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ABSTRACT
We analyze comparative questions, i.e., questions asking to compare

different items, that were submitted to Yandex in 2012. Responses

to such questions might be quite different from the simple “ten

blue links” and could, for example, aggregate pros and cons of the

different options as direct answers. However, changing the result

presentation is an intricate decision such that the classification of

comparative questions forms a highly precision-oriented task.

From a year-long Yandex log, we annotate a random sample of

50,000 questions; 2.8% of which are comparative. For these anno-

tated questions, we develop a precision-oriented classifier by com-

bining carefully hand-crafted lexico-syntactic rules with feature-

based and neural approaches—achieving a recall of 0.6 at a perfect

precision of 1.0. After running the classifier on the full year log

(on average, there is at least one comparative question per second),

we analyze 6,250 comparative questions using more fine-grained

subclasses (e.g., should the answer be a “simple” fact or rather a

more verbose argument) for which individual classifiers are trained.

An important insight is that more than 65% of the comparative

questions demand argumentation and opinions, i.e., reliable direct

answers to comparative questions require more than the facts from

a search engine’s knowledge graph.

In addition, we present a qualitative analysis of the underly-

ing comparative information needs (separated into 14 categories

like consumer electronics or health), their seasonal dynamics, and

possible answers from community question answering platforms.
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1 INTRODUCTION
We permanently face a variety of choices: Where to go for dinner?

Which programming language to use? Whether to buy an electric

car? In many cases the respective decisions are made by comparing

options. A lot of comparison requests can be found on commu-

nity question answering platforms (CQA) like Yahoo!Answers,

Quora, or StackExchange, but also as queries submitted to search

engines. More and more of the comparative search engine queries

are also formulated as actual natural language questions, a trend

that is evoked by the recent advances in speech recognition and the

spread of voice interfaces, which encourage users to shift from the

telegram-style keyword-based queries to natural language ques-

tions [15, 30, 42].

Still, today’s web search engines do not treat requests for com-

parison that are issued as questions any differently to other queries

but simply output “ten blue links”, regardless of the comparison

intent. This misses, for instance, the opportunity to switch the

output straight to a direct answer aggregating pros and cons of

the different options—similar to the decades-old idea of structured

representations in e-commerce [36].

An early proposed solution for comparative information needs

was “comparative web search” [39]: to submit each item as a sep-

arate keyword query to compare the results. Recently, a slightly

more sophisticated search system to tackle comparative informa-

tion needs was proposed by Schildwächter et al. [33]. However, the

system cannot process comparative questions but expects the user

to enter the options to be compared along with the comparison

aspects in individual fields. An important step towards actually

showing a pro/con result presentation for comparative questions
would be their identification and the study of the underlying infor-

mation needs. In this paper, we take this step.

Our first contribution is the manual annotation of comparative

information needs in a 50,000 question sample from a year-long

Yandex log. Four native Russian speaking annotators have labeled

the questions as being comparative or not and assigned ten fine-

grained subclasses to the comparative ones (e.g., whether a question

asks for facts or arguments, whether a superlative is contained, etc.).

About 2.8% of the annotated questions are comparative—a non-

negligible amount that justifies some deeper inspection.

As our second contribution, we build classifiers for compara-

tive questions and the subclasses using a combination of carefully

hand-crafted high-precision rules with feature-based and neural

classifiers. The ensemble classifier recalls 60% of the comparative

questions with a perfect precision of 1.0. A classifier of that quality

is actually applicable in production systems since there are hardly

https://doi.org/10.1145/3336191.3371848
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any false positives to be expected (i.e., almost no wrong switch to a

pro/con answer presentation for a question that is not comparative).

Our third contribution is an analysis of the comparative ques-

tions detected by the perfect-precision ensemble on the entire 1.5 bil-

lion questions from the year-long Yandex log. Many comparative

questions fall in the category of consumer electronics (e.g., Which

camera is better, Canon or Nikon?) followed by cars and trans-

portation (e.g., Which tires are best for the winter?). A sub-

stantial portion of the frequently asked comparative questions do

not specify concrete objects to be compared, and no comparison

aspect is provided (e.g., Which tablet is the best to buy?). Such

queries require more explanatory answers in the form of opinions

or pro/con arguments not typically found in a search engine’s fact-

oriented knowledge graph. We thus also conduct a pilot study to

analyze whether answers on similar questions from the Russian

question answering platform Otvety can help. For about 50% of the

comparative Yandex questions we find a fitting answer on Otvety;

in particular, answers for the more frequent comparative Yandex

questions are usually “mineable” from the CQA. This potential of

mining answers together with our proposed high-precision classifi-

cation of comparative questions indicates a very promising first step

towards handling the result presentation for comparative questions

differently than showing “ten blue links” only.

To ensure some level of reproducibility and a potential transfer

to English, we release annotations of 15,000 questions from publicly

available datasets (Quora [16],MSMARCO [29], andGoogle Natural

Questions [24]) along with our code and pre-trained models.
1
Since

we are bound by an agreement, we cannot disclose the Yandex

questions themselves.

