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ABSTRACT

Reference resolution is an important problem that has enormous
practical implications in daily life, for example in recovering the in-
tended meaning in communication when the environment is noisy
(acoustic noise in the spoken channel, or clutter / occlusion in the vi-
sual world). Recent literature indicates that cross-modal processing
of all the contributive modalities improves the reference resolution
in such settings. In this paper, we investigate the contribution of
the eye-tracking methodology, a substantial but underrepresented
component of face-to-face communication in NLP systems, to re-
cover the meaning in noisy settings. We integrate gaze features
into state-of-the-art language models and test the model on data
where parts of the sentences are masked, mimicking noise in the
acoustic channel. The results indicate that eye movements can com-
pensate for the missing information in the situation and support
communication when language and visual modality fail.
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1 INTRODUCTION

Considering the drastic increase in the use of assistive technologies
such as smart speakers or, in a more advanced way, collaborative
robots that can engage in communication, there is a considerable
need for NLP (Natural Language Processing) models that can pro-
cess and comprehend a wide range of situations. To achieve this,
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multimodal integration of all available modalities in the communi-
cation including eye-movements plays a crucial role.

In a task-oriented setting (e.g. helper robots completing a given
task), one of the crucial NLP processes is to extract the intention of
the speaker. Figure 1 illustrates a simple case, where the user’s com-
mand “Please bring me the glasses!” conveys a lexical ambiguity (the
word glasses might refer to either the drink glasses on the far side
table or the eye-glasses located on the middle side table). A more
realistic scenario might even contain several objects of the same
types with various properties. Some of them could even be (par-
tially) occluded from the viewer’s perspective. The environments
usually also include several people and their interactions with the
objects. In such cases, incorporating contextual information plays
a crucial role in determining the objects to be referred to and in
accomplishing the task (see [1] for a review). Revisiting Figure 1,
there is a newspaper in front of the user, so the possible action
could be reading. This cue might increase the probability of eye-
glasses as the intended object. Moreover, there is already a drink
glass next to the user, and this cue might decrease the probability
of choosing drink glasses. However, incorporating such knowledge
requires high-quality extraction of object labels and relations in the
scene, of which state-of-the-art (SOTA) computer vision algorithms
still fall short despite recent impressive gains in performance. This
situation-specific information further needs to be integrated into
the language model (LM) via some reasoning components to be
able to perform the above-mentioned reasoning. In addition to the
problems that might occur during information extraction, another
possibility that can hinder successful communication is noise in

Figure 1: An example for a helper robot scenario.
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the environment. Noise in communication can originate from var-
ious sources. It can be linguistic noise (e.g. complex attachments,
fragmented sentences), visual ambiguities (e.g. clutter in the en-
vironment, occlusions) or an acoustic noise (speech recognition
errors). Being able to follow the gaze of interlocutors is one of
the advantages of human–human multimodal communication, a
feature that human–robot interaction can benefit immensely from,
particularly when the language or visual modules fail.

The human language processing system integrates information
from various modalities. Mainstream NLP systems – however – still
usually employ uni-modal approaches, where the performance is
highly dependent on the completeness of the language modality.
However, spontaneously spoken utterances typically lack complete-
ness. Especially in noisy settings, where the informativeness of the
language modality is low, other informative cues coming from the
environment and from the communicational partners, such as gaze
direction, or deictic/symbolic gestures, provide more reliable in-
formation. Most recently, not just high-end assistive technologies
but also daily-use devices like phones or laptops begin to utilize
eye-tracking technology [7, 15, 28]. Therefore, incorporating eye-
movements in our language comprehension models is inevitable
for NLP emerging from these developments, and this motivates
systematic research on the interaction of different modalities.

2 MULTIMODAL INTERACTIONS FOR

MEANING RECOVERY

Due to long-range dependencies, flexible word order, syntactic
incompleteness and fragmentation of spoken language [e.g. 14],
extraction of speaker intention requires the integration of various
information sources, thus it is a highly complex process. These
sources can be both low-level perceptual channels like sounds and
visual features, or top-down sources like commonsense knowledge,
concepts and relations, and even some other multimodal cues like
eye-movements, gestures and haptic movements.

