Abstract

We present a system for answering comparative questions (Is X better than Y with respect to Z?) in natural language. Answering such questions is important for assisting humans in making informed decisions. The key component of our system is a natural language interface for comparative QA that can be used in personal assistants, chatbots, and similar NLP devices. Comparative QA is a challenging NLP task, since it requires collecting support evidence from many different sources, and direct comparisons of rare objects may be not available even on the entire Web. We take the first step towards a solution for such a task offering a testbed for comparative QA in natural language by probing several methods, making the three best ones available as an online demo.

1 Introduction

Comparison of objects of a particular class (e.g., holiday destinations, mobile phones, programming languages) is an essential daily task that many individuals require every day. According to Bondarenko et al. (2020a), comparative questions constitute around 3% of queries submitted to major search engines—a non-negligible amount. Answering a comparative question (What is better, X or Y?) requires collecting and combining facts and opinions about compared objects from various sources. This challenges general-purpose question answering (QA) systems that rely on finding a direct answer in some existing datasets or extracting from web documents.

Nowadays, many websites (e.g. Diffen, WolframAlpha, or Versus) provide users with a comparison functionality. Furthermore, the task of answering comparative questions has recently attracted the attention of the research community (Kessler and Kuhn, 2014; Arora et al., 2017; Yang et al., 2018). Most of the current research suggests that an answer to a comparative question not only should indicate the “winner” of comparison but also provide arguments in favor of this decision and arguments that support the alternative choice.

Therefore, we argue that a comparative QA system should be a combination of an argument mining engine and a dialogue system that mimics a human expert in the field. In this work, we make the first step towards the development of such technology. Namely, we develop a Comparative Question Answering System (CoQAS), an application that consists of a Natural Language Understanding (NLU) module that identifies comparative structures (objects, aspects, predicates) in free input questions and a Natural Language Generation (NLG) module that constructs an answer. We tested various options for both NLU and NLG parts ranging from a simple template-based generation to Transformers-based language models.

The main contributions of our work are threefold: (i) we design an evaluation framework for comparative QA, featuring a dataset based on Yahoo! Answers; (ii) we test several strategies for identification of comparative structures and for answer generation; (iii) we develop an online demo using three answer generation approaches. A demo of the system is available online.1 Besides, we release our code and data.

2 Related Work

Text Generation Most of the current text natural language generation tasks (Dušek and Jurčiček, 2016; Freitag and Roy, 2018) are based on se-
sequence to sequence model architecture (Sutskever et al., 2014). The existing generation methods are developed by employing attention mechanism (Bahdanau et al., 2015) and pointer-generator network (See et al., 2017). More recent work on text generation focus on generating natural language using multitask learning from multi-document or multi-passage sources (Hsu et al., 2018; Nishida et al., 2019). However, in our generation task, we have a list of arguments used to build the final answer. This makes our task similar to unsupervised summarization. There exist several approaches for tackling the latter task, e.g. graph-based (Litvak and Last, 2008) and neural models (Isonuma et al., 2019; Coavoux et al., 2019). A common approach to summarization is based on the TextRank graph algorithm (Mihalcea, 2004; Fan and Fang, 2017).

Comparative QA According to Li and Roth (2006), questions can be divided into 6 coarse and 50 fine-grained categories, such as factoid questions, list questions, or definition questions: we focus on comparative questions. Sun et al. (2006) proposed one of the first works on automatic comparative web search, where each object was submitted as a separate query, then obtained results were compared. Opinion mining of comparative sentences is discussed by Ganapathibhotla and Liu (2008) and Jindal and Liu (2006), yet with no connection to argumentation mining. Instead, comparative information needs are partially satisfied by several kinds of industrial systems mentioned above. Schildwächter et al. (2019) proposed Comparative Argumentative Machine (CAM)\(^2\), which is a comparison system based on extracting and ranking arguments from the web. The authors have conducted a user study on 34 comparison topics, showing that the system is faster and more confident at finding arguments when answering comparative questions in contrast to a keyword-based search. Wachsmuth et al. (2017) presented args.me, a search engine for retrieving pro and con arguments given for a given controversial topic. The input to this system is not structured but rather a query in a free textual form.