2 RELATEDWORK
Traditionally, comparatives have been considered in linguistic stud-

ies [3, 4, 7, 37, 38] as a limited set of lexical structures like compara-

tive adjectives and adverbs or comparative operators (e.g., same–as

or different–than). But even though comparative questions are dis-

tinguished in a separate class of some question taxonomies [8, 25]

the main focus of identifying comparative structures has been on

comparative sentences in the field of sentiment analysis. For in-

stance, Jindal and Liu [19] propose a recall-oriented approach of

83 manual rules (keywords and phrases) to identify as many com-

parative sentences, comparable items, and compared features from

reviews as possible (recall of 0.94 at a precision of only 0.34). In an

improved variant of their approach, Jindal and Liu [18] train a Naïve

Bayes classifier on the manual rules and some learned sequential

rules (keywords + POS tags) to achieve a recall of 0.81 at a precision

of 0.81. In our approach for comparative question classification,

we will also combine rules with other classifiers but with a clear

focus on almost perfect precision instead of high recall (we achieve

a recall of 0.6 at a precision of about 1.0).

In the field of web search, Jain and Pantel [17] suggested that

search engines could better support users with comparative infor-

mation needs. The proposed approach uses rather simplistic rules

like “X vs. Y” to identify comparative keyword queries that are

then matched against a look-up table of pairs of comparable items

mined from 100 million queries and 500 million web pages. Since

1
github.com/webis-de/WSDM-20

comparative questions can use a much richer vocabulary than just

simple “X vs. Y”-style patterns, the approach of Jain and Pantel [17]

is not directly applicable to our question query scenario but will be

adapted using more sophisticated classification steps.

In a study very related to ours, Li et al. [26] proposed a rule-

based method for identifying comparative questions (sequential pat-

terns over words, POS tags, placeholders for compared objects, and

beginning/end-of-questionmarkers). In an evaluation on 5,200 ques-

tions from Yahoo!Answers (about 2.7% comparative), the rules

achieved a recall of 0.82 at a precision of 0.83. However, since Li

et al. [26] only consider questions that explicitly include two com-

pared items, we cannot use their approach directly (less than 45% of

the comparative questions in our sample actually do explicitly con-

tain two items). Instead, we will employ “more general” rules and

combine them with other non-rule-based approaches to identify

more comparative questions.

3 DATA
To study real-world comparative questions, we mine them from two

sources: (1) a year-long log of questions submitted to the Russian

search engine Yandex in 2012, and (2) all the questions posted on

the Russian question answering platform Otvety in 2012.

From the Yandex query log, we extracted about 2 billion question-

style entries that match any of 58 syntactic question indicators (e.g.,

how, what, where, should) similar to the method proposed by Ben-

dersky and Croft [2]—but adapted to Russian.We clean the initial set

of about 2 billion entries following the steps of Völske et al. [40]. We

remove spam and bot entries by considering a user to be a bot when

one of the following conditions holds: (1) more than 2,000 question-

style entries over the year, (2) more than 5 question-style entries

submitted within any one-minute window, (3) an average length

of more than 20 words for the question-style entries, or (4) at least

50 question-style entries in total with the same leading 15 characters

in at least 80% of them (e.g., what is the translation of). We also

remove consecutive duplicate entries from the same user, as well as

entries not representing “genuine” user questions (e.g., crossword

questions, questions from the TV game show Family Feud, or ques-

tions matching Wikipedia titles). These cleansing steps removed

about 500 million of the 2 billion question-style entries, resulting

in a cleaned set of 1.5 billion entries we consider to be genuine

questions (752 million unique questions from 183 million unique

user IDs). Interestingly, even though the questions are in Russian,

quite many of them contain Latin-spelled tokens (e.g., brands or

asking for the correct spelling of some English word).

Following Völske et al. [40] again, we extracted those about

6.6 million questions from the about 11 million questions posted

on the Russian community question answering platform Otvety in

2012, for which a best answer was selected and that were asked

by the users who posted at least three questions in 2012. Otvety

(“answers”) is the Russian counterpart of Yahoo!Answers, with

similar rules and incentives (points for good answers, etc.). Before

posted, each question is manually assigned to one of 28 top-level

categories by the asker. In our extraction, we omitted ambiguous

categories (humor, miscellaneous, etc.) and merged closely related

ones to 14 top-level categories (cf. Table 7).

https://github.com/webis-de/WSDM-20


Table 1: Absolute and relative frequencies of the compara-
tive question subclasses (percentages for subclasses are rel-
ative to the number of comparative questions).

