

UHH-LT at SemEval-2020 Task 12: Fine-Tuning of Pre-Trained Transformer Networks for Offensive Language Detection

Gregor Wiedemann and Seid Muhie Yimam and Chris Biemann OffensEval 2020: Multilingual Offensive Language Identification in Social Media at SemEval 2020 (Task 12), 12-13 December 2020

INTRODUCTION

- NLP Shared Task for automatic detection of offensive language in Twitter
- OffensEval 2020 provides test set along with a weakly labeled large set of ca. 9 million Tweets for training
- OffensEval 2019 training data is still valid to use since it is the base for the weakly labeled training data
- We use 2020 training data for unsupervised pre-training and 2019 training + test data for supervised training

Two main contributions

- Evaluation, which pre-trained transformerbased neural network model performs best. Winner models: best individual model: RoBERTa (Liu et. al 2019), best ensemble; ALBERT (Lan et al., 2019)
- 2. Study on further pre-training of the RoBERTa model with masked language for performance improvements. This model achieved the first place in the **OffensEval 2020 Shared Task A** for English.

DATASET								
		Training			Test			
Language	OFF	NOT	Total	OFF	NOT	Total		
English	1 4 4 8 8 6 1	7640279	9089140	1090	2807	3897		

Table 1: Subtask A (all languages): statistics about the data.

		Training		Test		
Language	TIN	UNT	Total	TIN	UNT	Total
English	149550	39424	188974	850	1072	1922
Table 2: Subtask B (English): statistics about the data.						

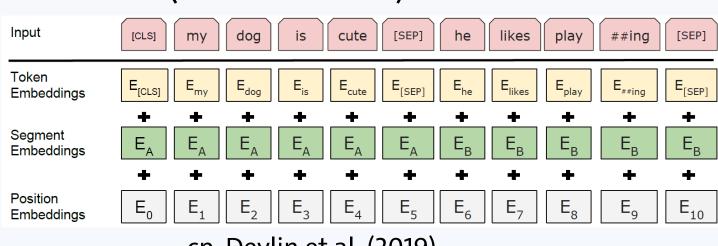
		Trair	ning			Те	st	
Language	IND	GRP	OTH	Total	IND	GRP	OTH	Total
English	120330	22176	7043	149549	580	190	80	850
Table 2. S. beach C. (Enalish), statistics about the date								

Table 3: Subtask C (English): statistics about the data. cp. Zampieri et al. (2020) $OFF \rightarrow offensive, NOT \rightarrow not offensive$ TIN \rightarrow Targeted Insult, UNT \rightarrow untargeted IND \rightarrow Individual, GRP \rightarrow Group, OTH \rightarrow Other

EVALUATING TRANSFORMERS

(MLM)

- BERT (Devlin et. al 2019)
- RoBERTa (Liu et al. 2019)

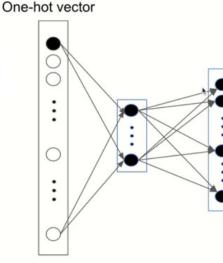


Multi-lingual masked language modeling

Masked Languag Modeling (MLM)	e	take	
	1	↑	^
Token embeddings	[/s]	[MASK]	а
Position	+	+	+ 2
embeddings	+	+	+
Language embeddings	en	en	en
Translation Lang Modeling (TLM)	uage		curtains
	↑	↑	↑
Token embeddings	[/s]	the	[MASK]
Position	+	+	+
embeddings	0	1	2
Language embeddings	+ en	+ en	+ en
			n lar

across layers

• ALBERT (Lan et al. 2020)



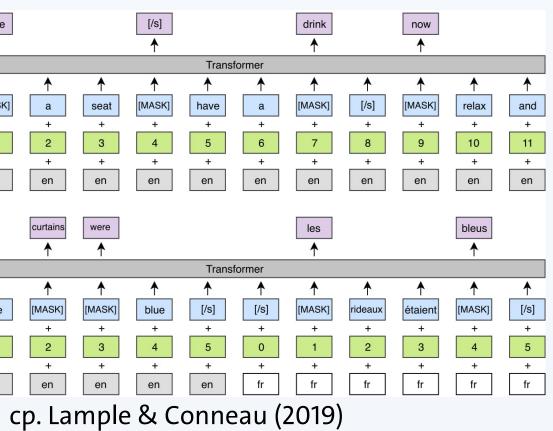
Further MLM-pretraining

target data

Pretraining with masked language modeling

cp. Devlin et al. (2019)

• XLM-RoBERTa (Conneau et al. 2019)



One-hot word piece compression by lowdimensional projection + parameter sharing

Model	Parameter size	Avg test scores (5 NLU tasks ¹)
BERT_base	108M	82.3
ALBERT_base	89M	81.7

RACE, SQUAD v1.1, SUQAD v2.0, MNLI, and SST

 continue unsupervised MLM pre-training of RoBERTa on OffensEval 2020 Twitter sample with before fine-tuning on OffensEval 2019

RESULTS

• Pre-trained transformers (individual + ensemble predictions)

