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Abstract 

The corpus, from which a predictive language model is trained, can be considered the experience 
of a semantic system.  We recorded everyday reading of two participants for two months on a 
tablet, generating individual corpus samples of 300/500K tokens. Then we trained word2vec 
models from individual corpora and a 70 million-sentence newspaper corpus to obtain individ-
ual and norm-based long-term memory structure. To test whether individual corpora can make 
better predictions for a cognitive task of long-term memory retrieval, we generated stimulus 
materials consisting of 134 sentences with uncorrelated individual and norm-based word prob-
abilities. For the subsequent eye tracking study 1-2 months later, our regression analyses re-
vealed that individual, but not norm-corpus-based word probabilities can account for first-fixa-
tion duration and first-pass gaze duration. Word length additionally affected gaze duration and 
total viewing duration. The results suggest that corpora representative for an individual’s long-
term memory structure can better explain reading performance than a norm corpus, and that 
recently acquired information is lexically accessed rapidly. 

1 Introduction 

There are three basic stages of memory (e.g. Paller and Wagner, 2002). All memories start with experi-
ence, which is reflected by text corpora (e.g. Hofmann et al., 2018). The training of a language model 
then reflects the process of memory consolidation. The final stage is memory retrieval, which can be 
examined in psycholinguistic experiments. In this paper, we measure the correlation of computational 
language modelling and cognitive performance.  

We collected individual corpora from two participants reading on a tablet for two months and com-
pared them to an extensive corpus mainly consisting of online newspapers (Goldhahn et al., 2012). To 
consolidate differential knowledge structures in long-term memory, word2vec models were trained from 
these corpora. For stimulus selection, we relied on these three language models to compute word prob-
abilities and sentence perplexity scores for 45K sentences of a Wikipedia dump. Perplexity rank differ-
ences were used to select sentences with uncorrelated word probabilities for the three language models, 
allowing to estimate the independent contribution of the word probabilities in multiple regression anal-
yses. The resulting 134 stimulus sentences were read by the participants in an eye tracking experiment. 
In the multiple regression analyses, we used these predictors to account for the durations of the first 
fixation on the words. We also predicted gaze durations, in which the duration of further fixations during 
first-pass reading are added. When the eye revisits a word after first-pass reading has been finished, the 
durations of further fixations are added into the total viewing duration (see Figure 1 for an overview of 
the present study). The underlying hypotheses of our research are that semantic expectancy has a top-
down effect on word saliency at the visual level (Hofmann et al., 2011; Reilly & Radach, 2006), and 
words appearing in more salient contexts, are processed quicker by human subjects. Therefore, language 
models on individual reading corpora, realized e.g. by word2vec, should predict the processing speed.  
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Figure 1. Overview of the present study 
 

2 Learning history and memory consolidation 

2.1 Norm corpora as a representative sample of human experience? 

When selecting a corpus as a sample of the learning experience of human participants or language mod-
els, the question arises which corpus is most representative for which person. For instance, the 
knowledge of young adults is better characterized by corpora consisting of books written for younger 
adults, while older adults are more experienced – when therefore searching for corpora that account for 
their performance best, more diverse fictional and literature books are chosen (Johns, Jones, & Mewhort, 
2018). Rapp (2014) proposed that corpus representativeness should be measured by the Pearson corre-
lation of corpus-derived computational measures and an external measure of human performance. The 
knowledge of an average reader may be well represented by balanced corpora containing all sorts of 
content, such as Wikipedia. However, a previous study revealed that a newspaper corpus often provides 
higher correlations than Wikipedia when accounting for human cloze completion probabilities, as well 
as eye tracking or brain-electric data (Goldhahn et al., 2012; Hofmann et al., 2017). This result pattern 
could on the one hand be explained by the fact that typical German readers very frequently visit online 
newspapers. On the other hand, the encyclopedic nature of Wikipedia with one article per topic does not 
reflect the frequencies of exposure. Therefore, a newspaper corpus may be more representative. In his 
seminal work, Rapp (2014) avoided the possibility to observe the average language input of test persons, 
noting that it would be effortful and unpractical to collect corpora from the language of participants. In 
the present work, we directly address this problem by collecting individual corpora from two test par-
ticipants, which is made possible by technological advances and cheaper hardware, i.e. tablets with cam-
eras for eye-tracking. 