The issue of how to comprehend noisy linguistic input and re-
construct the intended meaning has been a focus of both psycholin-
guistic and computational line of research, [e.g. 19]. According to
the noisy-channel model [11], the sentence comprehension mecha-
nism integrates all the information at the syntactic, semantic and
discourse level from the existing words and uses this linguistic evi-
dence to predict the missing parts and infer the possible meaning.

From the NLP perspective, prediction of the unclear parts is
performed through varying techniques and it usually utilizes lin-
guistic information [4, 5]. For example, using N-grams is a popular
uni-modal method for this task since they provide very robust pre-
dictions for local dependencies. Nevertheless, they lose their power
for structures with long-range dependencies such as high-attached
relative clauses, prepositional phrases, and repair utterances. Fur-
thermore, if there are multiple instances of the same object class,
which is a de facto case for daily environments (cf. Figure 1), N-
grams cannot differentiate between them to select the proper in-
stance reference. Alternatively, semantic clustering or classification
(e.g. static word embeddings like word2vec [23]) are widely used
for understanding the meaning communicated in speech. Recently,
transformer-based deep learning approaches, that take the con-
text (surrounding words) into account to efficiently capture the

semantics of the word, have been successful in a set of NLP tasks,
see [9] for the details of BERT embeddings, and [27, 33] for their
use in multimodal settings. However, their success is also highly
dependent on the size of the training data.

3 EYE-MOVEMENTS IN REFERENCE

RESOLUTION

There is a considerable amount of literature on language, vision and
their interaction (see [1] for a review). However, incorporating eye-
movements in order to resolve ambiguities, especially in varying
referential complexities, is still emerging area [12, 16–18, 24, 25].

Until recently, equipping robots with adequate eye-tracking de-
vices was not a feasible solution due to their high cost. To mitigate
this problem, one common approach was to use head-pose direction
to roughly estimate the gaze direction. One study [34] uses a low-
level visual saliency based method for establishing joint attention
between an experimenter and a robot. This study addresses cases
where there is no linguistic instruction or incorporation of high-
level knowledge such as object labels. Instead, it aims to predict the
targeted point via visual-saliency informed gaze direction from a
low-resolution camera. Although their saliency method performs
well for establishing joint attention, the authors also highlight the
fact that head direction is not a substitute for gaze direction. How-
ever, as referenced in the previous sections, accurate eye-tracking
becomes increasingly possible even with laptop cameras.

Another important aspect of incorporating eye-movements is the
way of representing this modality. Henderson et al. [12] point out
that the success of a system that identifies the attended objects is
dependent on utilizing an effective combination of several fixation
parameters instead of focusing on only one. This brings another
parameter selection issue into foreground. Parameters like fixation
location, duration or the gaze pattern are the main eye-movement
metrics that have been widely used in gaze-contingent systems (e.g.
[3, 31]). However, a lot of assumptions need to be made to decide
when the aggregated group of eye-movements forms a fixation
or saccade. These studies inspire us to represent eye-movements
recorded during the comprehension of various scene–sentence pairs
as a time-series feature vector to predict the attended object (see
Section 5.3). Here, we encode a rich set of various raw fixation
parameters without making any assumption about the type of eye-
movements in a feature vector. Using this method, our ultimate
goal is to get close to a gaze model that can generalize well for
various sentence–scene (communication) complexities.

To conclude, with advancements in the eye-tracking technology,
incorporating eye movements of a listener or speaker enables us
to predict / resolve which entity is being referred to in a complex
visual environment. However, it has also been shown that listener
gaze can only be really beneficial when combined with situation-
specific features of the current scene or language [17, 26]. Yet, those
models are limited to reading activities or relatively simple scenes
where the referential complexity is limited (due to language or
visual clutter). Situated language understanding in a referentially
complex or noisy environment imposes a different level of challenge
due to uncertainty in the coupling among the modalities that, to
the authors’ knowledge, is still an uncharted area. Therefore, in
addition to the contribution of eye-movements in language–vision
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(a) High-a: high-attached relative clause (b) High-b: low-attached relative clause (c) Medium: fully visible target object

Figure 2: A sample scene from the testing conditions (high: 26 participants, 17 scenes, medium: 27 participants, 19 scenes)

Table 1: Sample sentences with varying complexities (origi-
nal experiment language is German), RC: Relative Clause

Complexity Sample Sentence

1a.
High-attached RC

It is a blanket on a sofa that she stitches.
(Da ist ein Tuch auf einer Couch die sie langsam stopft)

1b.
Low-attached RC

It is a mug on a vitrine table that she damages.
(Da befindet sich ein Becher auf einer Vitrine die sie
achtlos beschädigt )

2.
No RC

Hold the green blanket from the sofa.
(Halte die grüne Decke vom Sofa )

models, we also investigate how the coupling between between
language and gaze is affected by referential complexity. This might
give valuable insights to decide whether the referential complexity
of the scene–sentence pair should be taken into account while
deciding how to integrate a gaze-model.