In the example “Which is better for Deep Learning: Python or MATLAB?”, the objects are entities that the user wants to compare (Python, MATLAB). The predicate is the entity that frames the comparison (better); it introduces a comparison relation between the objects and is often represented by a comparative adjective or adverb. Finally, the comparison aspects are shared properties along which the two objects are compared, e.g., Deep Learning.

Our comparative question answering system is based on CAM (Schildwächter et al., 2019), which retrieves pro/con arguments for a pair of compared objects. We extend CAM by enabling it to process natural language questions and generate coherent human-like answers as depicted in Figure 1.

Comparative Argument Mining CAM mines sentences in favor or against two compared objects

\(^2\)https://ltdemos.informatik.uni-hamburg.de/cam

Figure 1: The comparative QA workflow. A user submits a comparative question, the NLU module identifies compared objects and aspects and transfers them to CAM to retrieves comparative arguments. Then, the NLG module represents the arguments in textual form.

3 System Design

Our system is designed to help the user make a proper choice by fully and reasonably describing the possible advantages and disadvantages of each of the matching options. For this purpose, we have defined structures that contain significant information about the desired comparison: compared objects, comparison aspects, and predicates.

In the example “Which is better for Deep Learning: Python or MATLAB?”, the objects are entities that the user wants to compare (Python, MATLAB). The predicate is the entity that frames the comparison (better); it introduces a comparison relation between the objects and is often represented by a comparative adjective or adverb. Finally, the comparison aspects are shared properties along which the two objects are compared, e.g., Deep Learning.

Our comparative question answering system is based on CAM (Schildwächter et al., 2019), which retrieves pro/con arguments for a pair of compared objects. We extend CAM by enabling it to process natural language questions and generate coherent human-like answers as depicted in Figure 1.
Enter a comparative question

Which is better for Deep Learning: Python or MATLAB?

We chose Python because it was easy to learn and fun to work with. It has a large community of developers who are always willing to help each other out. In addition, the standard library makes developing applications with Python very easy. The downside is, that you have to be careful when using it. If you’re not careful, you’ll end up writing code which will crash your computer if something goes wrong. You also need to know how to use libraries like numpy in order to get good results.

Comparative Question Answering System Github

Figure 2: The interface of the Comparative Question Answering System (CoQAS).

with respect to an aspect specified by the user. First, using the Elasticsearch BM25, CAM retrieves sentences containing the two compared objects and the comparison aspect from the Common Crawl-based corpus featuring 14.3 billion sentences (Panchenko et al., 2018). Then, CAM classifies the sentences as comparative or not and identifies the “winner” of the two compared objects in the sentence context. Besides, it extracts aspects and predicates from the retrieved comparative sentences (Panchenko et al., 2019). Finally, CAM outputs a list of argumentative pro/con sentences and shows the “winner” of the comparison along with the comparison aspects.

Comparative Question Answering We extend CAM with natural language question understanding (described in Section 4) and natural language answer generation (described in Section 5) modules. The first module is developed to automatically identify the compared objects and the comparison aspect in a user-provided natural-language comparative question. This information is passed to CAM, which queries DepCC for comparative sentences. The NLG module receives the output of CAM and transforms the retrieved argumentative sentences into a short text, the generated answer. The structure of our modular system is presented in Figure 1.

The user interface (Figure 2) contains an input form for submitting a comparative question and an output box for a generated answer. To improve the readability of the answer and help find the arguments in it, NLU module also labels the output with identified objects, aspects, and predicates. In Figure 2, we present an example of the system’s web interface in action.

In the NLG module, we use several approaches to response generation: an information retrieval-based approach and an approach built upon pre-trained language models. These techniques provide different answers: the first is more structured, and the second one is based on experience and opinions. Therefore, we allow a user to choose a generation model from different types: CAM, CTRL, and Snippets (cf. Figure 2).

Finally, for integration into NLP applications, e.g., personal assistants and chatbots, we also provide a RESTful API for our comparative QA.

4 Natural Language Understanding

The goal of the NLU module is to identify the objects to compare and comparison structure aspects and predicates if they were specified. We cast this as a sequence labeling task.