When choosing a corpus, a key issue is its size. In general, a larger corpus may provide better word 
frequency estimates that allow for better human performance predictions than a small corpus (Rapp, 
2014). For high frequency words, however, a corpus of 1 million words already allows for predictions 
comparable to larger corpora (Brysbaert & New, 2009). For low frequency words, performance predic-
tions improve for corpora up to 16 million words, while there is hardly any gain for corpora greater 30 
million words. Rather, extremely large corpora of more than a billion words may even decrease perfor-
mance predictions. “For these sizes, it becomes more important to know where the words of the corpus 
came from” (Brysbaert & New, 2009). Movie subtitles represent spoken language, which humans typi-
cally encounter much more often than written language. In this case, the corpus is probably more repre-
sentative, because it incorporates the more frequently produced and received language mode. Therefore, 
it appears that the representativeness for the language input can outperform sheer size.  

Whether such smaller corpora are also sufficient to characterize contextual word probabilities has also 
been examined by Mandera et al. (2017). They showed that size does not always trump representative-
ness in predicting semantic priming, i.e. the facilitation of word recognition as a consequence of pro-
cessing a preceding prime word. In general, the everyday social information represented in subtitles 
corpora may be more accessible for human subjects. Therefore, they tend to elicit effects in early eye-
movement measures, particularly when combined with a language model that can generalize, such as 
neural network models, for instance (Hofmann et al., 2017, 2020). 



 
 

Though personalized language signals are obviously used to optimize search engine performance, 
tempting us to purchase products by means of individualized advertisements, we are not aware of any 
scientific approach towards assessing corpus representativeness at the level of real individual partici-
pants. Jacobs (2019), however, showed that language models can well characterize fictional characters. 
He used SentiArt to analyze Harry Potter books and found that theory-guided contextual properties of 
the characters can provide a face valid approach to personality. Voldemort occurred in language contexts 
indicating emotional instability, thus he scored high in the pseudo-big-five personality trait of neuroti-
cism. Harry Potter’s personality, in contrast, can be most well characterized by the personality dimension 
of conscientiousness. Both, Harry and Hermione score high on the personality trait of openness to ex-
perience and intellect. With such a face valid characterization of the personality of fictional characters, 
we think that it is an ethical necessity to stimulate a scientific discussion about the potential of individual 
corpora, because they may tell us a lot about real persons.  

2.2 Language models reflecting memory consolidation 

Psycholinguistic reading and comprehension studies were dominated for a long time by latent semantic 
analysis (Deerwester et al., 1990). Pynte et al. (2008) showed that such a document-level approach to 
long-range semantics can better predict gaze duration than an earlier eye movement measure. In this 
case, however, the Dundee corpus was examined, in which discourse rather than single sentence reading 
was examined. Griffiths et al. (2007) showed that topics models may outperform LSA in psycholinguis-
tic experiments, for instance by predicting gaze durations for ambiguous words (Blei et al., 2003). 
McDonald and Shillcock (2003), on the other hand, suggested that a word 2-gram model may reflect 
low-level contextual properties, given that they can most reliably account for first fixation duration ra-
ther than later eye-movement measures. Smith and Levy (2013) showed that a Kneser-Ney smoothed 3-
gram model can also predict a later eye-movement measure, i.e. gaze duration, probably because a larger 
contextual window is used for the predictions of discourse comprehension using the Dundee eye-move-
ment data set (cf. Pynte et al., 2008). Frank (2009) showed that a simple recurrent neural network is 
better suitable to address gaze duration data than a probabilistic context-free grammar (Demberg and 
Keller, 2008). The capability of neural networks to well capture syntax was also demonstrated by Frank 
and Bod (2011), who showed that an echo-state network better predicts gaze duration data than unlexi-
calized surprisal of particular phrase structures. For predicting first fixation durations of words that have 
been fixated only once during single sentence reading (Hofmann et al., 2017), a Kneser-Ney-smoothed 
5-gram model provided good predictions, but a slightly better prediction was obtained by a recurrent 
neural network model (Mikolov, 2012). In the same work, Hofmann et al. (2017) showed that an LDA-
based topic model (Blei et al., 2003) provided relatively poor predictions, probably because sentence- 
rather than document-level training more closely reflects the semantic short-range knowledge. 