4 APPLICATION SCENARIO

Augmented communication technologies are becoming part of our
daily lives. Being able to follow a communication that conveys
thoughts and intentions expressed in a flexible manner is a crucial
component of NLP systems used for helper robots that aid people in
their daily activities. Still, communication is not always noise-free.
When the intention is not understood, the system can wait or ask
for clarification. However, combining the uncertain information
from the linguistic channel with information from the other ones
increases the fluency and the effectiveness of the communication
[10]. In this specific scenario, scene and gaze information is used
to compensate the noise in the verbal channel.

Unlike standard NLP approaches, in this scenario, the helper ro-
bot is equipped with an eye-tracker so that the gaze of the speaker(s)
can be tracked in an online fashion. Although the system is able
to perform crossmodal mapping without incorporating the eye-
movements by using SOTA NLP approaches, this modality is ex-
pected to improve the meaning recovery in noisy settings. Also, the
use of the proposedmethod can be beneficial for other task-oriented
communication scenarios, such as educational video games, train-
ing simulations and assistive navigation systems.

5 DATA

Eye4Ref [2] provides eye-movement recordings from various refer-
entially complex situations defined at course granularity (collected
with a SR Eyelink 1000 Plus eye tracker with a sampling rate of

Table 2: A partial list of the entities and scene representa-

tions in triplet notation for the scene in Figure 1.

Entity Labels Relations between Entities

1. robot1 1. (woman1, Agent, sit1)
2. woman1 2. (woman2, LocNEXTTO, table1)
3. newspaper1 3. (robot1, Agent, stand1)
4. mug1 4. (robot1, LocNEXTTO, sidetable1)
5. glasses1 5. (newspaper1, LocON, tablecloth1)
6. sidetable1 6. (newspaper1, LocNEXTTO, woman1)
7. sidetable2 7. (newspaper1, LocNEXTTO, mug1)
8. sidetable2 8. (glasses1, LocON, sidetable1)
9. glasses2 9. (glasses2, LocON, sidetable2)
10. sidetable1 10. (glasses2, Count, many)
11. kettle1 11. (mug1, color, blue)

1000Hz). The data is coming from visual world paradigm experi-
ments with a simple look-and-listen task, that presents participants
with referentially complex images with accompanying spoken sen-
tences. Referential complexity of the studies is controlled by visual
and linguistic manipulations and quantified as high, medium and
low by simplistic approaches, such as the number of competing ob-
jects, or presence of ambiguities. Even though this is at course-grain
level, in this study, we keep the original complexity classification to
account for reproducibility. We employed two subsets of Eye4Ref
dataset in this study; (i)high referential complexitywith ambiguous
sentence in reference to a cluttered environment1 and (ii) Medium
referential complexity with simple sentence also in reference to
a cluttered environment2, see Figure 2. The low condition was
omitted from this study since it differs from the others in terms of
the amount of visual clutter. In both conditions, for each mentioned
object in the scene, there are distractor objects that share properties
with the targets (e.g. same type or color). The high condition also
contains people and actions. To illustrate, in the first sentence in
Table 1, while the target object is blanket, the set of other commu-
nicationally relevant objects (mentioned in the sentence) consists
of sofa and she, which are all ambiguous (see Figure 2a).

Eye4Ref also contains semantic scene representations. As illus-
trated in Table 2, all objects in the images are annotated as a triplet
notation in the form <entity, relation type, entity / property>.