Yandex Otvety

Comparative 1,405 (3% of all) 1,571 (13% of all)
Opinion 916 (65%) 1,469 (94%)

Argumentative 676 (48%) 586 (37%)

Reason 83 (6%) 10 (<1%)

Factoid 378 (27%) 101 (6%)

Method 106 (8%) 41 (3%)

Superlative 180 (13%) 287 (18%)

Direct 603 (43%) 893 (57%)

Aspect 302 (22%) 546 (35%)

Context 238 (17%) 405 (26%)

Preference (requested) 985 (70%) 1,281 (82%)

(stated) 18 (1%) 77 (5%)

To ensure a natural distribution of comparative questions, we

randomly sampled 50,000 questions that at least three different

users submitted from the cleaned Yandex log (these questions are

probably less privacy-sensitive), as well as 12,500 questions from

the Otvety data. Four native Russian-speaking annotators were told

to label as comparative those questions that exhibit an intent of

comparing through an examination of (dis-)similarities of two or

more items, two or more groups of items, all items inside one group,

or a single item against a group of items. The compared items may

either be explicitly mentioned (e.g., Which is better to buy, an

iPhone or a Samsung?) or may be given as a generic “set” (e.g., Which

tablet is best to buy?). In an initial κ-test on 200 questions, the

four annotators reached an inter-annotator agreement of a Fleiss’

κ=0.88 (almost perfect agreement) after a round of instructions.

Due to the high agreement, the annotators then labeled individual

shares of the data independently (i.e., just one vote per question).

Despite extensive automatic pre-filtering to remove non-genuine

questions, our annotators still marked about 2,000 of the 50,000 Yan-

dex questions and about 2,500 of the 12,500 Otvety questions as

being incomplete, parts of song lyrics our filters missed, or contain-

ing profanity. We replaced such questions by additional randomly-

sampled questions to maintain the desired totals. Overall, the anno-

tators labeled 1,405 Yandex questions (about 2.8%) and 1,571 Otvety

questions (about 12.6%) as comparative.

In a second round of annotations, the annotators then labeled

the comparative questions from the first round with the following

ten more fine-grained subclasses (annotators achieved a Fleiss’ κ
of 0.51, a moderate agreement) that are not mutually exclusive (i.e.,

a question can fall in more than one of the respective classes and

the annotators were instructed to select any that applied).

The first five subclasses are general question classes from the

literature: Opinion questions ask for a personal experience or opin-

ion in the answer without the need of a shared settled knowledge

(e.g., Which to choose for vacation, Goa or UAE?) [22, 35, 45].

Argumentative questions request a solid argumentation in the an-

swer (e.g., Who will win a presidential election, Trump or

Clinton and why?). Reason questions seek an explanation or rea-

sons in the answer that are based on scientific insights (e.g., What

is common between proteins and amino acids?) [27]. Factoid ques-

tions can be answered with a simple (often short) fact, where the

answer is rather “static” (not changeable) over a sufficient period

of time and independent of the answerer’s opinion or experience

(e.g., Which contain more vitamin c, kiwis or lemons?) [1, 28].

Method questions request some how to-style instruction (e.g., How

to distinguish faux fur from real?) [27].

In addition to these above five general question classes, we also

asked the annotators to assign five further labels focused on syntac-

tic or semantic properties of comparative questions. A comparative

question is superlative if it asks for the best item in a class (e.g.,

Who is the best soccer player?), rather than explicitly comparing

two or more items (e.g., Who is a better soccer player, Messi or

Ronaldo?). A comparative question is direct if it explicitly includes

the compared items (e.g., Which is more reliable, an iPhone or

a Samsung?) instead of implicitly determining a set of the possible

items to compare (e.g., Which mobile phone is it better to buy

for 20,000 rubles?). A comparative question includes an aspect
when a particular shared property over which the items can be

compared or contrasted is mentioned. Such aspects can be stated in

ascending or descending direction (e.g., asking whether a product

is more expensive or cheaper), and they can be expressed through

a simple comparative adjective or adverb (e.g., Which is cheaper,

an iPhone or a Samsung?) or through the combination of several

lexical units (e.g., Which is better for web development, PHP or

Python?). Comparative questions may also include additional con-
text for the comparison (e.g., target of a 4-year-old in Which is

better to buy for a 4-year-old, a remote control car or a

toy transformer?). Finally, comparative questions may fall in the

preference class by either requesting a preference (e.g., Which is

more reliable, an iPhone or a Samsung?) or by explicitly stating
a preference (e.g., Why is an iPhone better than a Samsung?).

Table 1 shows the annotation results. Unsurprisingly, users on

Otvety (the community question answering platform) ask for rela-

tively way more opinionated comparisons and fewer factoid com-

parisons than on Yandex. Still, more than 65% of the comparative

questions submitted to Yandex also are non-factoid (i.e., directly

answering them may be a difficult task).

4 IDENTIFYING COMPARATIVE QUESTIONS
With the scenario of changing a search engine’s result presentation

for comparative questions in mind, we focus on the precision of clas-

sifying comparative questions (about 2.8% of the Yandex questions).

We combine three different “techniques” into an ensemble classifier:

(1) hand-crafted lexico-syntactic rules, (2) traditional feature-based

classifiers, and (3) neural networks. For developing the rules or to

train the classifiers, we split the annotated data in training (80%)

and test sets (20%).