Since Bhatia (2017) and Mandera et al. (2017), word2vec models can be considered a standard tool 
for psycholinguistic studies. It is well known for eye-tracking research, that not only the predictability 
of the present, but also of the last and next word can influence fixation durations (e.g. Kliegl et al., 2006).  
Viewing durations of the present word can even be influenced to some extent by the word after the next 
word (Radach et al., 2013). As the present pilot study will be based on a limited number of observations, 
we used word2vec-based word embeddings trained to predict the probability of the present word by the 
default contextual window of the last and next two words (Mikolov et al., 2013). With such a contextual 
window of two during training, we intended to subsume the effects of the last and next words on the 
fixation duration of the present word during retrieval. Therefore, we decided to use this simple standard 
approach to natural language processing. 

3 Memory retrieval in eye-tracking analyses 

As has been summarized in Figure 1 and already introduced above, there are a number of different eye-
movement parameters that can be used to address early and later memory retrieval processes during 
sentence reading (e.g. Inhoff and Radach, 1998; Rayner, 1998). When the eyes land on a word within  a 
sentence during left-to-right reading, they remain relatively still for a particular amount of time, gener-
ally referred to by the term fixation duration. The first fixation on a word duration (FFD) is generally 
assumed to reflect early orthographic and lexical processing (Radach and Kennedy, 2004), but has also 
been shown to be sensitive for readily available predictive semantic (top-down) information for a given 



 
 

word (e.g. Roelke et al., 2020). The sum of all fixation durations before the eye leaves the word to the 
right is referred to by (first-pass) gaze duration (GD), which reflects later stages of word processing 
including lexical access. After leaving the word to the right, the eye may come back to the respective 
word and remain there for some time, which is further added into the total viewing duration (TVD). 
Such late eye movement measures reflect the time needed to provide full semantic integration of a word 
into the current language context (Radach and Kennedy, 2013). 

Word length, frequency and word predictability from sentence context are generally accepted by the 
eye-tracking community to represent the most influential psycholinguistic variables on eye-movements 
(e.g. Engbert et al., 2005; Reichle et al., 2003). Word length is particularly affecting medium to late 
cognitive processes, while word frequency seems to affect all eye-movement measures (e.g. Kennedy et 
al., 2013). In psychology, word predictability from sentence context is typically estimated by cloze com-
pletion probabilities (Ehrlich and Rayner, 1981), which can be well approximated by language models 
(Shaoul et al., 2014). There are numerous studies examining the influence of predictability on eye move-
ment measures, which found that predictability affects both early and late eye movement parameters: 
Therefore, Staub’s (2015) review suggested that cloze-completion-probability-based predictability is an 
all-in variable confounding all sorts of predictive processes. We believe that language models provide 
the opportunity to understand different types of “predictability”, therefore allowing for a deeper under-
standing of how experience shapes memory and how memory acts on retrieval than current models of 
eye-movement control (Reichle et al., 2003). 