Training Dataset To train the NLU, we created Comparely, a dataset with comparative sentences manually labeled with objects, aspects, and predicates. First, we extracted comparative sentences for 270 object pairs from the dataset of (not) comparative sentences by Panchenko et al. (2019). We extracted them from DepCC corpus (Panchenko et al., 2018) using CAM. We then performed manual labeling (two annotators) using WebAnno (Yimam et al., 2013). Some of the extracted sentences were not comparative, so the annotators were instructed to discard them. The majority of sentences were labeled once, but we also labeled 200 of them multiple times to compute the inter-annotator agree-
Table 1: Statistics of the NLU dataset.

<table>
<thead>
<tr>
<th></th>
<th>Object</th>
<th>Aspect</th>
<th>Predicate</th>
</tr>
</thead>
<tbody>
<tr>
<td># occurrences</td>
<td>7,555</td>
<td>2,593</td>
<td>3,990</td>
</tr>
<tr>
<td># per sentence</td>
<td>2.51</td>
<td>1.35</td>
<td>1.34</td>
</tr>
<tr>
<td>Avg. # words</td>
<td>1.04</td>
<td>1.37</td>
<td>1.16</td>
</tr>
</tbody>
</table>

The Cohen’s κ for the aspect labeling is 0.71 (substantial agreement). For predicates and objects, the values are 0.90 and 0.93, respectively—perfect agreement. The dataset consists of 3,004 sentences, each of them has a comparison of two or more distinct objects and at least one aspect or predicate. The average length of sentence is 26.7 words (Table 1). The majority of sentences compare more than one pair of objects across multiple parameters (i.e., sentences often contain more than one aspect or predicate). As the NLU processed not statements but questions, for the further improvement of the dataset, we could use comparative questions from (Bondarenko et al., 2020a).

This dataset is essentially similar to the ones by (Arora et al., 2017; Kessler and Kuhn, 2014). They also contain comparative statements labeled with objects, aspects, and predicates. The primary difference of our dataset is domain diversity. The mentioned datasets are drawn from a single domain, namely, camera reviews. The information contained in such sentences is difficult to generalize. Thus, they demonstrate a proof of concept rather than a resource that can be used for real-world tasks. On the other hand, Comparely features objects of different domains. It was created based on real-world objects that are frequently compared. It contains data from three domains: brands, generic objects, and computer science. The two former domains are more numerous: 41% and 46% sentences deal with objects of brands and generic domains, respectively. The remaining 13% are devoted to objects of the computer science domain.

Method Identification of comparative question components (objects, aspects, predicates, or none) is a sequence-labeling task, where the classifier should tag respective tokens in an input question. We test several common baselines starting with simple one-layer bidirectional LSTM described by (Arora et al., 2017) where the input is encoded with GloVe (Pennington et al., 2014) embeddings. For some further improvements, we add Conditional Random Field (Sutton and McCallum, 2012) to LSTM and use context-based ELMO (Peters et al., 2018) embeddings for token representations. We also experiment with Transformers (Vaswani et al., 2017) using a pre-trained BERT model (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), which is its modification yielding better performance. For every classifier, during training, we tune hyperparameters by varying a batch size (from 16 to 100) and a learning rate (from 10^{-6} to 10^{-2}). To find a proper converge of the training process, we apply two types of learning rate schedulers: Linear With Warmup and Slanted Triangular.

For the model with the highest achieved F1 (RoBERTa), we employ stochastic weight ensembling (Goodfellow et al., 2015; Garipov et al., 2018), i.e., we interpolate between the weights obtained by training a certain model with different random seeds. All models were trained on the Comparely dataset and tested on its manually re-labeled subset of 400 sentences. The overview of the classifiers’ effectiveness is shown in Table 2.

Results and Discussion The evaluation shows that comparison aspect classification is the hardest task: the baseline one-layer BiLSTM achieves an F1 of 0.33, and the most effective RoBERTa-based classifier achieves an F1 of 0.69. The most reliable classification was achieved for predicting the compared objects with an F1 of 0.58 for the baseline and an F1 of 0.93 for RoBERTa. An addition of a CRF layer and the use of pre-trained ELMo embeddings to the BiLSTM classifier slightly improved the results. Transformers demonstrated significant improvement in classification effectiveness over the baseline. Finally, we choose to deploy a RoBERTa-based classifier in the NLU module of our system.

5 Comparative Answer Generation Based on comparative sentences retrieved by CAM, we develop several generation approaches to construct a human-like concise answer: (1) genera-

Table 2: Evaluation in terms of F1 of the NLU tagger.