112 participants, 20 scene-sentence pairs and 240 eye-movement recordings
227 participants, 32 scene-sentence pairs in total 864 eye-movement recordings, please
check [2] for the experimental details.
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5.1 Masked sentences

In order to mimic noise in the language modality, we are masking
words in the sentences. Regardless of whether they are the target
object or not (interest of action), we treat all nouns and relative clause
pronoun as masking candidates. Sentences in the high condition
have three candidates; the first noun (blanket), the second noun
(sofa) and the RC pronoun (she) in Sentence 1a in Table 1. In the
second study (medium, Sentence 2), there are only two candidates:
blanket (first noun) and sofa (second noun). Each sentence has one
masked word at a time, resulting in 51 sentence variations for high
and 38 variations for medium. Despite the small size of this test
set, it should be noted that all multimodal pairs are unseen by both
language and gaze models.

5.2 Gaze Features

We use a time-series format that requires less assumptions on the
raw data. Time-series data also fit better for gaze-contingency since
these systems need to make decisions incrementally without having
any information after the present point in time. For computational
efficiency, time-series eye-tracking data are usually analyzed in
small bins. We use the provided scripts from the dataset repository
to create bins with a cumulative sampling for 10 milliseconds.

The dataset contains recordings before sentence onset as a base-
line, as well as the recordings while it is unfolding. We take the en-
tire trial window for training and evaluation using the de-segmented
fixation values for the overlapping objects provided by Eye4Ref
dataset. To illustrate, lets assume that there is a blanket on the side
table, and the area-of-interest (AOI) of the side table covers the AOI
of the blanket. In such a case, if there is a fixation on the child object
blanket, the raw data obviously also shows a fixation for the parent
side table. Desegmentation removes fixations on the child objects
from their parent objects.

5.3 Feature Vector

Eye4Ref provides pre-processed data for each scene and participant.
For each sample (10ms bin), all linguistic, scene and gaze features
are represented in a feature vector. The size of the feature vector
(on average 230 values) is dependent on the number of items in
the scene. Approximately 180 dimensions correspond to one-hot
encoded fixation location parameters3 addressing all the objects
in the scene. However, existing items are unique for each scene.
Therefore, these fixated item features are not just sparse vectors but
also at varying length. In our study, we reduce the size of this visual
entity-specific feature vector to 2 features w.r.t. whether the gaze
is (i) on the target object or (ii) on a communicationally relevant
object. This gives us a fixed-length and task-specific feature vector
that does not contain any location-related fixation information. The
dimension of the final feature vector is 18, consisting of gaze and
scene information; acceleration, velocity and their direction, angu-
lar resolution, pupil diameter, blink (or not), saccade (or not), binary
parameters that signal whether the respective word (for target and
all comm. objects) is being uttered at that point, and object count of
the scene as a referential complexity measure. Acceleration, pupil
size and velocity are normalized within participants and studies.
In order to be able to generalize better, regardless of the object
3Binary values signifying whether the gaze is fixated on that object.

locations, gaze coordinates of the eye-movements are not included
in the training since this information would be only useful in static
images, where the objects have a fixed location.

6 MODEL VARIATIONS

To establish the contribution of gaze features and understand their
interaction with other communicational cues, we perform a study
on multi-modal meaning recovery for noisy situations, where the
linguistic modality is incomplete. For example, the word blanket
is masked in the sentence “It is the . . . on the sofa that she silently
stiches” and various LMs are tasked to fill the gap with a word (task-
1) and to predict the corresponding entity in the scene (task-2). The
full code is provided in the repository4.

6.1 Bi-LSTM Model for the gaze processing

We employ a bi-directional LSTM architecture [13] using 50 LSTM
nodes. For input, we create sequences of 50 samples, spanning
500ms of input data. After the LSTM layer, we use two dense layers
with 20 and 10 nodes respectively. For the binary classification on
the single output layer, we use Sigmoid activation. Overall, the
model contains 15,441 parameters5.

We use a sequential machine learning setting to predict whether
the gaze of the participant is on one of the communicationally rele-
vant items while the spoken sentence unfolds. When utilizing lan-
guage or rich scene representations, this task might be considered
as trivial. However, when the multimodal setting involves complex
verbal descriptions with ambiguous meanings or cluttered visual
settings with object occlusion and multiple similar objects, the most
salient modalities can fail. Then, eye-movements can contribute to
resolving ambiguities and extracting meaningful predictions.

6.2 Language Models

As LMs, we employ several alternatives such as bi-directional N-
grams from NLTK library [6] and pretrained contextualized embed-
dings like BERT, RoBERTa and XLM-RoBERTa masked language
models [8, 9, 20] from the HuggingFace library [32].

