
Improving Unsupervised Sparsespeech Acoustic Models
with Categorical Reparameterization

Benjamin Milde, Chris Biemann

Language Technology Group, Dept. of Informatics, Universität Hamburg
{milde,biemann}@informatik.uni-hamburg.de

Abstract
The Sparsespeech model is an unsupervised acoustic model

that can generate discrete pseudo-labels for untranscribed
speech. We extend the Sparsespeech model to allow for
sampling over a random discrete variable, yielding pseudo-
posteriorgrams. The degree of sparsity in this posteriorgram can
be fully controlled after the model has been trained. We use the
Gumbel-Softmax trick to approximately sample from a discrete
distribution in the neural network and this allows us to train the
network efficiently with standard backpropagation. The new
and improved model is trained and evaluated on the Libri-Light
corpus, a benchmark for ASR with limited or no supervision.
The model is trained on 600h and 6000h of English read speech.
We evaluate the improved model using the ABX error measure
and a semi-supervised setting with 10h of transcribed speech.
We observe a relative improvement of up to 31.3% on ABX er-
ror rates within speakers and 22.5% across speakers with the
improved Sparsespeech model on 600h of speech data and fur-
ther improvements when scaling the model to 6000h.
Index Terms: unsupervised learning, unsupervised acoustic
models, sparse autoencoders, acoustic unit discovery

1. Introduction
Transcribed and labeled speech data is usually needed to train
supervised speech recognition systems, yet it is costly to ob-
tain and transcribe. In contrast, unlabeled speech data can be
obtained in vast quantities, even for languages for which much
less resources are available as compared to e.g. English.

In recent years, unsupervised acoustic modelling has been
gaining traction as viable models emerge to leverage and make
use of a treasure trove of unlabeled speech data. The task
of acoustic unit discovery has gained significant popularity in
unsupervised or zero resource speech processing [1]. Unsu-
pervised unit discovery in isolation can provide insights into
datasets, phoneme modelling choices and ultimately provide
representations that enables working with raw speech when
transcriptions are completely absent.

However, using what unsupervised acoustic models learn
and transferring that knowledge in semi-supervised and trans-
fer learning settings is of considerable practical interest. These
learning settings hold the promise to boost performance of su-
pervised systems, especially in low-resource settings. In this
work, we extend and evaluate an unsupervised acoustic model
originally proposed for acoustic unit discovery also in a semi-
supervised setting. A large amount of untranscribed speech
data (600h-6000h) and only a small amount (10h) of transcribed
speech training data is available in this learning setting.

Using the masking technique for unsupervised modelling
and then fine-tuning is reminiscent of transformer models such
as BERT [2], which are currently very popular on text data.
As speech is continuous, using the idea of masking becomes

a bit more difficult to transfer directly. In the following, we
present our approach that is based on a memory component ad-
dressed by Gumbel-Softmax, as part of a larger recurrent en-
coder/decoder network. We then use the masking technique on
the internal representation, i.e. the pseudo-posteriograms used
for reconstruction that are generated at each time step are ran-
domly masked.

2. Related work
The ZeroSpeech challenges [3, 1, 4] target speech processing in
a zero resource setting, i.e. models that learn from raw speech
without transcription. The challenges have also established the
use of the ABX discriminability [5, 6] to intrinsically evaluate
how well semantically relevant sounds are mapped by a discov-
ered representation in the acoustic unit discovery task. Models
trained on untranscribed speech are recently becoming relevant
since they can also boost performance in supervised systems:

Schneider et al. [7] showed with wav2vec that pre-training
a model on raw speech with a similar binary contrastive loss as
word2vec [8] can be effective to improve supervised end-to-end
acoustic models. The discrete variant vq-wav2vec [9, 10] of this
model with vector quantization into several thousand of units
has also been successfully used to pretrain BERT [2] on a se-
quence masking task, followed by using BERT representations
in a wav2letter [11] acoustic model for speech recognition.

Vector quantized variational autoencoders [12] can also be
used to learn discrete representations of speech, as demon-
strated by the end-to-end system involving attention based ASR
and TTS [13] to encode and decode. Wang et al. proposed input
masking [14] in recurrent auto-encoders.