While Rapp (2014) proposed to use single-predictor regressions to approach corpus representative-
ness, a typical analytic approach to eye movements are multiple regression analyses. In this case, the 
fixation durations are approximated by a function: 

f(x) = � bn*xn + b + error (1) 
 In Formula 1, xn is the respective predictor variable such as length, frequency or predictability, and 

the free parameters are denoted by b. bn reflects the slope explained by the predictor variable n, while b 
is the intercept of the regression equation. Error is minimized by ordinary least squares. In single-pre-
dictor analyses, correlation coefficients inform about the relative influence of a single variable. To see 
how much variance is explained by a single predictor, the correlation coefficient is often squared to give 
the amount of variance explained. Though the typical variance explained by a single predictor can vary 
as a function of the variables included in the regression model, an r2 = 0.0095 (r = 0.097) for the fre-
quency effect in GD is a good benchmark at this fixation-based level of analysis (e.g. Kliegl et al., 2006, 
Table 4).  

A critical factor influencing multiple regression analyses is the correlation of the predictor variables 
itself. If they surpass an r > 0.3, multicollinearity starts to become problematic and the variance inflation 
factor reaches a first critical level of 1.09 (e.g. O’Brien, 2007). Therefore, we here relied on a sentence-
perplexity- and word-probability-based stimulus selection procedure, to allow for an independent pre-
diction of the major variables of interest, i.e. our word2vec-based word probabilities (WP) of the indi-
vidual and the norm-based training corpora. 

4 Methodology 

4.1 Participants and corpora 

For data protection purposes, we do not provide the exact age of the two German native participants, but 
they were 40-70 years old and male. Verbal IQ scores due to the IST-2000R were 106/115 for participant 
1/2, respectively (Liepmann et al., 2007). Active vocabulary was estimated in the percentile ranks of 
100/81 and passive vocabulary by 31/81 (Ibrahimović and Bulheller, 2005). The percentile ranks of  
reading fluency was 97/48 and comprehension percentiles of the participants were 52/31 (Schneider et 
al., 2007). Further assessment revealed a clearly differentiable interest profile peaking in medicine and 
nature  as well as agriculture for Participant 1, vs. education and music for Participant 2 (Brickenkamp, 
1990). 

Individual reading behavior of both participants was recorded on a Microsoft surface tablet. During 
corpus collection, we also recorded eye movements by an eye tracker mounted on the tablet (60 Hz, 
EyeTribe Inc.). Therefore, future studies may constrain the individual corpora to only those text regions 
that have actually been looked at. Participants were instructed to spend a maximum of personal reading 
time on this tablet. They were instructed to examine content matching their personal interests over a 
period of two months. A java script collected screenshots, when the display changed. The screenshots 



 
 

were converted into greyscale images and rescaled by a multiplicator of 5. In addition, a median filter 
was used to remove noise, while contrast intensity was further enhanced. Finally, these pre-processed 
images were converted to ASCII by optical character recognition (Tesseract Software OCR; Smith, 
2007). Next, we reviewed samples from the output data and the word-level confidence scores. At a 
confidence score of 80, a large majority of words (> 95%) were correctly identified by the OCR script, 
which we used as threshold for the inclusion into the corpora. In a final step, the data were cleaned from 
special characters and punctuations. The resulting corpus of participant 1 contained 486,721 tokens, and 
the corpus of participant 2 included 314,943 tokens. For computing individual word frequency (WF), 
we stemmed all words of the resulting token sample. To obtain comparable measures to norm-based WF, 
individual WF was calculated in per-million words and log10-transformed. The norm corpus was the 
German corpus of the Leipzig Wortschatz Project consisting of 1.1 billion tokens (Goldhahn et al., 2012). 

4.2 Language models and stimulus selection 

To generate stimulus materials containing words that are either predictable by the training corpora of 
one of the two participants or under the norm corpus, we trained word2vec models from the three dif-
ferent corpora, using genism 3.0.0 (Rehurek and Sojka, 2010)1. We trained skip-gram models with 100 
hidden units in 10 iterations with a minimum frequency of 3 for the individual corpora and 5 for the 
norm-based corpus.  