Rule-based classification. Inspired by previous studies on iden-

tifying comparatives [3, 4, 7, 17–19, 26, 37, 38], we use lexical and

syntactic rules as a first step of our classifier aiming for perfect

precision at a recall as high as possible. We translated promising

patterns from the literature to Russian and merged and “tuned” the

rules on the training set to not end up with a too large number. Our

potential 15 rules below consist of regular expressions over question

tokens, comparative (COMP) and superlative (SUPER) grammemes
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Figure 1: Precision-recall curves for the comparative question class on the Yandex training set (ten-fold cross-validation).

(using the MyStem POS tagger [34]), token positions (posn), and

logical operators, and are ordered by descending precision (the ones

with equal precision are ordered by descending recall).

(r1) [better] ∧¬[how]2

(r2) COMP ∧ [or|vs|versus]3 ∧ posn(COMP) < posn[or|vs|versus] ∧
¬[more or less]

(r3) [how correct(ly)? (spell|write)] ∧ [or]
(r4) [what common|similar] ∧ [and|from|or|between|vs|versus]
(r5) [choose|buy|take] ∧ [or|between|vs|versus]
(r6) [in comparison]
(r7) [advantage|disadvantage|flaws] ∧ [of|over|compared to]
(r8) [difference(s)?|differentiate|distinguish] ∧ [and|from|

or|between|vs|versus]
(r9) [better]

(r10) COMP ∧ [which] ∧¬[or|vs|versus] ∧¬[how]
(r11) [or]
(r12) COMP

(r13) COMP ∧ [which] ∧¬[or|vs|versus]
(r14) SUPER

(r15) [plus(es)?] ∧ [minus(es)?]

Using rules for the classification, a given question will be classi-

fied as comparative if any of these rules matches (ignoring punctu-

ation and capitalization). To determine a subset of rules that reach

perfect precision, we examine their performance on the training

set. The blue line in Figure 1 (left) shows the precision-recall curve

resulting from successively adding rules in the descending preci-

sion order from above; rules (r1–7) have a perfect precision of 1.0,

and together achieve a recall of 0.42. Adding rule (r8) increases

recall to 0.62 but slightly reduces precision to 0.9986 (a single mis-

classified example: How to teach a dog to distinguish between

friends and foes?). The next rules then provide additional recall

but at a much higher cost in precision (e.g., adding the rules (r9–

12) increases recall above 0.70 while dropping precision to 0.74).

Identifying some more “perfect precision” rules might thus be an

interesting direction for future work.

Combination with feature-based and neural classifiers. To sup-

plement the handcrafted rules, we try to add models with manual

2
Expressions in [] are in regular expression syntax: so a question matching (r1)

must contain the token better but not the token how (tokens being approximate

translations from Russian).

3
Even though vs and versus are no Russian comparison words, they occasionally

occur as such in queries; still, we do not consider them as standalone comparison

indicators since only very few questions contain them (< 0.005%), and since a significant

number of vs-questions are non-comparative (e.g., What is vs/versus?).

feature engineering (SVM, logistic regression, Naïve Bayes), as well

as neural models (CNN [20], LSTM with recurrent dropout [14],

capsule networks with dynamic routing [32] similar to the CapsNet-

1 model [43], and BERT with a linear layer as a decoder on top [12]),

which have become prevalent for text classification tasks. For all

these models, we optimize the parameters in a grid search of com-

monly used value ranges and evaluate the performance in pilot

experiments to identify promising combinations.

Since we consider the classification of comparative questions

as a highly precision-oriented task, we aim to further increase

the recall of the rule-based approach at the smallest possible cost

in precision. We thus train and test the feature-based and neu-

ral classifiers only on the “more difficult” questions that are not

already identified as being comparative by the perfect-precision

rule set (r1–7). From the Yandex questions, this leaves 39,524 ques-

tions (650 comparative) as the reduced training and 9,876 questions

(159 comparative) as the reduced test set. In a pre-processing, each

question is tokenized, lowercased, POS-tagged, and punctuation is

removed. For the feature-based classifiers we derive unigram bag-

of-words representations (SVM, Naïve Bayes) or uni- to four-gram

bag-of-words representations (logistic regression) as these are the

best performing setups in our pilot experiments. For CNN, LSTM,

and capsule networks, fastText embeddings trained on the Russian

Wikipedia are used [6]. For BERT, we fine-tune the pretrained bert-

based-multilingual-uncased model with WordPiece embeddings as

proposed by Devlin et al. [12].