<table>
<thead>
<tr>
<th>Model</th>
<th>Objects</th>
<th>Aspects</th>
<th>Predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoBERTa</td>
<td>0.925</td>
<td>0.685</td>
<td>0.894</td>
</tr>
<tr>
<td>BERT</td>
<td>0.829</td>
<td>0.563</td>
<td>0.869</td>
</tr>
<tr>
<td>ELMo</td>
<td>0.654</td>
<td>0.487</td>
<td>0.825</td>
</tr>
<tr>
<td>BiLSTM-CRF</td>
<td>0.631</td>
<td>0.475</td>
<td>0.766</td>
</tr>
<tr>
<td>BiLSTM</td>
<td>0.582</td>
<td>0.328</td>
<td>0.730</td>
</tr>
</tbody>
</table>
tion with pre-trained Transformers-based language models, (2) retrieval of argumentative sentences ranked by CAM or TextRank, (3) extracting context of sentence retrieved by CAM as support for the “winning” object, and (4) entering extracted comparative structures in templates.

5.1 Generation Methods

Pre-trained Language Models Pre-trained language models have been shown to contain commonsense knowledge, so they can be successfully used for question answering (Andrews and Witteveen, 2019) and for generating sensible and coherent continuation of text. Therefore, we use Transformers-based CTRL (Keskar et al., 2019) models for answering comparative questions.

CTRL allows explicit control codes to vary the domain and the content of the text. We use the Links control code, which forces the model to produce text similar to online news and reports. We feed into CTRL phrase “Links Which is better in respect to the aspect: object 1 or object 2?” and a row question from the input.

We also vary the maximum number of tokens generated by CTRL. We experiment with different length set, including: 20, 50, 100, 150, and 200 and generate answers to questions from the Yahoo! Answers dataset (cf. Section 5.2). For the evaluation part, we calculate ROUGE-1, ROUGE-2, ROUGE-3 scores between generated texts and corresponding Yahoo!’s “best answers”. According to the results (cf. Figure 3), a model with a maximum length of 100 tokens gives the highest ROUGE-3 score (we select this length parameter for our further experiments).

Sentence-Retrieval-Based Methods The CAM output contains a list of the argumentative sentences ranked by the BM25 inverted index-based score. Every sentence is a supportive argument for the superiority of the respective compared object. Sentence-retrieval-based methods try to extract the most representative sentences and display it in the proper form. To create an answer, CAM: Bullet points mentions a “winner” defined by CAM with respect to aspects if they exist. It also takes the top-3 sentences supporting each of the objects and produces a list for highlighting the advantages and disadvantages of each object in comparison.

An alternative way of retrieving the most relevant sentences is clustering. This approach is used in TextRank: Bullet points. TextRank is a graph-based summarization algorithm. We use the version proposed by Mallick et al. (2019). We represent sentences with hidden states of a LSTM network pre-trained on Wikipedia. TextRank iteratively updates the weights of edges and sets the node weights to be proportional to the importance of adjacent edges. To make the graph sparse, we remove the edges with a score below average.

We create separate graphs for sentences supporting each of the objects. We apply TextRank to each of them and then cluster them. Clustering divides the nodes in graphs by semantic similarity and thus allows identifying groups of sentences supporting a particular idea. Then, we apply TextRank again to each of the clusters separately and select the three most characteristic sentences from each cluster as produced by Chinese Whispers (Biemann, 2006), an iterative clustering algorithm, which assigns vertices to the most common class among their neighbors. Argumentative sentences selected in this way are displayed as a bullet-list after declaring the “winner” object of comparison.

Document-Retrieval-Based Method To compose an answer, CAM: First snippets takes the first sentence related to the “winner” object in CAM output. Then it finds a document corresponding to this sentence and extracts the surrounding context. The obtained context consists of 3 sentences and is considered to be a system answer.
Table 3: Evaluation of generation methods on the Yahoo! Answers. The best models of each type are highlighted.