Stimulus selection started by computing WPs of 44,932 sentences of a German Wikipedia dump for 
the word2vec models under the three training corpora. For sentence selection, sentence perplexity (PP) 
scores were computed from the WPi for the n words of a sentence: 

!! = 2$
%
&∑ 	)*+,-(/01)&31  (2) 

PPs were rank-ordered for the three training corpora. To select sentences that are either predictable 
by one of the participants or by the norm corpus, we computed rank differences of these perplexity 
scores. Then we selected approximately one third of the sentences that provide a relatively low perplex-
ity under one corpus, but a higher perplexity under the other two training corpora. Finally, we searched 
for words providing a WP = 0 under the individually trained language models and replaced them by 
highly probable words if this led to a meaningful and syntactically legal sentence. The 134 selected 
sentences contained 5-15 words (M = 9.78, SD = 1.92) and the 1,301 words ranged in length from 2 to 
17 letters (M = 5.49, SD = 2.67). In the final stimulus set, there was a low correlation/multicollinearity 
of the individual and the norm-based WP (see Table 1 below), which allows to estimate the contribution 
of individual and the norm-based WP to word viewing durations independent from each other. 

4.3 Eye tracking study 

The eye tracking study was conducted approximately 1-2 months after the end of the individual corpus 
collection period. Eye tracking data were measured with a sampling frequency of 2000 Hz by an Eye-
Link 2k (SR Research Ltd.). The participant’s head was positioned on a chin-rest and stimuli were pre-
sented in black color on a light-grey background (Courier New, size 16) on a 24-inch monitor 
(1680x1050 pixel). With a distance from eye to monitor of 67 cm, the size of a letter corresponded to 
0.3° of visual angle. A three-point eye-position calibration was performed at the beginning of the exper-
iment and after each comprehension question (see below). After an instruction screen, the 134 sentences 
were presented in randomized order in two blocks of 67 sentences, intermitted by a 5-minute break. For 
each sentence presentation, a fixation point appeared on the screen. Then, a sentence was presented in 
one line, with the first word located 0.5° of visual angle to the right. 2° to the right of the end of the 
sentence, the string “xxXxx” was presented. Participants were instructed to look at this string to indicate 
that sentence reading has been finished, which automatically initiated the continuation of the experiment. 
To make sure that participants read for comprehension, 17 yes/no and 13 open questions were presented 
after randomly selected sentences. All questions were answered correctly from both participants. 

Right-eye fixation durations were analyzed by multiple regression analyses (N = 1673). Fixation du-
rations lower than 70 ms were excluded from analysis, as well as outliers longer than 800 ms for FFD, 
1000 ms for GD, and 1500 ms for TVD. The first and last words of a sentence, as well as words with 
WPs or WFs of zero were excluded, leading to N =1291 fixation events remaining for all analyses. The 
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predictor variables in the multiple regressions were word length, norm-based and individual WF, as well 
as norm-based and individual WP. The word probabilities due to the two individual corpora, together 
with a stimulus and viewing time example is presented in Figure 2.  
 
 

 
 

Figure 2. Individual word probabilities of an example word and the resulting viewing time: The lan-
guage model trained by the corpus of Participant 1 provided a lower word probability (WP) than the 

corpus of Participant 2 in the example sentence. The higher word probability for Participant 2 predicts 
a faster first fixation duration (FFD). 

 

5 Results 

5.1 Correlation analysis and single-predictor regressions 

The examination of the correlation between individual and norm-based WPs in Table 1 revealed that 
there was no significant correlation between these predictor variables. Therefore, our perplexity-based 
stimulus selection procedure will allow to examine whether these two predictors account for eye-move-
ment variance independent from each other in the multiple regression analysis below. There were, how-
ever, typically large correlations between frequency and length and between the two frequency measures 
(e.g. Kliegl et al., 2006). Therefore, the question of whether length or frequency effects occur, cannot be 
answered unequivocally and e.g. frequency effects may be estimated by the predictor of word length in 
the multiple regression. All other correlation coefficients were smaller than 0.3, thus providing an un-
critical level of multicollinearity. 
 