Contrastive Predictive Coding (CPC) [15] is a representa-
tion learning model trained by predicting future hidden states,
which can be applied to raw speech in the time domain. In [16],
Kahn et al. created a benchmark for ASR with no or limited su-
pervision, based on English audio books and Librispeech data,
also providing results for using CPC. We use the Libri-Light
corpus for training and evaluating our models, as it provides
a good benchmark for unsupervised acoustic models that can
scale well to large amounts of (untranscribed) speech data.

3. Sparsespeech model
In [17], we previously proposed an approach to train unsu-
pervised bi-directional recurrent neural network (RNN) acous-
tic models that learn discrete representations, with a memory-
augmented auto encoder. The Sparsespeech model also uses
sequence masking (sequence dropout) on a quasi-symbolic rep-
resentation that the network generates. The model consists of an
encoder that generates the quasi-sparse representation of speech
and a decoder that reconstructs the input features from embed-
dings of a memory component addressed with this quasi-sparse

representation. Encoder and decoder are each a bi-directional
stacked Long Short-Term Memory (LSTM) [18]. A continuous
context vector is also an additional input to the decoder, with
the idea to capture and entangle variability of utterance global
factors such as speaker identity or the environment. It can be
an explicit context representation [19] or speaker vector [20];
in this paper we use an implicit context vector that is the mean
of all encoder states, as also evaluated in [17]. This also has
the advantage that no separate model needs to be trained. When
Sparsespeech representations are generated, we use output of
the encoder’s softmax. A sparsity constraint and diversity con-
straint on the encoders softmax output values σ is used in the
original model to train the model on continuous approximations
of one-hot vectors:

Sparsity-L = 1− sup
n
σi (1)

Diversity-L =
1

m

m∑
j=1

DKL(σj ||U) (2)

where m are time steps of an utterance with n softmax out-
puts per timestep using Kullback-Leibler (KL) divergence [21]
and U(x) = 1

n
. A sparsity weight is multiplied with Sparsity-

L and a diversity weight is multiplied with Diversity-L, these
terms are then added to the mean squared error (MSE) recon-
struction loss function. In this paper we also explore using Hu-
ber loss [22] as reconstruction loss, as it gives less weight to
outliers.

One drawback of the original sparsity constraint is that it
cannot be changed at generation time, as it is a hyper-parameter
at training time. In this paper, we extend Sparsespeech to model
symbolic self-labeling as an (approximated) discrete distribu-
tion, introducing an additional parameter that can be used to
control the sparseness of the pseudo-posteriorgram representa-
tions that our model generates after training.

4. Categorical reparameterization
Discrete variables are difficult to train directly in a neural net-
work, as the backpropagation algorithm cannot by applied to
a non-differentable layer. We use categorical reparameteriza-
tion [23] by Gumbel-Softmax [24] to implement approximate
discrete inference within the network while training it. This
uses the softmax function as a differentiable approximation to
argmax as follows:

We sample a noise vector g = g1 . . . gk from a Gumbel
distribution with a uniform random sampler U :

g = −log(−log(U(0, 1))) (3)

Where k is the number of elements in the softmax. We then
compute the Gumbel-Softmax as:

softmax(
logits+ ω · g

τ
) (4)

Where ω is a noise weight parameter. We set ω = 1 while
training the network and ω = 0 after the training is completed
to disable the Gumbel noise. The temperature parameter τ con-
trols the amount of sparsity of the sample drawn from the distri-
bution provided by the (unscaled) input logits. We illustrate this
in Figure 1 with example samples drawn from the same distri-
bution with varying τ . Lower temperatures (0.05, 0.1, 0.2) tend
to make the drawn samples sparse, approximating a one hot vec-
tor, while higher temperatures (2.0, 5.0) increase denseness and
approximate a uniform distribution.

distribution t=0.05 t=0.1 t=0.2 t=0.5 t=1.0 t=2.0 t=5.0

samples:

Figure 1: Drawing samples with different temperatures with the
Gumbel-Softmax from a discrete distribution.

decoder

encoder

...