The first N-grammodel (Bi-N-gram(O)) is trained on the Eye4Ref
dataset, where the test sentences also originate from. Order is set
to 4 towards both directions, which makes it more sensitive to
other tokens in the sentence. As we are training on the training
data, this serves as a upper baseline. The other three models do not
use Eye4Ref data during training. The second N-gram model was
trained on HURIC 2.0 dataset [30], which contains commands for
real human–robot interactions. This dataset contains 656 English
sentences (vocabulary size: 481), addressing different situations
representing possible commands given to a robot in a house envi-
ronment. However – as the native language of the psycholinguistic
experiments is German and the existing German resources fall short
in covering human–robot interaction dialogues – we have trans-
lated HURIC 2.0 sentences into German using Google Translate
Python library (vocabulary size: 449). We choose this dataset due to
its resemblance to our setting, however it does not contain context

4 https://gitlab.com/alacam/gaze2meaning
5Best parameters after grid search; Learning rate = 0.0001; Loss = binary crossen-
tropy; Optimizer = Adam; Batch size = 200; Epochs = 100. The full code, models and
predictions will be made available upon acceptance.
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Figure 3: The vocabulary and entity lists

information of the scene or eye-movements, thus it is only utilized
for training / fine-tuning the LMs.

As contextualized embeddings, we use various pre-trained BERT
language models for German and English languages. All models
were additionally fine-tuned on HURIC data. The performance of
such models is highly dependent on the vocabulary size of the
pretrained embeddings. Therefore, for each language, we used well-
established large embeddings, which are pre-trained with SOTA
methods. The German BERT Masked Language Model6 has been
trained on data from Wikipedia dumps, Open Subtitles, ParaCrawl
and NewsCrawl resulting in a total dataset size of 16GB and 2,350
million total tokens. For English, we use the RoBERTa Masked
LM [20]7. In addition, we also utilized xlm-roberta-base masked
language model, which is a large multi-lingual language model,
trained on 2.5 TB of filtered CommonCrawl data [8]. Unlike multi-
lingual BERT and RoBERTa, XLM-RoBERTa can infer the language
of the sentences. It is also chosen as an alternative to these more
established models due to its SOTA scores for both languages.

To sum up, we have employed four LM variations for the word /
entity prediction tasks for each language. For German, the models
are bi-directional N-gram, bi-directional N-gram trained on Huric
data, XLM-RoBERTa and dbmdz / GERMAN BERT models respec-
tively. For English, we employ bi-directional N-gram, bi-directional
N-gram trained on Huric data, XLM-RoBERTa and RoBERTa (large).

6.3 Tasks

6.3.1 Task-1: Word Recovery (finding the masked word). Assuming
that we have complete semantic representations of the environ-
ment, the most straight-forward option would be to fill gaps based
on utilizing rule-based inference. For example, the unknown ref-
erence has a location relation with a sofa, and either sofa or the
unknown item has the theme relation with the action sew. And
there is only one object in the scene that has this action. By back-
tracking, we can predict that this entity must be the blanket1, sewn
by the woman1, and located on the sofa1. But the success of this
method is highly dependent on the completeness of the extracted
semantic representation, which is not usually the case. Therefore,
we first utilize the power of language models such as skip-gram
or CBOW models to fill the masked word based on the similarity
and association scores [22]. The critical element of these models

6https://huggingface.co/dbmdz/bert-base-german-cased
7https://huggingface.co/roberta-large

Figure 4: Multimodal ensemble for word/entity predictions

is the representatives of the training data / corpus, which might
fall significantly short if the training samples are characteristically
different than the testing ones. Our uni-modal LMs (L) are tasked
to choose among their vocabulary (VocabularyLM) to predict the
gap word as illustrated in Figure 3.

As indicated by [29], providing scene-related information is cru-
cial for successful text completion in such settings. In the multi-
modal versions, we provide language models with a list of candidate
object labels and their properties in the scenes (scene representa-
tion). Based on this, the search space is reduced to objects and
properties that exist in the scene, and among them, the most proba-
ble word or entity from the language model is selected as gap filler
(blanket). Afterwards, we combine the LM with the gaze modality
in an ensemble model, see Figure 4. To do this, the scores are con-
verted into probabilities for each sentence and then best and top-k
items are stored, as explained later.