The BERT, CNN, and logistic regression models vastly outper-

form the other classifiers in our pilot experiments (higher recall at

perfect precision). We thus only consider BERT, CNN, and logistic

regression as potential add-ons to the hand-crafted rules. The mod-

els’ hyperparameters are optimized to achieve the highest precision

for the comparative question class using grid search and ten-fold

cross-validation on the training set.
4
Our proposed “ensemble” of

rules with feature-based and neural classifiers is a four-step deci-

sion process (pseudo code in Algorithm 1). Given a question q and

a set of classification models C (some subset of BERT, CNN, and lo-

gistic regression in our case), the ensemble first applies the “perfect

precision” rule set (r1–7). Only if these rules do not classify q as

4
BERT and CNN use the Adam optimizer [21] and a minibatch size of 32. BERT

fine-tuning: hidden units 768, dropout prob. 0.1, learning rate 0.00002, epochs 3, se-

quence length 128; CNN: filters 25, windows {3,4,5}, learning rate 0.0005, epochs 3,

dropout prob. 0.5, loss function: binary cross-entropy loss, sequence length 15. Logistic

regression: penalty=’l2’, solver=’liblinear’, C=0.01.



Input: question q, classifiers C ⊆ {CNN, BERT, Logistic}
Output: 1 if q is comparative, 0 otherwise

begin
// Step 1: ‘‘perfect precision’’ rule set

if ruleDecision((r1–7), q) = 1 then return 1;
// Step 2: ‘‘perfect precision’’ classifiers

foreach c ∈ C do
if classifierDecision(c , q, perfectPrecisionThreshold(c )) = 1

then return 1;
end
// Step 3: consensus of ‘‘non-perfect’’ classifiers
DC := [classifierDecision(c, q, decisionThreshold(c)) : c ∈ C]
if unanimous(DC ) then return DC[0];
// Step 4: almost ‘‘perfect precision’’ rule R8
return ruleDecision((r8), q)

end
Algorithm 1: Pseudo code of our Ensemble-C classifier.

Table 2: Classification results of a ten-fold cross-validation
on the training set aiming for the maximal recall at a preci-
sion of 1.0 on the comparative class (decision threshold in
brackets). All classifiers achieve at least 0.98 precision and
1.0 recall for the non-comparative class.

Individ. model Recall F1 Ensembles Recall F1

Logistic (0.418) 0.55 0.71 Ens.-B+L (0.632) 0.63 0.77

CNN (0.99447) 0.55 0.71 Ens.-C+L (0.418) 0.63 0.77

BERT (0.99766) 0.49 0.66 Ens.-B+C+L (0.99447) 0.60 0.75

comparative, the models from C are run to classify q (with a deci-

sion threshold optimized for perfect precision on the training set). If

none of these models classifies q as comparative, the third step asks

whether there is a consensus among the classifiers in C at relaxed

decision thresholds (aiming for a combined best possible precision

tuned on the training set). If these relaxed-threshold classifiers do

not reach an unanimous consensus of q being comparative or not,

the fourth step just takes the decision of the high-recall but slightly

imperfect-precision rule (r8) (precision of 0.9986).

Varying the decision threshold of each classifier from 0 to 1 in

Step 3 of the ensemble approach, three ensemble variants performed

particularly well in the pilot experiments: (1) Ensemble-B+L with

C = {BERT, Logistic}, (2) Ensemble-C+LwithC = {CNN, Logistic},
and (3) Ensemble-B+C+L with C = {BERT,CNN, Logistic}. The
precision-recall curves for the complete four-step ensembles on the

Yandex training set are shown in Figure 1 (right), the parameter

settings and recall values for the individual perfect-precision clas-

sifiers and for the complete ensembles are given in Table 2. The

Ensemble-B+L and Ensemble-C+L outperformed all other classifi-

cation models on the training set, achieving a recall of 0.63. Since

Ensemble-C+L has a much better run time per to-be-classified ques-

tion, we will use Ensemble-C+L for the run on the year-long Yandex

log in our later experiments (cf. Sections 5 and 6).

5 FINE-GRAINED CLASSIFICATION OF
COMPARATIVE QUESTIONS

The ten subclasses of comparative questions that our annotators

labeled are meant to differentiate several types of comparative

intents (cf. Section 3). These types help to better “understand” com-

parative intents and to decide what and how an answer should

be presented [31]. For instance, answers to factoid and probably

also many reason questions (What is common between proteins and

amino acids?) can possibly be found in knowledge bases and can

be presented on a result page as a short direct answer [10]. By con-

trast, answering opinionated and argumentative questions (Which

one to buy, an iPhone or a Samsung and why?) may trigger a

search for fitting (answered) questions on some question answering

platform (CQA) or a search for multiple evidences via multi-hop

question answering [9, 11, 13] with summaries stemming from

several documents [46]. Finally, an answer to a method question

(How to distinguish faux fur from real?) might also be found

on question answering platforms [41] or in how-to collections and

will most likely be presented as step-wise instructions.

Interestingly, not many studies have focused on answering com-

parative questions up to now. The existing studies [33, 36, 39] deal

with queries (not questions) where users explicitly provide two

items to be compared. This is similar to questions that we call direct

comparisons (Who is the best soccer player, Messi or Ronaldo?)

but the other subclasses besides direct comparisons are usually

“ignored” in the previous studies. Our fine-grained categorization

aims to close this gap. For instance, superlative questions (Who is

the best soccer player?) ask for a search over a group of all pos-

sible items (all soccer players) in order to find a single superior one.