...

memory component
 (q=sample)

sequence
context
vector

+++

dropout(p)dropout(p)dropout(p)dropout(p)dropout(p)

++

input features, e.g. PLP

sequence
masking

sample with
gumbel softmax

∑

reconstruction loss (MSE or Huber)

Figure 2: The Sparsespeech unsupervised acoustic model with
Gumbel-Softmax.

While training the network we use annealing, starting with
a higher temperature and slowly decreasing it to a cutoff value
below 0.5, for example τ = 2 → 0.2. In the Sparsespeech
model, the Gumbel-Softmax replaces the regular softmax with
the sparsity constraint. Figure 2 illustrates the complete Spars-
espeech model with the added Gumbel-Softmax.

5. Setup
We use the newest version of Sparsespeech1, Tensorflow 1.8 and
Python 3.6.9. The relevant changes necessary for the categor-
ical reparameterization have been added to the original model
and repository. For evaluation we use the supplied auxiliary
scripts of the Libri-Light corpus2, with minor enhancements,
such as the possibility to use Kullback-Leibler (KL) [21] as
a distance function in the ABX evaluation3. KL is a better
metric to compare pseudo-spectograms such as the ones our
model generates, while the default cosine distance function of
the Libri-Light scripts are better suited for comparing embed-
ding representations.

We use 4-layer stacked BiLSTM decoder/encoders in our
Sparsespeech models, with a width of 256 neurons for all ex-
periments. Perceptual linear predictive (PLP) [25] input fea-
tures are computed with Kaldi [26] using the standard settings
of 13 dimensions and 100 frames per second on (downsampled
if necessary) 16kHz audio. The sparsity constraint of Spars-
espeech is disabled (sparsity weight set to 0) for all experiments
with the new model, while the diversity constraint of original
model is kept and the diversity weight set to 100. We keep the

1https://gitlab.com/milde/sparsespeech/
2https://github.com/facebookresearch/libri-light
3This change has been merged into the Libri-Light repository.

2-stage training approach of the original model where the model
is pre-trained without the memory component. For the second
training stage, we use temperature annealing while training the
network: the τ parameter for Gumbel-Softmax is set to 2.0 and
then slowly decreases by multiplying with an annealing factor
(0.9999) every x batches. A cut off parameter, 0.1 or 0.2 in most
experiments is set after which the annealing scheme stops.

6. Evaluation
We evaluate on two proposed evaluation tasks in Libri-Light
[16]: completely unsupervised and semi-supervised with lim-
ited supervision on English audio book read speech. We cur-
rently focus on the 600h (small) and 6000h (medium) subsets of
untranscribed speech to train our models. In the unsupervised
evaluation, we measure ABX error rates [5, 6]. This provides an
error rate that measures how well the trained unsupervised rep-
resentation can differentiate between same/different tri-phones
within and across speakers, for example ”bit” vs. ”bat”. It
is also agnostic to the representation and can be evaluated on
pseudo-labels as well as dense representations. We use the
dev sets to calibrate parameters and test the best performing
models on the test set. The ABX error measure uses DTW to
compare two segments of different length, we use symmetric
KL divergence as local comparison function. This is the rec-
ommended distance function for posteriorgram-like represen-
tations [1, 4]. In the semi-supervised setting, we first train a
Sparsespeech model on the unannotated data from Libri-Light.
We then follow [16] and evaluate with a simple phoneme classi-
fier with Connectionist Temporal Classification (CTC) loss [27]
that is trained on the representation with 10h of limited-resource
phone labels.

Table 1: ABX error rates on features/posteriograms generated
by our model for the Libri-Light dev set, with varying temp. τ .