6.3.2 Task-2: Entity Prediction. Once theword is predicted, the next
step is to predict the entity being referred to. This process is done
by filtering all the instances of the predicted word in the entity list,
and then for each instances, we put its properties (e.g. color, shape)
as well as the entities that the respective instance has a relation to
into a list. We compare the sentence tokens against this list for each
instance, and the entity with the highest similarity is selected as
entity filler. While predicting the entity, we manipulated the way
of incorporating scene information as weak and strong influence. In
the weak visual influence condition, the entity prediction is highly
dependent on the LM prediction since the arguments–sentence
tokens comparison is performed only for the items that can be
referred to by the predicted word. To illustrate, if the LM predicts
a blanket as gap filler, the word blanket is searched in the scene
items to find all candidates matching this prediction (e.g. blanket1,
blanket2 or blanket3). In the strong visual influence condition, the
direction of the influence is the reversed; for each item in the scene,
we calculate the LM score and the arguments–sentence tokens
similarity score, and after normalization, we sum them in a linear
way by using equal weights for each metrics.

In this study, we concentrate on achieving an exact match for the
predicted item, Top-10 predictions are only used internally for the
combination of the predictions of LMs and gaze models. However,
all models can be adjusted to be evaluated for top-k recall and
precision metrics (the prediction is classified as correct if the true
label exists in the list of top-k predictions).
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Table 3: Recall@1, 2, 3

Word Entity

R@1 R@2 R@3 R@1 R@2 R@3

Noun_1 53.68 84.21 94.74 51.16 78.95 84.21
Noun_2 42.11 57.89 63.16 26.32 52.63 63.16
Pronoun 31.58 47.37 68.42 15.79 36.84 52.63

7 RESULTS

7.1 Uni-modal and Context-informed LMs

Before combining various modalities in an ensemble model as de-
scribed in Figure 4, we first aim to demonstrate the performance of
uni-modal language models on such a situation-dependent meaning
recovery task. The following sub-sections present the performance
on German and translated English data.

German. Figure 5 presents the results of four LM variations for
the word prediction task; bi-directional N-gram, bi-directional N-
gram trained on HURIC data, XLM-RoBERTa and dbmdz/GERMAN
BERT models respectively. As mentioned before, the N-gram (O)
model serves as upper baseline, and provides valuable insights to
understand the differences in masked position (Noun-1, Noun-2, or
RC Pronoun). The poor results of the rest of the models indicate the
difficulty of filling such gaps in the sentence for ambiguous cases
by using only language (L) or context-informed language models
(L+V). Despite their good performance on masked language tasks
in general, where the context given in the surrounding text is incor-
porated, for the current task, situated context of the accompanying
visual environment is more critical.

English. As shown in Figure 6, the models for the translated
English sentences also exhibit similar patterns as in German experi-
ments. The models are bi-directional N-gram, bi-directional N-gram
trained on HURIC data, XLM-RoBERTa and ROBERTA (large). For
the language models, the size of the vocabulary is one of the defin-
ing factors for higher performance, but for the current task, while
finding the exact match for the word is one task, finding the exact
entity in the referential word is the second and more challenging
task, in which uni-modal or context-informed language models fail
completely. The graphs consistently indicate that incorporating
gaze information is crucial for the task at hand.

The prediction for the first masked position (Noun-1) is very low
for uni-modal LMs, since the sentences have the same sentence
structure and there are several other visual distractors that can be a
masked candidate. In that case, it is very clear that gaze predictions
boost the performance steadily. One interesting observation is that
while German models are slightly better at predicting the Noun-
1, the English models perform better at predicting the Noun-2.
Further investigation is required to see whether this is related to the
frequency of the words that fill these two positions or to the saliency
of the objects. The masked words and the object labels usually
share the same lexeme such as blanket and blanket1, however due
to the sentence structure, there is no direct match between the
pronoun (s/he) and its entity in the scene (woman1). The n-gram
models do not have a multimodal co-reference resolution. Thus, it
seems that even multimodal n-grams without scene or gaze support
fail on filling the word and the entity for the pronoun position.
BERT and XLM-RoBERTa language models do not seem to make

this association better, indicating that a more elaborate solution is
needed to address this issue.