Sometimes, an aspect for the comparison could be explicitly stated

in the question (Who is the best soccer player when it comes

to goals scored?), or not be mentioned which then requires some

“guess work” at search engine side. In addition, context like for a

4-year-old as part of a comparative question like Which is better

to buy for a 4-year-old, a remote control car or a soccer? can

also further guide the search for an answer. Finally, a preference in

a comparative question (or the absence of a preference) indicates

whether the answer should explicitly mention some particular item

along with a justification (Which one to buy, an iPhone or a

Samsung and why?) or whether providing several options along with

a comparison of their characteristics is preferred (What are the

main differences between mobile phones?).

Enlarging the set of comparative questions. The manually labeled

50,000 Yandex questions contain 1,405 comparative questions with

some of the subclasses containing only few questions (see Table 1

for the subclass distribution). To have a larger training set for neural

approaches to classify the fine-grained subclasses, we thus decided

to collect additional comparative questions from the Yandex log. In

particular, we choose Ensemble-C+L to classify the whole 1.5 billion

questions since it was the fastest and most accurate classifier in

our experiments on the test set of the 10,000 labeled questions

(approximately a few hours of run time vs. several days when

BERT is included to classify the entire Yandex log).

From the questions labeled as comparative by Ensemble-C+L in

the year-long Yandex question log, our annotators manually an-

notated another random 5,000 questions into the ten fine-grained
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Figure 2: Precision-recall curves for the comparative subclasses on the 5,000 questions training set (ten-fold cross-validation).

subclasses. Since again some questions were labeled as inappropri-

ate by our annotators and since about 1% of the questions actually

were not comparative (an expected small number of misclassifica-

tions), we ended up with a total of 6,250 comparative questions

labeled with fine-grained subclasses (80/20 train/test split). Since

some classes were mentioned as closely related by our annotators

(in fact, the annotators could assign multiple classes and some

classes then overlapped to a large extent), we merge the closely

related subclasses opinion and argument, factoid and reason, as

well as aspect and context (note that in the merged classes also the

extraction and presentation of answers will be rather similar). The

distribution of the resulting seven subclasses is shown in Table 3.

Classifiers for the comparative subclasses. To classify comparative

questions into the fine-grained subclasses, we use neural BERT and

CNN models since they performed best in pilot experiments (hyper-

parameters identical to Section 4). In particular, the BERT classifier

is set up in a one-vs-rest manner (i.e., one model trained for ev-

ery subclass) [5], while the CNN classifier is using a multi-label

approach (lower computational effort at the same effectiveness

as a one-vs-rest CNN). Instead of a softmax activation, a sigmoid

activation function is used.

Table 3: Extended set of comparative Yandex questions with
merged subclasses (6,250 questions in total).

Opinion/argument 4,101 (66%) Preference 4,351 (70%)

Reason/factoid 2,074 (33%) Direct 3,511 (56%)

Context/aspect 1,675 (27%) Superlative 484 (8%)

Method 332 (5%)

As the seven fine-grained classes are not mutually exclusive (i.e.,

questions have several labels) and since there is no intricate result

page format change at stake (whether a question is comparative

will be classified before), we do not treat the fine-grained classes as

a precision-oriented classification. Instead, we optimize the hyper-

parameters for the micro-averaged F1—the common practice for

multi-label classification [23, 44].
5

The precision-recall curves of the classifiers on the 5,000 ques-

tions training set are shown in Figure 2. The largest subclasses

of the interesting and probably also challenging to answer non-

factoid comparative questions (i.e., opinion or argument) can be

identified very reliably, as well as whether a preference was stated

and whether comparison items are mentioned directly. In contrast,

with relatively way fewer available examples, classifying whether

aspects or context are mentioned seems to be hard with the BERT-

based models being slightly better than the CNN models on some

subclasses (but the CNN models require less computational effort).

6 EXPERIMENTS AND FINDINGS
We report the results of the different classification models described

in Sections 4 and 5 on the respective test sets and then also conduct

a qualitative analysis of the comparative questions in the year-long

Yandex query log. This provides first insights into what comparative

information needs users try to solve with a search engine.

Identifying comparative questions. Table 4 reports the classifica-
tion results on the test set (10,000 questions). Not surprisingly, the

individual models lose from 1% (logistic regression) up to 5% (BERT)

in the recall, as well as the ensembles—from 3% (Ensemble-B+L) up

to 5% (Ensemble-B+C+L).

5
CNN: 200 filters, 4 epochs; all other parameters identical to Section 4.



Table 4: Classification results on the test set. Goal is the best
recall at a precision of 1.0 on the comparative class (decision
threshold in brackets). All classifiers achieve at least 0.98
precision and 1.0 recall for the non-comparative class.