Model or features Temp. within speaker across speaker

τ clean other clean other

PLP Features - 11.12 15.08 25.87 33.74
S6000h-n42-τ2→ 0.1 0.2 12.66 15.52 18.86 24.84
” 0.8 11.04 13.65 17.02 23.01
” 1.0 10.66 13.25 16.34 22.55
” 2.0 9.57 12.15 14.73 20.68
” 3.0 9.51 12.15 14.41 20.25
” 5.0 10.48 12.94 15.28 20.87

In Table 1 we generate pseudo-posteriorgrams with differ-
ent temperatures τ from the same model. This model has been
trained on 6000h, with 42 components in the memory bank and
output representation (n42) and a temperature annealing train-
ing scheme of τ2→ 0.1. The sparseness of the output can also
be controlled with τ after training. The ABX error measure
is sensitive to too sparse representations, as a different scaling
with a higher τ significantly reduces the error measure. Tem-
peratures 2.0 and 3.0 produced the lowest ABX error rates.

In Table 2 we mainly evaluate different n in the memory
component of Sparsespeech, trained on the Libri-Light small
subset of 600h. Using n=100 or n=128 components produced
good within speakers results, n = 42 performed better on the
across speakers ABX error. All models have been trained for
3 epochs, with a training time ranging from 23.8h to 30.43h
for the second stage of training (with the memory component)
on a single Nvidia Titan XP GPU. We have experimented with
different annealing schemes, but settled on τ = 2.0 → 0.2

0

25t=0.2

0

25t=0.8

0

25t=1.0

0

25t=2.0

0

25t=3.0

0 25 50 75 100 125 150 175

0

25t=5.0

Figure 3: Example feature representations generated by the
Sparsespeech model ”S6000h-n42-τ2 → 0.1” with varying
temperature.

for most experiments. Most models have been trained using
MSE as reconstruction loss. For n = 20 and n = 42 we also
trained models with Huber loss, this improved ABX error rates
further. Additionally we trained Sparsespeech models ranging
from n = 20 to n = 128 using the original sparsity loss training
method without Gumbel-Softmax. For n = 20, the sparsity loss
constraint weight needed to be increased as the recommended
default (2.0) produced a degenerate solution. The original mod-
els did not show good ABX error rates on the Libri-Light dev
set, in fact only accross speaker ABX error improved over the
PLP features baseline. The new models trained with Gumbel-
Softmax show significant relative error rate improvements over
the original Sparsespeech model, with nearly all tested repre-
sentations better than PLP features in all settings.

In Table 3 we compare ABX error rates with some selected
models on the Libri-Light test set. We compare against base-
line PLP features, a baseline Sparsespeech model trained with
the original sparsity loss method without Gumbel-Softmax and
representations from Contrastive Predictive Coding (CPC) [15]
as reported in [16]. While the Sparsespeech models are trained
on PLP features (n=13) as input, the CPC are trained on raw
16kHz speech in the time domain. Like on the dev set, there
is a large reduction in error rates when training with Gumbel-
Softmax. On the larger medium subset, a second training run
using the Huber loss did also further improve ABX error rates.
However, the dense embedding representations trained with the
CPC model show lower error rates than the best Sparsespeech
model that we trained on the 6000h medium subset.

In Table 4 we compare the representations of our models
in terms of how well a simple phoneme recognizer can clas-
sify phonemes with it as input. The phoneme recognizers are
trained on 10h of representations with phone labels. They are
trained without explicit alignments using the CTC loss. Using
only a linear 1D-convolution on posteriorgram-like representa-

Table 2: ABX error on features/posteriograms generated by our
model for the Libri-Light dev set with different n (components
in the memory bank). Best results of each section in bold.

Model or features Temp. within speaker across speaker

τ clean other clean other

PLP Features (n=13) - 11.12 15.08 25.87 33.74
S600h-n20-sparsityloss-2.0 - 14.65 17.37 27.09 32.43
S600h-n20-sparsityloss-10.0 - 13.96 17.04 21.48 26.09
S600h-n42-sparsityloss-10.0 - 14.23 16.16 22.38 27.24
S600h-n100-sparsityloss-2.0 - 14.03 16.63 24.80 29.67
S600h-n128-sparsityloss-2.0 - 15.55 17.94 26.82 31.56