 1. 2. 3. 4. 5. 6. 7. 8. 
1. Word length  -0.68 -0.71 0.02 -0.10 0.00 0.14 0.19 
2. Norm-based WF <.0001  0.80 0.09 0.13 -0.05 -0.13 -0.16 
3. Individual WF <.0001 <.0001  0.06 0.07 -0.01 -0.10 -0.15 
4. Norm-based WP 0.4774 0.0013 0.0222  0.03 -0.02 -0.04 -0.04 
5. Individual WP 0.0005 <.0001 0.0174 0.3427  -0.12 -0.08 -0.06 
6. FFD 0.9447 0.0864 0.6284 0.4048 <.0001  0.74 0.37 
7. GD <.0001 <.0001 0.0003 0.1277 0.0029 <.0001  0.53 
8. TVD <.0001 <.0001 <.0001 0.1610 0.0380 <.0001 <.0001  

 
Table 1: Correlation of the predictor variables and the three word viewing time measures. Correlation 

coefficients are given above diagonal and correlation probability below. 
 

When considering this correlation table as a single-predictor regression on the eye tracking data, there 
were effects of length, norm-based and individual word frequency in the GD and TVD data. While larger 
word length increased fixation durations, a larger norm-based and individual word frequency decreased 
the viewing times. No such effects were obtained in FFD data. Norm-corpus based WPs did not reveal 
any effects, while there were significant effects of individual WPs for FFD, GD, and TVD data, showing 



 
 

the largest correlation for FFD (r = -0.12), followed by GD (r = -0.08) and TVD (r = -0.06). Higher 
word probabilities decreased fixation durations. 

5.2 Multiple regressions 

The FFD analysis including all predictor variables provided a highly significant multiple regression 
model, F(5,1285) = 4.629, p = 0.0003 (Table 2). In all, it accounted for 1.77% of the variance. We 
obtained a significant effect of individual WP: Negative t-values indicated that high individual WP de-
creased FFD. Word frequency marginally failed to reach significance, with high frequency tending to 
diminish reading times. 
 

 b SE b t p 
(Constant) 268.793017 16.4469826 16.34 <.0001 
Word length -1.7378111 1.61136469 -1.08 0.2810 
Norm-based WF -5.2127476 2.83947993 -1.84 0.0666 
Individual WF 2.54936544 3.79117063 0.67 0.5014 
Norm-based WP -73835.943 152204.436 -0.49 0.6277 
Individual WP -26123.236 6394.71736 -4.09 <.0001 

 
Table 2: Results of the multiple regression analysis for FFD. 

 
The multiple regression on GD data revealed a highly significant regression model, F(5,1285) = 

0.756, p < .0001 (see Table 3), which in total accounted for 2.89% of the variance. We found a significant 
effect of word length, with longer words increasing GDs, as well as a significant effect of individual 
WP, with highly probable words reducing GDs.  
 

 b SE b t p 
(Constant) 245.517945 20.9540141 11.72 <.0001 
Word length 6.44767908 2.05293331 3.14 0.0017 
Norm-based WF -4.988601 3.61759382 -1.38 0.1681 
Individual WF 4.76546508 4.83008007 0.99 0.3240 
Norm-based WP -282605.29 193913.618 -1.46 0.1453 
Individual WP -18673.72 8147.08699 -2.29 0.0221 

 
Table 3: Results of the multiple regression analysis for GD. 

 
For the TVD analysis, we obtained a highly significant multiple regression model, F(5,1672) = 10.56, 

p < .0001 (see Table 4). Overall, the predictors accounted for 3.95% of variance. Only word length 
provided a significant effect. Longer words lead to an increase of the TVD.  
 