Individ. model Recall F1 Ensembles Recall F1

Logistic (0.418) 0.54 0.70 Ens.-B+L (0.632) 0.60 0.75

CNN (0.99447) 0.52 0.68 Ens.-C+L (0.418) 0.59 0.74

BERT (0.99766) 0.44 0.61 Ens.-B+C+L (0.99447) 0.55 0.71

Rules (r1–7) 0.44 0.61

We then test the relatively faster Ensemble-C+L “in the wild”

by classifying the 1.5 billion questions from the Yandex log and

manually check the assigned labels for another 5,000 comparative

questions: about 1% misclassifications (cf. Section 5).

Fine-grained classification of comparative questions. Table 5 re-
ports the classification results of the neural models on the test set for

the fine-grained comparative subclasses. The respective models are

trained in the settings and with the hyperparameters as described

in Section 5. The three prevalent subclasses in the training dataset,

opinion/argument, preference, and direct (each more than 3,500 train-

ing samples) achieve the best classification results. An exception

is the underrepresented superlative subclass, which is identified

relatively well by the models, probably due to the presence of ad-

jectives and adverbs in a superlative form that are captured by the

POS tag feature type.

Volumes, dynamics, and topics. To analyze monthly distributions

and seasonal effects of the comparative questions in the year-long

Yandex log, we apply the (almost) “perfect precision” Ensemble-C+L

on the filtered 1.5 billion questions. Figure 3 shows the numbers

of comparative questions per month as identified by the classifier

(dark shade) along with an estimated total (light shade), based on

the classifier’s recall of 0.59 on the test set. The estimated ratio of

the comparative questions is close to 3% throughout the year (we

obtained 2.8% by random sampling) and shows an upward trend

within the volume of all questions submitted to Yandex.

The comparative questions most frequently submitted to Yandex

are shown in Table 6. A substantial part of them have the form Which

<item> is better/best to buy/choose/watch? (many recalled by

Table 5: Results of the comparative subclass classifications
on the test set of the Yandex comparative questions.

CNN BERT

Subclass Prec. Rec. F1 Prec. Rec. F1

Opinion/argument 0.93 0.90 0.92 0.92 0.91 0.91

Reason/factoid 0.85 0.79 0.82 0.82 0.89 0.86

Context/aspect 0.88 0.52 0.62 0.75 0.74 0.74

Method 0.79 0.80 0.79 0.75 0.82 0.78

Preference 0.97 0.98 0.97 0.96 1.00 0.97

Direct 0.95 0.96 0.96 0.95 0.98 0.97

Superlative 0.93 0.79 0.86 0.92 0.86 0.89

Micro average 0.92 0.88 0.90 0.90 0.93 0.91
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Figure 3: Monthly distribution of the comparative questions
in the Yandex log.

rule (r1)). Such questions target an informed choice, calling for

opinions and arguments as pros and cons; they are hard to answer

since they do not directly specify the items to be compared but

require an analysis of all possible options within a set of items. Also,

these questions often do not specify a comparison aspect and hence

require to consider all involved items’ features.

To gain further insights, we categorize the recalled comparative

Yandex questions into a scheme resembling the categories used on

the Otvety platform. Following Völske et al. [40], we use a multino-

mial Naïve Bayes classifier trained on the Otvety data (14 merged

topical categories), to categorize the comparative questions in the

Yandex log. The categories with the relatively most comparative

questions (ratio to the overall amount of questions in the category)

are consumer electronics, followed by cars & transportation, home

& garden, and education (cf. Table 7). As Figure 4 with the absolute

numbers shows, the consumer electronics category exhibits the

Table 6: The ten most frequently asked comparative ques-
tions in the Yandex log.

Comparative question query # Occur.

Which pilot was the first to surpass a supersonic speed? 176,372

Which comedy is it better/best to watch? 39,039

Which is better, Xbox or PS? 26,781

Which tablet is it better/best to buy? 24,443

Anti-radar, which one is better? 21,483

Which phone is it better/best to buy? 20,550

Which antivirus is better/best? 19,634

What is the difference between a netbook and a laptop? 18,165

Which British colony was latest to receive independence? 17,274

Which laptop is it better/best to buy? 16,775
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Figure 4: Yearly trend of the number of comparative Yandex
questions in the largest topical categories.



Table 7: Total number of questions inmillions, percentage of
comparative questions, and the most frequently asked com-
parative questions per topical category in the Yandex log.

Question category Quest. Comp. Most frequently asked question

mln. %

Consum. electronics 105.4 6.3 Which tablet is it better/best to buy?

Cars & transport. 143.7 5.2 Anti-radar, which one is better?

Home & garden 166.7 4.0 Which vacuum cleaner is it best to buy?

Education 101.8 3.9 Which pilot was the first to surpass a

supersonic speed?

Beauty & style 93.7 3.3 When is it best to cut hair?

Sports 45.8 3.1 Which time of the day is most suitable

for doing sports?

Family & relationsh. 68.5 2.7 What is the best way to commit suicide?

Health 128.2 2.4 When is it best to conceive a baby?