S600h-n20-τ2→ 0.5 2.0 11.56 13.75 21.18 26.66
S600h-n20-τ2→ 0.2 2.0 11.57 13.76 21.12 26.65
S600h-n42-τ2→ 0.2 3.0 11.38 13.49 17.64 22.46
S600h-n100-τ2→ 0.2 3.0 10.43 13.00 18.86 24.08
S600h-n128-τ2→ 0.2 3.0 10.00 12.46 17.97 23.16
S600h-n256-τ2→ 0.2 3.0 11.41 14.02 22.73 27.55

S600h-n20-τ2→ 0.2-huber 2.0 11.11 13.45 16.37 21.34
S600h-n42-τ2→ 0.2-huber 3.0 10.30 12.82 16.34 21.68

Table 3: ABX error on features/posteriograms generated by our
model for the Libri-Light test set. CPC results are from [16].

Model or features Temp. within speaker across speaker

τ clean other clean other

PLP Features (n=13) - 10.46 14.69 23.78 34.15
S600h-n20-sparsityloss-10.0 - 13.66 16.83 19.78 26.56
S600h-n100-sparsityloss-2.0 - 14.12 16.97 22.86 30.53

S600h-n20-τ2→ 0.5 2.0 10.92 14.06 18.86 27.16
S600h-n42-τ2→ 0.2 3.0 10.59 13.78 15.68 23.16
S600h-n128-τ2→ 0.2 3.0 9.39 12.42 16.01 23.49
S6000h-n42-τ2→ 0.1 3.0 9.33 12.05 13.53 20.60

S600h-n20-τ2→ 0.2-huber 2.0 10.4 13.82 15.32 22.43
S600h-n42-τ2→ 0.2-huber 3.0 9.69 12.79 14.68 22.05
S6000h-n42-τ2→ 0.2-huber 3.0 8.79 11.62 12.55 19.84

CPC-600h (n=256) - 6.90 9.59 9.00 15.10
CPC-6000h (n=256) - 6.22 8.55 8.05 13.81
CPC-60000h (n=256) - 5.83 8.14 7.56 13.42

tions as in [16] proved to be challenging, as the most frequent
emission symbol per timestep with the CTC loss is the blank
label. Adding a simple 1-layer LSTM makes sure that the net-
work can learn when to emit a label other than the blank label
and also keep track of context. The 1D convolution has a kernel
size of 8 (default in the Libri-Light evaluation script) and the
number of output channels of the convolution is set to match
the number of phones in the transcription plus the blank label
(45). The 1-layer LSTM has a fixed hidden size of 100.

A simple decoder with beam search generates the hypothe-
sized phone sequence. Phoneme error rate (PER) is then com-
puted by comparing the sequence to the Libri-Light transcrip-
tions on the dev and test set (these sets are the same as the ones
in Librispeech [28]). With the original Sparsespeech model we
do not significantly surpass the PER results of the PLP baseline,
but with the improved Sparsespeech model the phoneme recog-
nizer can improve PER by 14.1% relative over the PLP baseline
on test-clean and by 8.1% relative on test-other.

7. Conclusion
We proposed to improve the Sparsespeech model with Gumbel-
Softmax and Huber loss. On representations with n = 20, this
yields a relative reduction of 22.5% in ABX error rates on the
test set (with clean speech) accross speakers compared to the
original model in [17]. Using Gumbel-Softmax in the Spars-

Table 4: PER error for training a very simple phoneme recog-
nizer with 10h of data on: PLP features, CPC model features or
Sparsespeech model features.

Model or features Temp. dev PER test PER

τ clean other clean other

PLP Features (n=13) - 52.44 62.36 50.96 63.13
S600h-n100-sparsityloss-2.0 - 52.48 61.65 50.48 63.23
S600h-n20-sparsityloss-10.0 - 57.22 64.84 55.40 65.95

CPC-600h (n=256) - 40.21 51.80 38.18 53.85
CPC-6000h (n=256) - 34.40 47.60 34.44 49.40
CPC-60000h (n=256) - 31.16 46.67 32.67 48.93