	NOT			OFF				
Model	P	R	F1	P	R	F1	Macro F1	Acc.
Baselines								
All NOT	72.21	100.00	41.93	-	0.00	0.00	41.93	72.21
All OFF	-	0.00	0.00	27.78	100.00	43.49	21.74	27.79
	Sii	ngle pre-ti	ained tra	ansforme	er models			
BERT-base	99.06	90.2	94.42	79.34	97.78	87.60	91.01	92.31
BERT-large	<u>99.65</u>	90.35	94.77	79.81	99.17	88.44	91.60	92.80
RoBERTa-base	99.45	90.70	94.88	80.33	98.70	88.57	91.73	92.93
RoBERTa-large	99.53	90.92	95.03	80.73	98.89	88.89	<u>91.96</u>	93.13
XLM-RoBERTa	99.03	91.31	95.01	81.22	97.69	88.69	91.85	93.08
ALBERT-large-v1	98.87	90.24	94.36	79.32	97.31	87.40	90.88	92.20
ALBERT-large-v2	98.87	90.20	94.34	79.26	97.31	87.36	90.85	92.18
ALBERT-xxlarge-v1	98.35	91.09	94.58	80.57	96.02	87.62	91.10	92.46
ALBERT-xxlarge-v2	98.47	<u>91.73</u>	94.98	<u>81.76</u>	96.30	88.44	91.71	93.00
	Ensen	bles of p	re-traine	d transfo	rmer mod	lels		
All	99.65	90.95	95.10	80.83	99.17	89.06	92.08	93.23
BERT	99.42	91.16	95.11	81.11	98.61	89.01	92.06	93.23
RoBERTa	99.57	90.84	95.01	80.62	98.98	88.86	91.93	93.11
ALBERT-all	98.23	92.66	95.36	83.37	95.65	89.00	92.23	93.49
ALBERT-xxlarge	98.70	92.16	95.32	82.62	96.85	89.17	92.25	93.47
0	98.70				96.85		I	

Table 1: Performance (in %) of baselines, single models, and ensemble models on the OLID test set.

 Improvements through further MLN training on Tweets

	NOT			OFF				
Model	Р	R	F1	Р	R	F 1	Macro F1	Acc.
RoBERTa-large	98.96	91.49	95.07	81.54	97.49	88.76	91.93	93.15
RoBERTa-large MLM-ft	99.15	91.53	95.18	81.66	97.96	89.06	92.12	93.31
KODEK I a-iarge WILWI-II	99.15	91.55	95.18	01.00	97.90	09.00	92.12	93.3

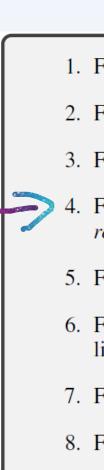
Table 2: Performance (in %) of MLM fine-tuned models on the OLID test set (average of 10 runs).

Final results for all three OffensEval 2020 subtasks:

- A Offensive Language Detection
- B Offensive Language Categorization
- C Offensive Language Target Identification

Team	UHH-LT	
	Macro F1 (%)	Rank
Task A	92.04	1 out of 84
Task B	65.98	6 out of 42
Task C	66.83	3 out of 38

A qualitative look into a sample of false predictions: False positives (FP) and false negatives (FN)



CONCLUSIONS

- Multiple pre-trained transformer architectures among the best performing models for the OffensEval 2020 Shared Task
- ALBERT ensemble performs best for Task A (with less model parameters than BERT or RoBERTa)
- Still room for improvement on Tasks B and C (e.g. through measures against negative effects from class imbalance)
- Weak labels for training are not helpful
- Further pre-training with MLM on unlabelled in-domain data improves offensive language detection

REFERENCES

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectiona transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186. MN. USA. ACL
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. RoBERTa: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692 Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard
- Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Unsupervised cross- ´lingual representation learning at scale, CoRR, abs/1911.02116 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019. ALBERT: A lite
- BERT for self-supervised learning of language representations. CoRR, abs/1909.11942. Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Hamdy Mubarak, Leon Derczynski,
- Zeses Pitenis, and C, agrı C, oltekin. 2020. SemEval-2020 Task 12: Multilingual Offensive Lan- guage Identification in Social Media (OffensEval 2020). In Proceedings of The 14th International Workshop on Semantic Evaluation (SemEval), Barcelona, Spain. ACL.

ACKNOWLEDGEMENTS

The work was supported by BWFG Hamburg (Germany) within the "Forum 4.0" project as part of the ahoi.digital funding line, and the DFG project "FAME" (WI 4949/2-1, grant no. 406289255).

ACKNOWLEDGEMENTS

yimam@informatik.uni-hamburg.de g.wiedemann@leibniz-hbi.de

1. FP: @USER the gov and nyc mayor are the biggest joke except maybe for the idiots who elected them

2. FP: @USER What the fuck

3. FP: @USER I know it was bad but I used to love it

FP: men who voted yes are childish, sorry are you 17?? Men, would you have a problem if a girl said if she's not receiving head she's not giving head?

5. FN: @USER It's as if every single one of her supporters are just as stupid as her. Wehdone..

6. FN: I'm gonna say he doesn't really. You should check the zip code demographics of his various properties Only liars could deny that Al Sharpton hates white people

7. FN: @USER Fuck the chargers

8. FN: Last night I watched the Democrats throwing shit up against the wall, and none of it stuck.