<table>
<thead>
<tr>
<th>Method</th>
<th>Type</th>
<th>ROUGE-1</th>
<th>ROUGE-2</th>
<th>ROUGE-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL: Question, len≤100</td>
<td>Language Model</td>
<td>0.2423</td>
<td>0.0226</td>
<td>0.0023</td>
</tr>
<tr>
<td>CTRL: Which-better-x-y-for-z, len≤100</td>
<td>Language Model</td>
<td>0.2454</td>
<td>0.0200</td>
<td>0.0021</td>
</tr>
<tr>
<td>CAM: First snippets</td>
<td>Doc.Retrieval</td>
<td>0.2162</td>
<td>0.0167</td>
<td>0.0017</td>
</tr>
<tr>
<td>CAM: Bullet points</td>
<td>Sent.Retrieval + Slots</td>
<td>0.2298</td>
<td>0.0328</td>
<td>0.0040</td>
</tr>
<tr>
<td>TextRank: Bullet points</td>
<td>Sent.Retrieval + Slots</td>
<td>0.2203</td>
<td>0.0238</td>
<td>0.0036</td>
</tr>
<tr>
<td>Templates</td>
<td>Object/Aspect Slots</td>
<td>0.1969</td>
<td>0.0195</td>
<td>0.0016</td>
</tr>
</tbody>
</table>

Template-Based Answer Besides the argumentative sentences, CAM extracts aspects and predicates from them. The predicates are adjectives or adverbs, which allows using templates of the following form: “I would prefer to use Object1 because it is Predicate1 and Predicate2. In addition, it is Predicate3, ..., and Predicate1. However, you should also take into account that Object2 is Predicatei+1, ..., and Predicatek”. Here Object1 is the winner of comparison.

5.2 Experiments

Evaluation Dataset To evaluate the answer generation module of our system, we use information extracted from Yahoo! Answers. Namely, we get a subset of L6–Yahoo! Answers Comprehensive Questions and Answers version 1.0 (multi-part) retrieved from Yahoo! Webscope. We take pairs of objects that we used for generating Comparably and extract a subset of questions from the Yahoo! Answers dataset which contains these objects, yielding 1,200 questions.

Additionally, we extract the answers to these questions, which are labeled by users as “best answer”, and use them to evaluate our NLG methods.

Evaluation Metric Generated and reference texts are usually compared by a number of matched N-grams: BLUE (precision), ROUGE (recall), METEOR (F-score). For the all-round representation of the similarity of the text, we select F1 score from ROUGE-N outputs as an evaluation metric. We evaluate our generation models on the Yahoo! Answers dataset using the “best answer” (defined by users) as the reference.

Discussion of Results Evaluation results are provided in Table 3. CTRL models receive the highest ROUGE-1 scores that describe overlapping of single words, and CTRL’s high performance relative to it can be explained by the fact that the pre-trained language model stores information about a vast dictionary and, with some probability, yields the words that are placed in the standard answer. While the language-model-based system may yield grammatically correct answers, they may not necessarily satisfy the information need of the user. For example, the CTRL answers the question “What should I eat an orange or an apple?” with “It is simple: eat what you like and don’t worry about it.”

Despite having low ROUGE-1, sentence retrieval-based approaches (Text Rank: Bullet points, CAM: Bullet points) have consistently higher ROUGE-2 and ROUGE-3. The generated answers are more structured and built on sentences marked by the system as comparative. They often contain typical 2-gram and 3-gram sequences as found in explanations. Answers from CAM: First snippets, consisting of a single comparative sentence only, perform worse on all metrics. Interestingly, CAM: Bullet points has better performance than TextRank: Bullet points. It could indicate that modeling relevance by a standard index provides more accurate results than clustering. Meanwhile, template-based generation performs poorly. This indicates that the grammatical structure is essential for the answer generation task.

We choose 50 random sentences from the Yahoo! Answers dataset as described in Section 6 and calculate ROUGE-N scores for every generation method and Yahoo!’s “best answers”. For each group of methods, we select one providing the best result—CTRL: Question 100, CAM: First snippets, and CAM: Bullet points—and add them to the system demonstration engine.

6 User Study

To additionally evaluate the proposed answer generation methods, we also collect human assessments in a small user study for the three models with the highest ROUGE scores (CTRL: Question 100,
Table 4: User study results for answer completeness and fluency (30 questions, 3-point Likert scales).