S600h-n100-τ2→ 0.2 3.0 50.39 59.82 48.29 61.75
S600h-n128-τ2→ 0.2 3.0 50.56 60.20 48.05 61.69
S600h-n42-τ2→ 0.2-huber 3.0 49.80 59.09 47.16 60.36
S6000h-n42-τ2→ 0.1 3.0 47.77 57.77 46.61 59.61
S6000h-n42-τ2→ 0.2-huber 3.0 45.18 56.31 43.77 58.02

espeech model is an effective improvement, as the dimension-
ality of the learned representations of the new Sparsespeech
model can now also be scaled up to representations with big-
ger n. This did also improve ABX error rates further. So far
n = 100 and n = 128 yielded the best results for within
speaker ABX when trained on 600h of untranscribed speech.
Representations with bigger n also show a relative improve-
ment of up to 31.3% on ABX error rates within speakers on the
clean test set compared to the best original model. Our first re-
sults on training on the 6000h medium subset of the Libri-Light
corpus further improved error rates and shows that the model
is scaling. Currently, tuning the temperature parameter after a
Sparsespeech model has been trained seems to be important to
reduce ABX error rates, but higher temperatures when gener-
ating Sparsespeech features such as 2.0 and 3.0 seem to work
well across models with different hyperparameters.

PER error rates also show an 14.1% improvement over a
PLP baseline with the new model when a simple phoneme rec-
ognizer is trained on the representations. The generated repre-
sentations from the new model are still relatively compact and
sparse (see also Figure 3) with better phoneme discriminabil-
ity as measured by ABX and PER than PLP features. However
when we compare ABX and PER error to unsupervised dense
embedding representations such as the ones generated by CPC
(n=256), there still a relatively large gap in error rates on the
Libri-Light test set. One difference is the type of input features;
CPC uses raw waveforms in the time domain while we have
used PLP features. We also plan to try out end-to-end learn-
ing on raw waveforms, as this could show how much of the
performance gap can be attributed to this difference. CPC rep-
resentations could potentially also be used as input features to
the Sparsespeech model or the models could be combined.

Another major difference is structural in the type of the gen-
erated representations. There might be a trade-off in ABX error
rates between low-bitrate sparse representations and higher bi-
trate dense representations. The results from last year’s Zero
Resource Challenge [4] support this hypothesis with systems
with higher ABX errors having lower bit rate representations.
The organizers concluded that ”this suggests that discretiz-
ing learned speech embeddings well is hard”. The pseudo-
posteriorgrams that our Sparsespeech model can generate have
the advantage over embeddings that they can directly be inter-
preted as a (soft) clustering of phoneme-like units. They can
also be easily discretized and translated to symbolic pseudo
transcriptions, where the ABX discriminability is still largely
preserved (see [17]).

8. References
[1] E. Dunbar, X. N. Cao, J. Benjumea, J. Karadayi, M. Bernard,

L. Besacier, X. Anguera, and E. Dupoux, “The Zero Resource
Speech Challenge 2017,” in Proceedings of Automatic Speech
Recognition and Understanding Workshop (ASRU), 2017, pp.
323–330.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short
Papers), Minneapolis, MN, USA, 2019, pp. 4171–4186.

[3] M. Versteegh, R. Thiolliere, T. Schatz, X. N. Cao, X. Anguera,
A. Jansen, and E. Dupoux, “The Zero Resource Speech Challenge
2015,” in Proceedings of Interspeech, Dresden, Germany, 2015,
pp. 3169–3173.

[4] E. Dunbar, R. Algayres, J. Karadayi, M. Bernard, J. Benjumea,
X.-N. Cao, L. Miskic, C. Dugrain, L. Ondel, A. W. Black et al.,
“The zero resource speech challenge 2019: TTS without T,” in
Proceedings of Interspeech, Graz, Austria, 2019, pp. 1088–1092.

[5] T. Schatz, V. Peddinti, F. Bach, A. Jansen, H. Hermansky, and
E. Dupoux, “Evaluating speech features with the minimal-pair
ABX task: Analysis of the classical MFC/PLP pipeline,” in Pro-
ceedings of Interspeech, Lyon, France, 2013, pp. 1781–1785.

