EL over KBPearl split of LC-QuAD 2.0 test set

Objective: The purpose of this experiment is to benchmark PNEL against a
large number of EL systems, not just over Wikidata, but also other KBs.
Method: The results are largely taken from KBPearl. PNEL is trained on the
LC-QuAD 2.0 training set. For a fair comparison, the systems are tested on
the 1294 questions split of test set provided by KBPearl. We train PNEL for 2
epochs.
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Remarks: Results for Falcon 2.0 and OpenTapioca were obtained by accessing
their live API. The original Falcon 2.0 paper provides an F1 of 0.69 on 15%
of randomly selected questions from a combination of the train and test splits
of the dataset. Several systems in the table below do not originally produce
Wikidata entity IDs, hence the authors of KBpearl have converted the IDs to
corresponding Wikidata IDs.
Analysis: As observed from the results in Table 1, PNEL outperforms all other
systems on this particular split of LC-QuAD 2.0 dataset.

Entity Linker Precision Recall F1

Falcon[23] 0.533 0.598 0.564
EARL[6] 0.403 0.498 0.445
Spotlight[17] 0.585 0.657 0.619
TagMe[8] 0.352 0.864 0.500
OpenTapioca[4] 0.237 0.411 0.301
QKBfly[18] 0.518 0.479 0.498
Falcon 2.0 0.395 0.268 0.320
KBPearl-NN 0.561 0.647 0.601

PNEL-L 0.803 0.517 0.629

Table 1: Evaluation on KBPearl split of LC-QuAD 2.0 test set

5.2 Experiment 2 : EL over full LC-QuAD 2.0 test set

Objective: The objective of this experiment is to compare systems that return
Wikidata IDs for the EL task.
Method: We train PNEL on LC-QuAD 2.0 train set and test on all 6046 ques-
tions in test set. PNEL was trained for 2 epochs.
Remarks: Results for competing systems were obtained by accessing their live
APIs. We choose systems that return Wikidata IDs.
Analysis: As seen in Table 2, similar to the previous experiment, PNEL per-
forms the best on the LC-QuAD 2.0 test set.

Entity Linker Precision Recall F1

VCG[28] 0.516 0.432 0.470
OpenTapioca[4] 0.237 0.411 0.301
Falcon 2.0 0.418 0.476 0.445

PNEL-L 0.688 0.516 0.589

Table 2: Evaluation on LC-QuAD 2.0 test set
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5.3 Experiment 3 : EL over WebQSP test set

Objective: Benchmark against an end-to-end model that returns Wikidata IDs.
Method: Train and test PNEL on WebQSP train and test sets respectively.
PNEL is trained for 10 epochs.
Remarks: Results for the competing systems were taken from Sorokin et al [28].

Entity Linker Precision Recall F1

Spotlight 0.704 0.514 0.595
S-MART[34] 0.666 0.772 0.715
VCG[28] 0.826 0.653 0.730

PNEL-L 0.636 0.480 0.547
PNEL-W 0.886 0.596 0.712

Table 3: Evaluation on WebQSP

Analysis: As seen in Table 3 PNEL comes in third best in this experiment,
beaten by VCG and S-MART. S-MART has high recall because it performs
semantic information retrieval apart from lexical matching for candidate gener-
ation, as explained in Section 2. VCG is more similar to PNEL in that it is also
an end-to-end system. It has higher recall but lower precision than PNEL.

5.4 Experiment 4 : EL over SimpleQuestions test set

Objective: Benchmark systems on the SimpleQuestions Dataset.
Method: Train and test PNEL on SimpleQuestions train and test sets respec-
tively. PNEL is trained for 2 epochs.
Remarks: We extended the results from Falcon 2.0 [24].

Entity Linker Precision Recall F1

OpenTapioca[4] 0.16 0.28 0.20
Falcon 2.0 0.38 0.44 0.41

PNEL-L 0.31 0.25 0.28
PNEL-S 0.74 0.63 0.68

Table 4: Evaluation on SimpleQuestions

Analysis: As seen in Table 4, PNEL outperforms the competing systems
both in precision and recall for SimpleQuestions dataset. As observed, PNEL
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has the best precision across all datasets, however, recall seems to be PNEL’s
weakness.

5.5 Experiment 5 : Candidate generation accuracy

Objective: The purpose of this experiment is to see what percentage of correct
entity candidates were made available to PNEL after the text search phase. This
sets a limit on the maximum performance that can be expected from PNEL.
Remarks: PNEL considers each token a possible correct entity, but since it
only considers top-K text search matches for each token, it also loses potentially
correct entity candidates before the disambiguation phase. The results in Table
5 are for K=30.

Dataset PNEL (%)

WebQSP 73
LC-QuAD 2.0 82
SimpleQuestions 90

Table 5: Entity Candidates available post label search

5.6 Experiment 6 : Ablation of features affecting accuracy

Objective: We present an ablation study on the WebQSP dataset to understand
the importance of different feature vectors used in the model.

Sentence
Embed.

Word
Embed.

Descript.
Embed.