7.2 Gaze Predictions

The gazemodel provides a list of top 10 candidates with the probabil-
ities for each possible masked position in the given sentence / scene
setting. Table 3 summarizes the the recall scores of the target posi-
tion being in the top-k of prediction list. Noun 1 is located in the
highest rank for 53.7 % and 51.2 % of the cases for the word and en-
tity respectively. And Recall@2 and Recall@3 values show a highly
promising increase in performance, reaching 84.2 % and 94.7 % re-
spectively. The recovery rate for the Noun-2 and RC. Pronoun is
lower, especially for the entity prediction Recall@1. Considering
that the gaze model is only trained on eye-movements without any
guidance from the language or scene during training, this results
draw a promising pattern.

7.3 Gaze-informed Language Models

In overall, the results indicate that gaze-informed language models
performs significantly better than the unimodal LMs (except the
upper baseline n-gram versions), Chi-square with Yates Correction
χ2(1) = 6.952 (N=51, p < .05). Although the improvements for both
Noun-1 and Noun-2 gap positions are clearly indicated, the L+V
model and the L+V+G show similar performance overall (including
the Pronoun position). This indicates that the recovery of concrete
nouns like blanket or sofa is easier than recovering the personal pro-
noun (s/he or it) since the later one also requires indirect inference
to the entity label womani from the word she.

Interaction with Weak vs. Strong Context Influence. Figure 7 illus-
trates the interaction of gaze contributionwith the context influence.
The general trend indicates that the gaze-incorporated model with
strong context influence performs better compared to the weak
context influence. Therefore, for the sake of simplicity, we only
report the models with the strong influence.

Gaze Model Variations. Eye-movements, as an indicator of where
the attention is, are heavily influenced by the accompanying lan-
guage and the characteristics of the visual environment. Therefore,
the predictions from the gaze model were collected under three vari-
ations. The first one is based on simple fixation count (no-learning).
It is calculated by summing up the fixations for each of object in
the scene separately during the gap period as in:

F (item) =

of f set∑
i=onset

F (item)i

Figure 8 shows the prediction performance of the multimodal
model with respect to three variations. In the second analysis, we
use the predictions of the gaze model on the target object. Since
spoken language unfolds in time and the focus of communication
can be mentioned at any point (referenced or resolved later), having
a one-to-one / tight alignment between the spoken word and the
fixated object may not be always feasible as shown by the results.
For a sanity check, we used the medium condition which does not
have any semantic ambiguity. In such simple settings (like in Noun-
2 in the medium condition, where there is no referential ambiguity),
picking up the correct target object from the gaze model by only
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Figure 5: Predictions at the word level (German)

(a) Predictions at the word level (English)

(b) Predictions at the entity level (English)

Figure 6: F1-Scores (test: base model, test-tf: with transfer learning, test-tf: fine-tuned)

Figure 7: Gaze contribution: weak / strong context influence

focusing on the gap period is plausible. On the other hand, due to the
referential ambiguity in the high condition, where the ambiguity is
resolved at the end of the sentence, less tighter alignment is required
for successful prediction. To test this hypothesis, we compared the
two periods; either only the gap period (target period) or the period
of the entire sentence. For the former, we only check the correct
predictions made while the target word is spoken, in the latter we
extend it to an entire sentence period. In the high condition, for the
prediction of the entity referred to by the pronoun, no difference has
been observed among these three variations (no-learning, target and
entire period). However, there is a clear advantage of using the entire
period for the prediction of the second noun (location object), while
no consistent results are observed among different gaze-informed
LMs performances for the topicalized noun (Noun-1). Still, pairwise
comparison indicates that in overall using the entire period is better
than the target period (χ2(1) = 7.6645, N=51, p < .05), while the

target period and no learning conditions are very close to each
other. For the medium condition, there are no significant differences
between entire and target period predictions, and between no-
learning and target period predictions (N=51, p > .05). Especially,
for the second noun (no ambiguity), the entire period performs
slightly worse than target and no-learning conditions indicates.