 

 b SE b t p 
(Constant) 312.913912 36.015215 8.69 <.0001 
Word length 13.5909502 3.52852843 3.85 0.0001 
Norm-based WF -6.498011 6.21782625 -1.05 0.2962 
Individual WF 1.23816155 8.30181612 0.15 0.8815 
Norm-based WP -448879.23 333293.688 -1.35 0.1783 
Individual WP -17982.923 14003.0014 -1.28 0.1993 

 
Table 4: Results of the multiple regression analysis for TVD. 

6 Discussion 

To examine the representativeness of different training corpora for the learning experience, we here 
collected corpora for two individuals. These individual corpora were compared against a norm-based 



 
 

corpus (Goldhahn et al., 2012). We computed individual and norm-based semantic long-term memory 
structure based on word2vec models (Mikolov et al., 2013). Then we computed WPs for a sample of 
45K sentences from Wikipedia and selected 134 sentences providing no significant correlation between 
the norm-based and the individual WPs to avoid multicollinearity in our multiple regression analyses on 
eye movement data.  

Single-predictor and multiple regression analyses revealed that there are no significant effects of 
norm-based WP with any eye movement measure. One possible reason for these zero findings could be 
that we replaced words with a WP = 0 by words that are highly expectable under the individual, but not 
under the norm-based corpus. This might have increased the sensitivity for successful predictions of 
individual corpora. The stimulus selection procedure optimized the eye-tracking experiment for the rep-
resentativeness for our participants’ individual knowledge structure. This may compromise the repre-
sentativeness for other types of knowledge.  

The individual WP, in contrast, revealed reliable single-predictor effects. These effects were largest 
in FFD data and decreased for later GD and TVD data. When comparing the 1.44% of explained variance 
of individual WP in the FFD data to the total variance of 1.77% explained in the multiple regression, 
this result pattern suggests that most of the variance was explained by individual WP. The slight increase 
in explained variance primarily results from norm-based WF, which marginally failed to reach signifi-
cance in the multiple regression analysis on FFD data. In general, the amount of explained variance in 
these analyses are comparable to other multiple regression studies predicting each fixation duration, 
without aggregating across eye-movement data (e.g. Kliegl et al., 2006). 

Single and multiple regression analyses revealed that the effect of individual WP tends to become 
smaller, but apparent in GD data. This suggests that individual corpora are most suitable to predict early 
to mid-latency eye movement measures (cf. Figure 1). In the multiple regression analysis of GD data, 
an additional effect of word length was observed, confirming the finding that length has a larger effect 
on such later eye movement parameters (e.g. Kennedy et al., 2013), because multiple fixations are more 
likely in longer words. In TVD data, we observed no effect of individual WP, but a large effect of word 
length in the multiple regression analyses. 

The largest limitation of the present study is the low statistical power of eye tracking data from two 
participants only. As Rapp (2014) already noted, the collection of individual corpora is effortful, but we 
think that this effort was worthwhile, even when the present study relied on a limited amount of statistical 
power. We were positively surprised by the reliable effect of individual WP in early and mid-range eye 
movement parameters. Nevertheless, the present work should be seen as a pilot study that will hopefully 
encourage further examinations of individual corpora. But there is also a second power issue that makes 
these results convincing. Our norm-based training corpus was at least 140 times larger than the individ-
ual training corpora. Therefore, we think that this is sound evidence that representativeness of a corpus 
for individual long-term memory structure can outperform size in predicting individual reading perfor-
mance (e.g. Banko and Brill, 2001, inter alia). 