Adult 53.9 2.3 What is the difference between men and

women friendships?

Business & finance 133.7 2.0 In which bank is it best to take a loan?

Computers & intern. 152.4 2.0 Which antivirus is the best?

Society & culture 95.1 1.8 Which British colony was latest to

receive independence?

Entertain. & music 90.2 1.5 Which comedy is it best to watch?

Games & recreation 122.0 1.3 Which is better, Xbox & PS?

largest increase at the end of the year—the number of compara-

tive questions submitted in December doubles the February num-

ber. This indicates a clear seasonal trend: people tend to purchase

electronics closer to the Christmas and New Year’s holidays. The

Russian school summer break from June through August explains

the significant drop in education questions during these months,

while in September and October they are asked almost as often

as consumer electronics questions. Most of the topical categories

remain constant or undergo a decrease during the summer months,

indicating a stagnation or drop in online activities during holidays.

To dig a bit deeper into seasonal patterns, we also look at changes

in the most frequent questions through the year. In March, the

question When is it better to jog, in the mornings or in the

evenings? is not among the top 20 of the most frequently asked

ones, but it jumps to rank 13 in April (probably because of the

more comfortable weather conditions and the approaching summer

bathing season), stays at rank 11 in May, and disappears in June.

Similarly, the question Which camera is it better/best to buy? is

the 13thmost frequent question in June, thenmoves down to rank 17

in July, and stays at rank 18 in August. The question What place at

the Black Sea is better/best to go for vacation? reaches rank 8

in May, moves up to rank 3 in June, goes down to rank 6 in July, and

leaves the top 20 in August, coinciding with the summer vacations.

The mushroom picking season is indicated by the question How can

one distinguish honey fungi from deadly skullcaps? jumping to

rank 8 in September from out of the top-50 in August while the

approaching winter is indicated by the question Which tires are

better/best for winter? reaching rank 7 and Which is better,

winter tire with metal studs or without? reaching rank 12 in

October from out of the top-50 in September. Interestingly, the

question Which pilot was the first to surpass a supersonic

speed? was the most frequently asked question throughout the

entire year, occupying rank 1 in every month except for January—

an observation which we cannot really explain except that 2012

was the 65th anniversary of the achievement. The quite delicate

questions of asking for the best ways of committing suicide (see

Table 7) appears in January at rank 7, in March at rank 9, moves

down to rank 12 in April, and disappears from the top-20 for the

rest of the year. Questions of this kind should be identified by the

search engine and treated with the appropriate care, however, this

is out of the scope of this study.

Answering comparative questions. The above insights about the
comparative questions’ types and their categorical and temporal

distribution can help a search engine to better understand the re-

spective information needs and, in particular, to present the an-

swers in an appropriate way. While pro/con answers to the most

frequently asked questions could be cached, comparative questions

also have a very long “tail” of rather rare intents. Our analysis of

the compared items and the question categories shows that the

comparison interests reach way beyond the traditionally studied

areas of consumer products or factoid questions.

Our study of the comparative web search questions reveals that

more than 65% of the questions are non-factoid (cf. Table 3) and

demand argumentation and opinions in an answer (e.g., Which is

better, Xbox or PS? or How dogs are better than cats?). One

possible approach to tackle such questions is to extract “ready-to-

use” answers from question answering platforms.

To test how good such an extraction approach might work, we

index the cleaned set of all 5.5 million Otvety questions with a

selected “best answers” with Elasticsearch’s (BM25 as retrieval

model). The 4,101 comparative Yandex questions labeled as opin-

ion/argument are then used as search queries against this index

(stop words removed) and human assessors labeled the answer to

the top-ranked Otvety question as relevant or not for the Yandex

question. It turns out that for about 48% of the comparative opin-

ion/argument questions submitted to Yandex the top-ranked Otvety

question with a best answer is relevant. In future work, it might

thus be interesting to further investigate this possibility of extract-

ing answers to non-factoid comparative questions from question

answering platforms but also to further analyze the other half of

the non-factoid questions that are probably not directly answerable

using question answering platforms.

7 CONCLUSIONS
We have studied comparative questions submitted to Yandex over

the period of one year. Such comparative questions form a non-

negligible portion of the questions Yandex received (about 2.8%)

and our study showed that the comparison intents reach far beyond

just comparing products to buy or just expecting simple facts as

answers (more than 65% of the comparative questions are clearly

non-factoid). Only for about a half of the non-factoid questions,

a good answer can be found on the Russian community question

answering platform Otvety. Thus, if a search engine decided to

support comparative questions in their entirety with direct answers,

a focus on products or just relying on the engine’s knowledge graph

and online question answering platforms might not suffice.

Interesting directions for future work could be the development

of approaches to automatically extract the compared items and

the comparison aspects from comparative questions or the summa-

rization / explanation of comparative answers for the non-factoid

questions (e.g., by retrieving opinions or arguments on the web



that support a possible answer). This could then also improve com-

parative question handling in voice-only interfaces.
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