[6] T. Schatz, “ABX-discriminability measures and applications,”
Ph.D. dissertation, Université Paris 6 (UPMC), 2016.

[7] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec:
Unsupervised Pre-Training for Speech Recognition,” in Proceed-
ings of Interspeech, Graz, Austria, 2019, pp. 3465–3469.

[8] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed Representations of Words and Phrases and their Composi-
tionality,” in Proceedings of Advances in Neural Information Pro-
cessing Systems (NIPS), Lake Tahoe, NV, USA, 2013, pp. 3111–
3119.

[9] A. Baevski, S. Schneider, and M. Auli, “vq-wav2vec: Self-
supervised learning of discrete speech representations,” in Pro-
ceedings of International Conference on Learning Representa-
tions (ICLR), Virtual Addis Ababa, Ethopia, 2020.

[10] A. Baevski and A. Mohamed, “Effectiveness of self-supervised
pre-training for ASR,” in Proceedings of International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp.
7694–7698.

[11] R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2letter: an end-
to-end convnet-based speech recognition system,” arXiv preprint
arXiv:1609.03193, 2016.

[12] A. van den Oord, O. Vinyals et al., “Neural discrete representation
learning,” in Proceedings of Advances in Neural Information Pro-
cessing Systems (NIPS), Long Beach, CA, USA, 2017, pp. 6306–
6315.

[13] A. Tjandra, B. Sisman, M. Zhang, S. Sakti, H. Li, and S. Naka-
mura, “VQVAE Unsupervised Unit Discovery and Multi-Scale
Code2Spec Inverter for Zerospeech Challenge 2019,” in Proceed-
ings of Interspeech, Graz, Austria, 2019, pp. 1118–1122.

[14] W. Wang, Q. Tang, and K. Livescu, “Unsupervised pre-training of
bidirectional speech encoders via masked reconstruction,” in Pro-
ceedings of International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Virtual Barcelona, Spain, 2020, pp.
6889–6893.

[15] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748,
2018.

[16] J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu, P.-
E. Mazaré, J. Karadayi, V. Liptchinsky, R. Collobert, C. Fue-
gen, T. Likhomanenko, G. Synnaeve, A. Joulin, A.-r. Mohamed,
and E. Dupoux, “Libri-light: A benchmark for asr with limited
or no supervision,” in Proceedings of International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Virtual
Barcelona, Spain, 2020, pp. 7669–7673.

[17] B. Milde and C. Biemann, “Sparsespeech: Unsupervised acoustic
unit discovery with memory-augmented sequence autoencoders,”
in Proceedings of Interspeech, Graz, Austria, 2019, pp. 256–260.

[18] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] B. Milde and C. Biemann, “Unspeech: Unsupervised speech con-
text embeddings,” in Proceedings of Interspeech, Hyderabad, In-
dia, 2018, pp. 2693–2697.

[20] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[21] S. Kullback and R. A. Leibler, “On information and sufficiency,”
The annals of mathematical statistics, vol. 22, no. 1, pp. 79–86,
1951.

[22] P. J. Huber, “Robust estimation of a location parameter,” Break-
throughs in statistics, vol. 53, no. 1, pp. 73–101, 1964.

[23] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization
with gumbel-softmax,” in Proceedings of International Confer-
ence on Learning Representations (ICLR), Toulon, France, 2017.

[24] E. J. Gumbel, Statistical theory of extreme values and some prac-
tical applications: a series of lectures. US Government Printing
Office, 1948, vol. 33.

[25] H. Hermansky, “Perceptual linear predictive (PLP) analysis of
speech,” the Journal of the Acoustical Society of America, vol. 87,
no. 4, pp. 1738–1752, 1990.

[26] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding (ASRU),
Waikoloa Village, HI, USA, 2011.

[27] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of the
23rd international conference on Machine learning, Pittsburgh,
PA, USA, 2006, pp. 369–376.

[28] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an ASR corpus based on public domain audio books,”
in Proceedings of International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Brisbane, QL, Australia, 2015,
pp. 5206–5210.