One reason for our conclusion that individual corpora may better predict eye movements lies in the 
time period, in which the text corpus reflecting human experience was acquired. The individual corpora 
were collected in a two-month time period that preceded the eye tracking study by about 1-2 months. 
Therefore, the individual corpora may primarily reflect more recently acquired knowledge. Ericsson and 
Kintsch (1995) proposed multiple buffer stores in their theory of long-term working memory (cf. Kintsch 
and Mangalath, 2011). Recently acquired knowledge is held in these buffers before it is integrated into 
long-term memory. Therefore, participants can stop reading a text, and when carrying on reading later, 
only the first sentences are read slower as compared to continuous reading of these texts (Ericsson and 
Kintsch, 1995). Our early eye-movement effects may be explained by the proposal that the recently 
acquired knowledge still resides in Ericsson and Kintsch’s (1995) long-term buffer stores. While they 
argue that football knowledge can well predict comprehension of football-related texts, for instance, it 
is hard to answer the question of which knowledge has been acquired in which time period. First, indi-
vidual corpora may help to free such studies from the investigation of one particular type of knowledge, 
because each individual corpus reflects the knowledge of this individual. Second, individual corpora 
collected at different time periods may provide a novel approach to the question of how long information 
may persist in these knowledge buffers. Our results suggest that information still residing in long-term 
memory buffers elicits faster and more efficient memory retrieval. 

There are several studies, in which participants are required to write diaries, which can be considered 
as extremely small individual corpora (e.g. Campbell & Pennebaker, 2003). Another example is the task 



 
 

to write emails to predict individual traits: For instance, Oberlander and Gill (2006) found that partici-
pants with high extraversion tend to use “will not” for expressing negation, while participants with low 
extraversion tend to use “not really” (see Johannßen and Biemann, 2018, for a recent overview). While 
such studies focused on the language output, the present study provided two input variables. First, indi-
vidual corpora allow to estimate individual experience. Second, we selected the materials based on a 
language model to specifically capture the individual experience of the participants in the eye-tracking 
experiment. The language models can be considered an algorithmic approach to the neurocognitive sys-
tem between the inputs and the output.  

Much as differences of the cognitive architecture of the participants, there are “interindividual” dif-
ferences between language models. For instance, n-gram models may reflect the capability of partici-
pants to remember particular words in context of specific other words, while neural network models 
more closely reflect the human capability to generalize from experiences (e.g. Hofmann et al., 2020; 
McClelland & Rogers, 2003). Thus, comparing such models with respect to the question of which model 
predicts which participant may provide information about the cognitive architecture of the respective 
participant. With respect to human intelligence testing, individual corpora should be a suitable approach 
to face Catell’s (1943, p. 157) challenge of “freeing adult tests from assumptions of uniform knowledge“. 

For future work, we would like to proceed in three directions. First, we would like to improve the 
collection procedure: the corpora collected via screenshots and OCR contain a high number of artifacts 
stemming from non-textual material, as well as non-contiguous texts as a result from complex webpage 
layouts. Second, we like to increase the number of participants in future studies. Third, it would be 
interesting to compare our word2vec results with more recent contextual embeddings such as BERT 
(Devlin et al., 2019), which have been shown to achieve better performance across a wide range of 
natural language processing tasks than language models with static word embeddings. While it is non-
trivial to use BERT’s bi-directional architecture and its masking mechanism for language modelling 
tasks, Salazar et al., (2020) have recently shown how to obtain prediction values for BERT and other 
architectures trained with masking loss. Subword representations as used in BERT may also help to 
compensate OCR-based errors, when only a few letters have been falsely recognized. On the downside, 
it is questionable whether the present corpus sizes of 300/500K token are large enough to obtain reliable 
estimates for the large number of BERT’s parameters. A potential solution is to rely on a BERT model 
pre-trained by a large corpus, and to use the individual corpora to fine-tune the language model. Though 
such fine tuning may enhance the predictions over the pre-trained model only, such an approach would 
mix norm-based and individual corpus information. The aim of the present study, in contrast, was to 
focus on the comparison of norm-based vs. strictly individual corpora, so we leave this extension for 
future work2. 
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