Weighted Predictions. Recall@2 and Recall@3 results indicate
that the correct target entity is very competitive but due to com-
mon attention on the all mentioned objects they are not always
ranked in the 1st position. For example, for overlapped objects
like the mug1 (Sentence-1b), the overlapping objects (despite gaze
de-segmentation) often take precedence. Smaller objects can be
viewed easily at the periphery vision once they are registered [21].
Therefore they are pushed further down in gaze predictions. But
this might result in predictions like “it is a vitrine on the vitrine
that she damages” which is highly unlikely. In order to punish such
cases, we have reduced the weights of the all mentioned objects
(vitrine1, vitrine2, woman1, woman2) by the factor of 0.5. They can
still be selected in case the language model insists, but in general,
this modification will allow possibly unmentioned and visually less
salient entities to be selected. As seen in Figure 9, weighted gaze
predictions result in better performance for all conditions. A pair-
wise comparison on the results of XLM-RoBERTa indicates that the
weighted gaze predictions are significantly better than the original
predictions (χ2(1) = 6.195,N = 51,p < .05), with Yates correction).
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Figure 8: Gaze Model Variations: no learning, only target period, entire sentence

Figure 9: Weighted Predictions

8 CONCLUSION AND FUTUREWORK

In this study, we tested the contribution of the gaze modality inte-
grated into SOTA NLP approaches for reference resolution from
noisy settings. We have used the top-10 predictions of individual
models and then combined them with a uniform linear weight-
ing mechanism. The Recall@2 and Recall@3 scores also indicate
that the relevant item, if not in the first position, still occurs in
high ranks. Error analysis on misclassified cases indicates that
the correct item for the masked period is often competing with
other communicationally relevant objects. To exemplify, while the
masked location is associated with woman1, blanket1 and sofa1,
which have been already uttered, receive higher attention. In order
to mitigate this issue, enhancing the language models with part-of-
speech tags, co-training the model on eye-movements alongside
with the linguistic and visual information might allow the model
to handle these intrinsic relations implicitly. But as a simple strat-
egy, as shown here, punishing the entities of mentioned items by a
weighting mechanism seems to perform well.

Despite the technological advancements in eye-tracking tech-
nologies, it might be still far-fetched to assume that the daily use of
assistive technologies will be equipped with high-end eye-trackers
in the near future. Our solution indicates that even highlighting the
most communicationally relevant items, without establishing tight
alignment between the spoken word and its reference in the scene,
boosts the performance of a meaning recovery model. This kind
of loose alignment can be easily achieved by low-frequency eye-
trackers. Instead of focusing on an one-to-one coupling between
gaze and the masked item, we demonstrated that distinguishing
communicationally relevant objects is achievable based on the en-
tire utterance period instead of extracting the most fixated item
while the masked word is being spoken.

This analysis has been done in temporarily ambiguous and in-
complete sentences accompanied by referentially complex environ-
ments (e.g. each mask candidate in the sentences has two other
competitors). However, even in such linguistically and visually
challenging cases, the models that incorporate gaze information
consistently perform better on word and entity predictions com-
pared to only Language (L) and Language&Visual (L+V) models.
As can be seen in the Recall@1 scores in Table 3, the multimodal
model (L+V+G) also performs better than the gaze-only model,
which indicates that a) each modality can capture different aspects
of the multimodal input, and b) their combination provides the best
performance. In this study, we have shown that a combination of
(off-the-shelf) masked LMs with a basic context integration and a
gaze model can help to recover the meaning. This indicates that
instead of developing complex language–vision ensemble models, a
relatively simple gaze-incorporated multimodal integration might
be feasible and computationally efficient. Furthermore, when the
objects and their competitors are very close to each other, or when
they are small, non-target objects seem to get substantial atten-
tion from the users. This, in very rare cases, impairs the overall
performance of the multimodal ensemble although the LM has an
accurate prediction for the target object. These issues require fur-
ther investigation, which is highly dependent on the existence of
large-scale multimodal datasets incorporating eye-movements.

We have used SOTA masked LMs in English and German, but
they are also available for many languages. Besides, gaze-models
can be considered as language-independent since we did not incor-
porate any linguistic features explicitly in the feature vector. The
results indicate that transferring from German to English does not
impair the results.

The next step is to evaluate the performance of the model in a
simulated environment, where a virtual robot can react to speakers’
commands and accompanying eye-movements. We also plan to
record eye-movements in real-world settings to create gaze features
and then systematically examine whether the gaze features can be
transferred from one environment to another. These experiments
will enable us to implement the integrated model on a service robot
equipped with eye-tracking capabilities.
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