TransE PoS
Tags

Text
Rank

n-gram
length

Text
Match
Metric

F1
Score

0.712

0.554

0.666

0.700

0.221

0.685

0.399

0.554

0.698

Table 6: Ablation test for PNEL on WebQSP test set features
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Analysis: As seen in Table 6 it appears that the most important feature is
the TransE entity embedding, which implicitly contains the entire KG structure
information. On removing this feature there is drop in F1 score from 0.712 to
0.221. On the other hand the least important feature seem to be the description
embedding. Removal of this feature merely leads to a drop in F1 from 0.712
to 0.700. A possible reason is that the Text Search Rank potentially encodes
significant text similarity information, and TransE potentially encodes other
type and category related information that description often adds. Removal of
the Text Search Rank also results in a large drop in F1 reaching to 0.399 from
0.712.

5.7 Experiment 7 : Run Time Evaluation

Objective: We look at a comparison of run times across the systems we have
evaluated on

System Seconds Target KG

VCG 8.62 Wikidata
PNEL 3.14 Wikidata

Falcon 2.0 1.08 Wikidata
EARL 0.79 DBpedia
TagME 0.29 Wikipedia
Spotlight 0.16 DBpedia
Falcon 0.16 DBpedia
OpenTapioca 0.07 Wikidata

Table 7: Time taken per question on the WebQSP dataset of 1639 questions

Analysis: QKBFly and KBPearl are off-line systems, requiring separate
steps for entity candidate population and entity linking, hence they are not eval-
uated in Table 7. VCG and PNEL are end-to-end systems while the others are
modular systems. VCG and PNEL were installed locally on a machine with the
following configuration: 256 GB RAM, 42 core E5-2650 Intel Xeon v4@2.2GHz.
No GPU was present on the system during run time. For VCG and PNEL, the
times taken for first runs were recorded, where the corresponding databases such
as Virtuoso and Elasticsearch, were started just before the evaluation. This was
done so that the times were not affected by caching from previous runs. For
systems except PNEL and VCG, the times mentioned in the table were col-
lected from API calls to their hosted services. It must be considered that, due
to network latency, and other unknown setup related configurations at the ser-
vice end, the times may not be comparably directly. PNEL performs faster than
VCG since it avoids querying the KG during runtime, and instead relies on pre-
computed KG embeddings. PNEL also uses lesser number of features than VCG.
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A visible trend is that the more accurate system is slower, however Spotlight is
an exception, which performs well in both speed and accuracy.

6 Error Analysis

A prominent feature of PNEL is high precision and low recall. We focus on loss
in recall in this section. For LC-QuAD 2.0 test set consisting of 6046 questions,
the precision, recall and F-score are 0.688, 0.516 and 0.589 respectively. We cat-
egorise the phases of loss in recall in two sections 1) Failure in the candidate
generation phase 2) Failure in re-ranking/disambiguation phase. When consid-
ering the top 50 search candidates during text label search, it was found that
75.3% of the correct entities were recovered from the entity label index. This
meant that before re-ranking we had already lost 24.7% recall accuracy. During
re-ranking phase, a further 23.7% in absolute accuracy was lost, leading to our
recall of 0.516. We drill down into the 23.7% absolute loss in accuracy during
re-ranking, attempting to find the reasons for such loss, since this would expose
the weaknesses of the model. In the plots below, we consider all those questions
which contained the right candidate entity in the candidate generation phase.
Hence, we discard those questions for our analysis, which already failed in the
candidate generation phase.

Entity Count Questions Count Precision Recall F1

1 3311 0.687 0.636 0.656
2 1981 0.774 0.498 0.602
3 88 0.666 0.431 0.518

Table 8: Comparison of PNEL’s performance with respect to number of entities
in a question.

It is observed in Table 8 that recall falls as the number of entities per question
rises. It must not be concluded however, that PNEL fails to recognise more than
an entity per question. There were 375 questions with multiple entities where
PNEL was able to link all the entities correctly. In Figure 5 we observe that
the recall does not exhibit significant co-relation with either the length of the
question, or the length of entity label. The recall remains stable. There seems
to be some co-relation between the amount of data available for a given length
of question, and the recall on it. It appears that the model performs better on
question lengths it has seen more often during training.

7 Discussion and Future Work

In this work we have proposed PNEL, an end-to-end Entity Linking system
based on the Pointer Network model. We make no modifications to the origi-
nal Pointer Network model, but identify its utility for the problem statement



Title Suppressed Due to Excessive Length 15

Fig. 5: Plots of recall variation versus 1) Length of Question 2) Length of entity
span 3) Frequency of questions with the given lengths in the dataset (scaled
down by a factor of 1000)

of EL, and successfully model the problem so the Pointer Network is able to
find the right set of entities. We evaluate our approach on three datasets of
varying complexity and report state of the art results on two of them. On the
third dataset, WebQSP, we perform best in precision but lag behind in recall.
We select such features that require no real time KG queries during inference.
This demonstrates that the Pointer Network model, and the choice of features
presented in this work, result in a practical and deployable EL solution for the
largest Knowledge Graph publicly available - Wikidata.

For future work: PNEL being based on the LSTM cell inevitably processes
tokens sequentially increasing the response times. This limitation could be over-
come by using some variant of the Transformer model [30] instead, which is not
only a powerful model but also able to process tokens in parallel. As a future
work we would also like to explore different entity embedding techniques and in-
vestigate which characteristics make an embedding suitable for the entity linking
task.
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