<table>
<thead>
<tr>
<th>Method</th>
<th>Answers a question (%)</th>
<th>Answer fluency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete</td>
<td>Partial</td>
</tr>
<tr>
<td>Yahoo! Best Answer</td>
<td>62</td>
<td>28</td>
</tr>
<tr>
<td>CTRL: Question 100</td>
<td>30</td>
<td>37</td>
</tr>
<tr>
<td>CAM: Bullet points</td>
<td>28</td>
<td>58</td>
</tr>
<tr>
<td>CAM: First snippets</td>
<td>23</td>
<td>49</td>
</tr>
</tbody>
</table>

Experimental Setup For our study, we randomly sampled 30 comparative questions from the Yahoo! Answers dataset and generated answers using three methods: CTRL: Question 100, CAM: Bullet points, and CAM: First snippets. Additionally, since we used Yahoo!’s “best answers” as ground truth for automatic evaluation, we asked our participants to also assess the quality of the human “best answers”. For the user study, we internally recruited five (under-)graduate students. We focused on the two answer evaluation criteria: (1) Whether an answer is complete (“Does it answer the question?”) and (2) how fluently it is written. The 120 question–answer pairs (3 generated answers and Yahoo!’s “best answer” for 30 questions) were randomly ordered, and the participants had to rate the answer completeness and fluency on a three-point Likert scale (3: fully answers/fluent, 2: partially answers/fluent, and 1: does not answer/not fluent at all).

Results and Discussion The inter-annotator agreement shows a slight overall agreement between the five annotators (Fleiss’ $\kappa = 0.20$ for answer completeness and $\kappa = 0.13$ for fluency) such that we decided to increase the reliability by calculating the κ-scores for all combinations of three or four annotators. We then decided to include only the three participants with the highest agreement ($\kappa = 0.32$ for answer completeness and 0.30 for fluency; both fair agreement) and to remove the two “outlier” participants from the study.

Table 4 summarizes the study results as the ratio of votes collected from the three annotators (we cannot use majority voting since about 60% of the question-answer pairs do not have a majority vote). Not surprisingly, the human-written answers are perceived as the most complete and fluent. The participants were almost equally satisfied with the answers generated by CTRL: Question 100 and CAM: Bullet points. However, they assessed the CTRL answers as much more fluent. Interestingly, the relatively low inter-annotator agreement might indicate that humans have different perceptions of answer completeness and fluency (even some “best answers” were rated as incomplete and not fluent). For completeness, we calculated the statistical significance of the user study results using Bonferroni corrected p-values. For the pair CTRL: Question 100 (our best NLG model) and the Yahoo! Best Answer: $p \ll 0.05$ for the answer completeness and $p \gg 0.05$ for the answer fluency. For the CTRL model, Pearson’s $r = 0.121$ between the answer completeness and fluency (small correlation), and for the “best answers”, $r = 0.407$ (medium correlation). The results show that our proposed system is almost as fluent as the human-written answers but still needs some improvement in terms of adequacy.

7 Conclusion

We present a comparative question answering system targeted at answering comparative questions, such as “Is X better than Y with respect to Z?”. Our system is based on the Comparative Argument Mining (CAM) system—a tool that retrieves from a large corpus textual comparative arguments for two to-be-compared objects. We extend CAM with an NLU module that identifies objects and aspects in a user textual query and highlights them in the answer, and a generation module that gives a concise and coherent answer based on the retrieved information. Evaluation of generation methods showed that a CTRL-based answer generation has a better performance with respect to ROUGE-1, and Sentence Retrieval Methods provide superior ROUGE-2 and ROUGE-3 scores. We hope that the presented testbed for comparative QA and the set of baseline approaches will pave the way for further research.
Acknowledgments

This work was partially supported by the DFG through the project “ACQuA: Answering Comparative Questions with Arguments” (grants BI 1544/7-1 and HA 5851/2-1) as part of the priority program “RATIO: Robust Argumentation Machines” (SPP 1999). The demo is hosted using the Zhores supercomputer infrastructure (Zacharov et al., 2019). We thank the following Skoltech students who conducted several preliminary experiments related to this work as a part of their research assignments: Anna Shalova, Nikita Borovkov, Filipp Furaev, and Anton Razzhigaev. Finally, we thank Artem Shelmanov for providing a training script for the RoBERTa-based sequence tagger.

References

